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Synchronization and coordination of sequences in two neural ensembles
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There are many types of neural networks involved in the sequential motor behavior of animals. For high
species, the control and coordination of the network dynamics is a function of the higher levels of the central
nervous system, in particular the cerebellum. However, in many cases, especially for invertebrates, such
coordination is the result of direct synaptic connections between small circuits. We show here that even the
chaotic sequential activity of small model networks can be coordinated by electrotonic synapses connecting
one or several pairs of neurons that belong to two different networks. As an example, we analyzed the
coordination and synchronization of the sequential activity of two statocyst model networks of the marine
mollusk Clione The statocysts are gravity sensory organs that play a key role in postural control of the animal
and the generation of a complex hunting motor program. Each statocyst network was modeled by a small
ensemble of neurons with Lotka-Volterra type dynamics and nonsymmetric inhibitory interactions. We studied
how two such networks were synchronized by electrical coupling in the presence of an external signal which
lead to winnerless competition among the neurons. We found that as a function of the number and the strength
of connections between the two networks, it is possible to coordinate and synchronize the sequences that each
network generates with its own chaotic dynamics. In spite of the chaoticity, the coordination of the signals is
established through an activation sequence lock for those neurons that are active at a particular instant of time.
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I. INTRODUCTION referred to as winnerless competitioWLC). While the con-
, , , , cept of WLC has been experimentally known for a long time
The generation of sequences is a main function of thes] jts application to neural processing within dynamical
neural networks that are responsible for animal motor behaVSystems is more recef#,5). In each experiment involving
ior. For rhythmic activity like breathing, heart beating, or \y| ¢ there is a sequential switching of different patterns in
running, neural networks called central pattern generatorgich none of them prevails over the others. This process

(CPGg produce periodic or nearly periodic activity se- can he described by a generalized Lotka-Volterra model:
quences or spatiotemporal patterns. Different motor neurons
in such patterns are active in different phases of the rhythmic _ N

a=g|1- +Gj, (1)

cycle. In more complex cases such as the hunting swimming a + E Pij 8y
of the marine mollusiClione or the singing of songbirds, the 1#]

motor sequence required can be nonperiodic, chaotic, QUherea; =0, p;; =0, and the functiors; represents the effect
transient depending on the stimyli,2]. There are several f gtimylus-dependent interactions between neurons.NFor
different networks including CPGs that are usually involved_ g andG; =0, this is a well known kinetic equation in popu-
in the organization of specific sequential motor activity. The|ation hiology as it was first introduced to describe the popu-
problem of synchronization and coordination of sequentiaation evolution of fish specidscharacterized by the number
activities of neurons from different complex networks is cru-ai_ of individuals[6]. The impact on the growth rag of the
cially impqrtant for a well qrganized motor behavior. In.this. ith species by the presence of tfih species is determined
paper we investigate the simplest case, i.e., the coordmanq_r,y the competition coefficien;;. One essential feature to
and synchronization of sequences in two small net\(vorks. W?rigger WLC behavior in the population evolution is the non-
analyze the sequence coordination and synchronization d%ymmetry of coefficientg;; # p;. The mathematical image

pending on the type and strength of the coupling between thgs \y| ¢ is a stable heteroclinic sequence in the phase space:

networks. . saddle points connected with one-dimensional separatrices.
The inhibitory networks that we study here are built with 1hjs simple model can describe networks with inhibitory

neurons that compete to be active. None of the cells capynnections that one can meet in econdifly in mode com-
dominate the others for a long time, i.e., there is a Seque”ti%letition in physics[8], or in neural system§4,9]. At first
switching activity in the neural ensembles. This process igjew the WLC heteroclinic sequence may seem very exotic
and structurally unstable. However, even for dissipative sys-
tems like Eq.(1) with G;=0, which have an invariant sub-
* Also at Grupo de Neurocomputacion Biol6gi€@NB), Dpto. de  space[a (N-1)-dimensional simplex in our cagd0]], the
Ingenieria Informética, Universidad Auténoma de Madrid, 28049WLC dynamics can be robust and persistent under arbitrary

Madrid, Spain. perturbationgsee also Ref.11] for the same phenomena in
"Electronic address: mrabinovich@ucsd.edu; URL: http://a different system It is also possible to prove that the sys-
inls.ucsd.edu tem (1) with G; a linear function ofg; has a surfac&, that
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mentally and theoretically well understodd,5,9. The sta-
tocyst model using Lotka-\olterra type neurons has made
predictions about the switching dynamics in this network
that have been tested experimentdlly. However, the ani-
mal has two statocysts electrically coupled, and the effect of
their interaction is less known. This could not only be inter-
esting from the biological point of view, i.e., what physi-
ological features o€Clione behavior can be understood from
the interaction of both networks, but also from a physical
point of view: how the coupling between two networks is

] organized to generate two nonidentical chaotic sequences
Winner-take-—all Winnerless competition that, nevertheless, have features that favor their coordination.
) . ) Recent experiments have shown that both the tail moto-
FIG. 1. (Color onling Schematic representation of the dual role neurons and the wing CPG receive the influence of the sta-

of a single statocyst with six receptor neurons. During normal . .
. . o ignalgl]. Th | motor movements of the win
swimming, a stonelike structure, the statolith hits the mechanoret-OCySt signal$ 1] e actual motor movements of the gs

ceptor neurons that react to this excitation dliones hunting be- and the tall are very different. A possible explanation for this

havior, the statocyst receptors receive an additional excitation frorﬁ'trc_)ng mf!uence (Ijs th(.:'l role.o.f the S.tatocht _Slgnafl in coordi-
the cerebral hunting neurdil) that generates a winnerless compe- nating wing and tal QCt'V'ty' \_ng eatllng requency.
tition among them. changes constantly during hunting behavior and the tail

bends into different directions in a longer time scale. How-
covers part of the phase space including the origin and afVver, wing and tail activity have to be coordinated to produce
fixed points in which all trajectories intersect, i.gls <0, ~ an effective hunting search. The activity of the statocyst net-
i=1,...,N. Thus such a system has no trajectories that es/Ork séems to participate not only in the hunting motor pro-

Gravity

cape to infinity. gram, but also in the coordination of the tail and the wing
The WLC principle has made possible the interpretationMmotor activity. _ _ .
for example, of the hunting search behavior ®lione, a The synchronization of low dimensional chaotic systems

small blind marine molluskl,9]. This is a planktonic animal has been widely studiefd4—-17. In this paper we consider
negatively buoyant that has to maintain a continuous motof€ coordination and synchronization of chaotic sequences in
activity in order to keep its preferred head-up orientation WO Six-dimensional networks that represent a sensory organ
The motor activity is controlled by the wing central pattern With dual function. Our results show that while producing
generator and the tail motoneurons that use the signals froff€ highly irregular signals required for their functional role
its gravity sensory organs, the statocydt3]. A six receptor during hunt!ng, the two networ_ks can also display qo_ld|t|0nal
neural network model with synaptic inhibitions has beenfeatures suitable for the coordination of neural activity.

built to describe a single statocy€] (see Fig. L This is a Il. MODEL

small sphere in which the statolith, a stonelike structure, '

moves according to the gravitational field. The statolith ex- We have built two neural ensemblésand B. Each of
cites the neuroreceptors by pressing them. When excited, tfigem represents the network of neuroreceptors in a statocyst.
receptors send signals to the neural systems responsible ffr our model each network is composed of six neurons.
wing beating and tail orientation. The statocysts have a dudPhysiological recording$13] have lead to establish some
role [1]. During normal swimming only the neurons that arerules to build the statocyst network, and in particular to
excited by the statolith are active which leads to a winnerchoose the inhibition matrix: 30% of the neuron pairs are
take-all mode as a result of inhibitory connections in theconnected with inhibitory connections. Here we assume that
network. However, during hunting search behavior, a CereeaCh neuron receives and sends two inhibitory signals when
bral neuron excites each neuron of the stato¢yse right —activated(see Fig. 2 Moreover, each neurog; or b; of
panel in Fig. 1. This triggers WLC between all statocyst hetwork A or B, respectively, receives a signak* or HP
neurons whose signals participate in the generation of a conttom the cerebral neurons that trigger the hunting search be-
plex motion that the animal uses to scan the space until f@avior.

finds its prey[1]. The image of the chaotic dynamics of the  In our study we connected neuroasandb; belonging to
statocyst model in this behavioral mode is a strange attractdtetworksA and B, respectively, through electrical coupling
and the heteroclinic loops become unstable. We have showt§€€ Fig. 2 the conductance of the couplirgy determines

[9] that for N=6 the observed dynamical chaos is characterthe strength of the connection. During hunting, the role of
ized by two positive Lyapunov exponents whose magnitude&e statolith is considered negligible and thus we do not dis-
do not change when increasing the accuracy of the comptfuss here its effect on the dynamics of the networks.

tation. That means that the origin of chaos is not related to The dynamics of the two statocyst networks is described
numerical noise. We also showed that chaotic activity alsdVith a set of 12 ordinary differential equations based on a
exists when the statocyst network is modeled withgeneralized Lotka-Volterra type dynamics:
conductance-based mod¢l<?]. N

_ _The abili.ty of a single statocyst to generate a chaotic ac- a = ai<1 -> pﬁa,- + HiA) -gi(a-h), (2a)
tivity resulting in randomlike movement has been experi- j=1
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IIl. RESULTS

\" Hunting neuron

A. Independent activity

A wide range of inhibition coefficientg;; can trigger
WLC but there is often one or more neurons silent. One can
see in Fig. 3 that for the values chosen here each neuron is
active when there is no coupling between netwokkasnd B
(gi=0, 0i). The calculation of the Lyapunov exponents from
the vector field(2a) and(2b) yields in this case two positive
exponents for each networks=0.015,A5=0.004, and\?
=0.012,)5=0.002.

Let us consider first a single network without coupling
_ . _ , [Egs.(2a and(2b) with g;=0]. Although a detailed analysis
FIG. 2. (Color online Network configuration used in our study. is possible foN=3 [9], this is not the case for more complex
Resistor represents the electrical coupling between the two ne jetworks. WherN> 3, the system may have several differ-
works. Inhibitory connections within each ensemble are represente‘é‘nt heteroclinic orbits according to the strength of inhibition.
by white QOts. Thicker traces mean stronger conngctions. The eXCirpis has been demonstrated to be a powerful strategy for
tztory a(:tlonI of the ktlugtlng ne#ron o?hall the gells |fs represte_znted bﬁlodeling memory18] and other mechanisms of information
the arrows. In our study we change the number of connections an . . . . :
the strength of the coupling between these two networks. Fgfﬁﬁzsgr;gsgézroonsemcé) dneslI'dtef::tIggge%llvb?;hiiogitillgavlvistﬁptl\Dl\(/)(;t

N triangular subnetworks of inhibitory neurorisee Fig. 2.

- B B The individual network dynamics of each triangle, which is
b= bi(l _Z pijb; + Hi ) —gi(b - &), (2b) weakly coupled to the other through the peripheral connec-
= tions, can be understood from the three-dimensional case.

. The origin of the chaoticity in the six-dimensional dynamical

whereN=6, anda; andb; represent the spiking rate of the system can be intuitively explained in the following manner:
neurons in the network andB, respectively. The connection jhgependently, each triangle has a closed heteroclinic orbit
matricesp” andp® and the stimuli from the cerebral hunting that becomes a strange attractor or a limit cycle under the

neuronH” andHE that we will use here are action of a small perturbation. This perturbation comes here
from the hunting neuron and from the inhibitory connections
1 0 5 0 0 15 with the other triangle. The weak interactions of these two
winnerless competitive nonlinear oscillators generate chaos
151 0 2 0 O over a large region of parameters.
A | 0 15 1 0 5 O As mentioned above, the individual statocyst dynamics is
P~ o 0 15 1 0 2 determined by the external inpugsl;) and by the nonsym-
metrical inhibitory connections between neurons that com-
> 0 0151 0 pete against each other. In some regions of the control pa-
0 2 0 0 15 1 rameters, as the result of such competition, the output
spatiotemporal pattern of the network produces a sequence
of pulses generated by different neurons at different instants
0.730 0.301 of time, i.e., WLC. The origin of the sequence generation can
0.123 0.206 be easily explained in terms of the inhibition. Suppose that
) 0.301 R 0.458 each neuron can be just in two states, i.e., silent or active.
HA = ' HB = ' When a neuron is active, it inhibits several other neurons
0.203 0.903 within the network. These silent neurons, in turn, allow the
0.458 0.730 activation of the neurons that they inhibited before, and so
0.903 0.123 forth. Thus it is not difficult to formulate the conditions for

the connection matrix, e.g., inequalities for the valueg;pf

The inhibition matrixp® and p? are similar, except that if [5]. The excitation from the hunting neuron and the nonsym-
pﬁ&j #0 thenp&j:pgﬁo.oz. There are two biological mo- metrical inhibitory connections guarantees the presence of
tivations for the small differences between netwofksand  the switching. Such sequential firing or switching can be
B: (i) as other sensory organs, both statocysts are not exactheriodic or chaotic depending on the control parameter val-
identical. However, the offset in the connection matrices canues(connection matrix and hunting vecjor
not be too high for it would not lead to WLGji) different The chaotic sequences generated by the discussed net-
external signalghere from the hunting neuronsan arrive  works have a very interesting specific feature. In spite of the
on the two sensory receptors. Moreover, we are interested inyperchaoticity(the corresponding strange attractor is char-
our study that both networks lead to similar behavior, butacterized by two positive Lyapunov exponentbe order of
with different neuronal activity before the coupling to dis- the neural switching is invariant for those neurons that are
cuss later their synchronization. activated in a particular time window; only the time intervals
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FIG. 3. (Color onling Chaotic sequential switching displayed by the activity of the neurons in netiaband of networkb) when there
is no coupling between the networks. Units are dimensionless. FPandisplays the time intervals in which each neuron is actiae
>0.03. Each neuron is represented by a different color/gray scale. The dotted rectangles point out the activation sequence lock among the
units that are active at a given time interval within each network for time windows in which all six neurons are active.

between the switching are chaotisee panel C in Fig.)3 We can hypothesize that a richer dynamics will arise from
Thus activation sequence lock in this context means that théhe connection between two such networks, so that more
order of activation of the neurons in a short time window iscomplex signals can be generated in these sensory receptors
the same. Note that not all the neurons need to be activatetlring hunting behavior. This hypothesis will be tested in the
in a particular sequence. However, the order in the sequenceext section.
for those that are activated is preserved.

Based on this knowledge it is reasonable to expect that, as B. Coupled networks
a result of coupling between two similar but not identical Electrophysiological recordings have shown that in
networks, the corresponding output sequences can be codZlione both statocysts are electrically coupled, although the
dinated in some sense or even synchronized. By coordinatiotlegree and strength of these connections are unkfa@jn
below we mean a stable regime with a fixed order of theUsing our model we can analyze the effect of coupling one
switching in the sequence# those neurons that are acti- or more receptor neurons belonging to each statocyst on the
vated at a particular time windgvbut with uncorrelated tim- common dynamics of the two networks.
ing. Complete synchronization means that both chaotic time If only one neuron is connected to the corresponding cell
series have the same order of switching and the same timingn the other networksee Fig. 4, there is an almost complete
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synchronization of the activation time of the connected neubuilt, for example between neurors and b,, we observe
rons(a; andb;, with g;=2). In panel A of Fig. 4 one can see synchronization for the neurons connected and an increased
that these two neurons fire and remain silent at the samactivation sequence locking for the others.

epochs but with a slightly different amplitude. The rest of So far we have seen that it is possible to synchronize
corresponding neurons in both networks have a large degréedividual neurons of each network by connecting them. But
of independent behavior. As an illustration of this, panel B inis it possible to have a strong activation sequence locking
Fig. 4 displays the activity of neurorag andbg that have no  between the neurons of different networks while keeping the
direct connection. There is no synchronization in the activitychaoticity? As mentioned before, each of the six-neuron net-
of these neurons: there are several epochs in which neyron works is built out of two oscillator subcircuits that consist of
remains silent whereas neurty is active; However, tran- three neurongtwo triangle$ and an external loop connecting
sient synchronization and activation sequence locks can algbem. We have tried to synchronize the neurons of the stron-
be observed at some time windows when both neurons amger inhibitory triangle of networké andB by coupling them
active. Panel C shows that there is no continuous sequenég;=gz=0s=0.01). Panels A and B of Fig. 5 show the activ-
lock between neurons of different networks except for thoseaty of neurons in each of the two triangle subnetworks. Al-
neurons that are directly coupled. It is also difficult to find though there is no complete synchronization between the
periods with a sustained activation sequence lock for all neureurons of the connected triangle, we see that they both ac-
rons within the same network. The switching is still chaotictivate and deactivate at the same tifpanel B. However,

in both networks. In this case the calculation of thethe activity of neurons that belong to the other triangveh-
Lyapunov exponents yields that three of them are positiveut internetwork connectionsare not synchronizedpanel

and the Kolmogorov-Sinai entroppKS:ZVO)\i:Z. This  A). Panel C shows that in this case a high degree of activa-
fact is understandable: the initial system had two separateidon sequence lock is present for all the neurons, even among
six neuronal ensembles; it becomes a 12 neuronal ensembieurons that belong to the two different networks. The cal-
when adding the electrical connection, with more combina<ulation of the Lyapunov exponents from the vector field
tions available for the switching activity. The connection inyields five positive exponents in this case aqd==) -0\

this case seems to diminish to a great extent the activatios6. The Kolmogorov-Sinai entropy is two orders of magni-
sequence lock present in the independent networks. Howude larger than in the case of the independent six neuron
ever, if additional connections with a similar strength arenetworks.
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One way to obtain complete synchronization for all neu-
rons is to connect each neuraywith its corresponding neu-
ron b;. Such a complete synchronization was not Observe“ZF;;EIS:{‘;Kok;:;E:oc\’rf—Sinai S — P

with less than six connectiorisee Fig. 6. We found that, for g entropy
a one-to-one connection architectueg to b;), the two net- 2r
works could display very different behaviors depending on Al
the strength of the coupling constagt=g, [i. With small jﬁ
coupling (g=1079), the activity of each neuron is periodic o=
with the same frequency, and both neuranandb; oscillate o
in antiphase. In this case the coupling term in E@s) and chaotic behavior ~
(2b) has the same effect as an inhibitory connection which| 10 : i ‘MM MMM
drives the system to a limit cycle. However, the system re- 0 n

mains chaotic when the coupling conductances are lowel

thang=10"° or higher thang=10, displaying in all cases
the activation sequence lock. 10°|

ajand b; X axis:time, y axis: activity

il

5900

chaotic behavior

0 hy=0.035 without synchronization

periodic activity:
regular oscillations

With a strong couplingup tog=0.12, there is complete phase lock
synchronization for the chaotic activity @ and b;, with e =
slight differences in the amplitude of the signals. In this case, chaotic behavior ar

there is a single positive Lyapunov exponent. However, if the
coupling is too high(g;>0.12 the sequential switching is
destroyed and the system displays no oscillations after a tran

hys=0.019

with synchronization

Localized high frequency
oscillations

5800

5800

sient period.
The study of the two electrically coupled networks shows

constant activity after a transient period; no more WLC

that there is a wide variety of rich behaviors as a function of

the coupling. The two networks are able to generate chaotic FIG. 6. (Color onling Description of the network activity when
signals with an activation sequence lock for several connecall the neurons of the two networks are electrically coupled one to

tion architectures. Even for the cases in which the sequename (a; to b;) as a function of the strength of the coupligg
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lock is intermittent, this can be a desirable feature of a neuraduitable for their use in driving complex but coordinated
system that has to produce multiple signals to drive a commovements.
plex but at the same time coordinated motion. It is common to find in physiology processes that involve
the synchronization between different orgd2€]. For in-
stance, the heartbeat has been known to be synchronized
IV. DISCUSSION with ventilation in some casg®1]. But unlike hunting be-
havior of Clione, most physiological processes use periodic
In this paper we have studied the coordination and syner nearly periodic oscillations. As a matter of fact neural
chronization between two sensory organs described witlnetworks often require rhythmicity for the response imposed
small neural ensembles. One could argue that neural neto the living organism by the environment which is not con-
works (and mostly sensory ongare often larger than our six sistent with chaotic behavior. Our analysis showed that a
neuron statocyst model. However, our approach is to look asmall interaction between the two networks leads to the regu-
the dynamics of small building blocks or microcircuits to larization of the chaotic dynamics making their sequential
understand the dynamical behavior of larger networks as iactivity purely periodic as for two coupled CPG chaotic neu-
Ref.[19]. Here we have seen that two coupled statocyst netrons [22]. For the hunting search behavior 6fione such
works provide richer dynamics for the sequential switching.statocyst dynamics is not useful. On the other hand, a mod-
The activation sequence locking observed in the single neerate coupling can coordinate the two network dynamics
works is preserved when the two ensembles are coupled wittiirough the control of the order of the sequential switching
a sufficient number of connections. Furthermore, the switchand leave to both of them enough degrees of freedom to
ing can now take place among neurons of different networksgenerate signals with high informational content. We think
This greatly increases the richness of the sequential signalthat these results are widely spread and nature could use this
Clione uses the signals from the statocyst to generate andpproach in other contexts. For example, the brain of bird-
coordinate two distinct motor activities during hunting: the songs has two high vocal centgisVCs) that generate se-
acceleration of the wing beating and the bending of the tail irjuences that control the rhythm and motif of the songs. The
different directions. Both the acceleration of the wings andneural system of birdsongs is bilaterally organized and a
the tail bending appear to change randomly, but they argood song that has a sexual meaning is the result of the
nevertheless coordinated to produce a coherent motion. Ieoordination of the sequential dynamics of both left and right
this context, the generation of a chaotic signal with activaHVCs [23]. The song sequence is not random, but is not
tion sequence locks is an appropriate feature of the statocyperiodic nor completely predictable. We think that the coor-
network. Sensory organs are generally receptors that gathéination (not a complete synchronizatipof the HVCs se-
information about the environment; then the central nervousgjuential dynamics, through the acoustic feedback, for ex-
system integrate incoming signals and adapt the response @nple, is able to solve the contradiction between the richness
external conditions. But forCliones gravimetric organs of the song and reproducibility of the motif.
things seem to work on a different way. These organs have
dynamics on their own and generate complex signal that are ACKNOWLEDGMENTS
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