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There are many types of neural networks involved in the sequential motor behavior of animals. For high
species, the control and coordination of the network dynamics is a function of the higher levels of the central
nervous system, in particular the cerebellum. However, in many cases, especially for invertebrates, such
coordination is the result of direct synaptic connections between small circuits. We show here that even the
chaotic sequential activity of small model networks can be coordinated by electrotonic synapses connecting
one or several pairs of neurons that belong to two different networks. As an example, we analyzed the
coordination and synchronization of the sequential activity of two statocyst model networks of the marine
molluskClione. The statocysts are gravity sensory organs that play a key role in postural control of the animal
and the generation of a complex hunting motor program. Each statocyst network was modeled by a small
ensemble of neurons with Lotka-Volterra type dynamics and nonsymmetric inhibitory interactions. We studied
how two such networks were synchronized by electrical coupling in the presence of an external signal which
lead to winnerless competition among the neurons. We found that as a function of the number and the strength
of connections between the two networks, it is possible to coordinate and synchronize the sequences that each
network generates with its own chaotic dynamics. In spite of the chaoticity, the coordination of the signals is
established through an activation sequence lock for those neurons that are active at a particular instant of time.
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I. INTRODUCTION

The generation of sequences is a main function of the
neural networks that are responsible for animal motor behav-
ior. For rhythmic activity like breathing, heart beating, or
running, neural networks called central pattern generators
sCPGsd produce periodic or nearly periodic activity se-
quences or spatiotemporal patterns. Different motor neurons
in such patterns are active in different phases of the rhythmic
cycle. In more complex cases such as the hunting swimming
of the marine molluskClioneor the singing of songbirds, the
motor sequence required can be nonperiodic, chaotic, or
transient depending on the stimulif1,2g. There are several
different networks including CPGs that are usually involved
in the organization of specific sequential motor activity. The
problem of synchronization and coordination of sequential
activities of neurons from different complex networks is cru-
cially important for a well organized motor behavior. In this
paper we investigate the simplest case, i.e., the coordination
and synchronization of sequences in two small networks. We
analyze the sequence coordination and synchronization de-
pending on the type and strength of the coupling between the
networks.

The inhibitory networks that we study here are built with
neurons that compete to be active. None of the cells can
dominate the others for a long time, i.e., there is a sequential
switching activity in the neural ensembles. This process is

referred to as winnerless competitionsWLCd. While the con-
cept of WLC has been experimentally known for a long time
f3g, its application to neural processing within dynamical
systems is more recentf4,5g. In each experiment involving
WLC there is a sequential switching of different patterns in
which none of them prevails over the others. This process
can be described by a generalized Lotka-Volterra model:

ȧi = aiF1 −Sai + o
iÞ j

N

ri jajDG + Gi , s1d

whereai ù0, ri j ù0, and the functionGi represents the effect
of stimulus-dependent interactions between neurons. ForN
=3 andGi =0, this is a well known kinetic equation in popu-
lation biology as it was first introduced to describe the popu-
lation evolution of fish speciesi characterized by the number
ai of individualsf6g. The impact on the growth rateai of the
ith species by the presence of thej th species is determined
by the competition coefficientri j . One essential feature to
trigger WLC behavior in the population evolution is the non-
symmetry of coefficientsri j Þr ji . The mathematical image
of WLC is a stable heteroclinic sequence in the phase space:
saddle points connected with one-dimensional separatrices.
This simple model can describe networks with inhibitory
connections that one can meet in economyf7g, in mode com-
petition in physicsf8g, or in neural systemsf4,9g. At first
view the WLC heteroclinic sequence may seem very exotic
and structurally unstable. However, even for dissipative sys-
tems like Eq.s1d with Gi =0, which have an invariant sub-
spacefa sN−1d-dimensional simplex in our casef10gg, the
WLC dynamics can be robust and persistent under arbitrary
perturbationsssee also Ref.f11g for the same phenomena in
a different systemd. It is also possible to prove that the sys-
tem s1d with Gi a linear function ofai has a surfaceS0 that
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covers part of the phase space including the origin and all
fixed points in which all trajectories intersect, i.e.,ȧiuS0

,0,
i =1,… ,N. Thus such a system has no trajectories that es-
cape to infinity.

The WLC principle has made possible the interpretation,
for example, of the hunting search behavior ofClione, a
small blind marine molluskf1,9g. This is a planktonic animal
negatively buoyant that has to maintain a continuous motor
activity in order to keep its preferred head-up orientation.
The motor activity is controlled by the wing central pattern
generator and the tail motoneurons that use the signals from
its gravity sensory organs, the statocystsf13g. A six receptor
neural network model with synaptic inhibitions has been
built to describe a single statocystf9g ssee Fig. 1d. This is a
small sphere in which the statolith, a stonelike structure,
moves according to the gravitational field. The statolith ex-
cites the neuroreceptors by pressing them. When excited, the
receptors send signals to the neural systems responsible for
wing beating and tail orientation. The statocysts have a dual
role f1g. During normal swimming only the neurons that are
excited by the statolith are active which leads to a winner-
take-all mode as a result of inhibitory connections in the
network. However, during hunting search behavior, a cere-
bral neuron excites each neuron of the statocystssee right
panel in Fig. 1d. This triggers WLC between all statocyst
neurons whose signals participate in the generation of a com-
plex motion that the animal uses to scan the space until it
finds its preyf1g. The image of the chaotic dynamics of the
statocyst model in this behavioral mode is a strange attractor
and the heteroclinic loops become unstable. We have shown
f9g that for N=6 the observed dynamical chaos is character-
ized by two positive Lyapunov exponents whose magnitudes
do not change when increasing the accuracy of the compu-
tation. That means that the origin of chaos is not related to
numerical noise. We also showed that chaotic activity also
exists when the statocyst network is modeled with
conductance-based modelsf12g.

The ability of a single statocyst to generate a chaotic ac-
tivity resulting in randomlike movement has been experi-

mentally and theoretically well understoodf1,5,9g. The sta-
tocyst model using Lotka-Volterra type neurons has made
predictions about the switching dynamics in this network
that have been tested experimentallyf1g. However, the ani-
mal has two statocysts electrically coupled, and the effect of
their interaction is less known. This could not only be inter-
esting from the biological point of view, i.e., what physi-
ological features ofClione behavior can be understood from
the interaction of both networks, but also from a physical
point of view: how the coupling between two networks is
organized to generate two nonidentical chaotic sequences
that, nevertheless, have features that favor their coordination.

Recent experiments have shown that both the tail moto-
neurons and the wing CPG receive the influence of the sta-
tocyst signalsf1g. The actual motor movements of the wings
and the tail are very different. A possible explanation for this
strong influence is the role of the statocyst signal in coordi-
nating wing and tail activity. Wing beating frequency
changes constantly during hunting behavior and the tail
bends into different directions in a longer time scale. How-
ever, wing and tail activity have to be coordinated to produce
an effective hunting search. The activity of the statocyst net-
work seems to participate not only in the hunting motor pro-
gram, but also in the coordination of the tail and the wing
motor activity.

The synchronization of low dimensional chaotic systems
has been widely studiedf14–17g. In this paper we consider
the coordination and synchronization of chaotic sequences in
two six-dimensional networks that represent a sensory organ
with dual function. Our results show that while producing
the highly irregular signals required for their functional role
during hunting, the two networks can also display additional
features suitable for the coordination of neural activity.

II. MODEL

We have built two neural ensemblesA and B. Each of
them represents the network of neuroreceptors in a statocyst.
In our model each network is composed of six neurons.
Physiological recordingsf13g have lead to establish some
rules to build the statocyst network, and in particular to
choose the inhibition matrix: 30% of the neuron pairs are
connected with inhibitory connections. Here we assume that
each neuron receives and sends two inhibitory signals when
activatedssee Fig. 2d. Moreover, each neuronai or bi of
network A or B, respectively, receives a signalHi

A or Hi
B

from the cerebral neurons that trigger the hunting search be-
havior.

In our study we connected neuronsai andbi belonging to
networksA and B, respectively, through electrical coupling
ssee Fig. 2d; the conductance of the couplinggi determines
the strength of the connection. During hunting, the role of
the statolith is considered negligible and thus we do not dis-
cuss here its effect on the dynamics of the networks.

The dynamics of the two statocyst networks is described
with a set of 12 ordinary differential equations based on a
generalized Lotka-Volterra type dynamics:

ȧi = aiS1 − o
j=1

N

ri j
Aaj + Hi

AD − gisai − bid, s2ad

FIG. 1. sColor onlined Schematic representation of the dual role
of a single statocyst with six receptor neurons. During normal
swimming, a stonelike structure, the statolith hits the mechanore-
ceptor neurons that react to this excitation. InClione’s hunting be-
havior, the statocyst receptors receive an additional excitation from
the cerebral hunting neuronsHd that generates a winnerless compe-
tition among them.
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ḃi = biS1 − o
j=1

N

ri j
Bbj + Hi

BD − gisbi − aid, s2bd

whereN=6, andai and bi represent the spiking rate of the
neurons in the networkA andB, respectively. The connection
matricesrA andrB and the stimuli from the cerebral hunting

neuronHW A andHW B that we will use here are

rA =1
1 0 5 0 0 1.5

1.5 1 0 2 0 0

0 1.5 1 0 5 0

0 0 1.5 1 0 2

5 0 0 1.5 1 0

0 2 0 0 1.5 1

2
HW A =1

0.730

0.123

0.301

0.203

0.458

0.903

2 HW B =1
0.301

0.206

0.458

0.903

0.730

0.123

2
The inhibition matrixrA andrB are similar, except that if

riÞ j
A Þ0 thenriÞ j

B =riÞ j
A +0.02. There are two biological mo-

tivations for the small differences between networksA and
B: sid as other sensory organs, both statocysts are not exactly
identical. However, the offset in the connection matrices can-
not be too high for it would not lead to WLC;sii d different
external signalsshere from the hunting neuronsd can arrive
on the two sensory receptors. Moreover, we are interested in
our study that both networks lead to similar behavior, but
with different neuronal activity before the coupling to dis-
cuss later their synchronization.

III. RESULTS

A. Independent activity

A wide range of inhibition coefficientsri j can trigger
WLC but there is often one or more neurons silent. One can
see in Fig. 3 that for the values chosen here each neuron is
active when there is no coupling between networksA andB
sgi =0, ∀id. The calculation of the Lyapunov exponents from
the vector fields2ad ands2bd yields in this case two positive
exponents for each network:l1

A=0.015,l2
A=0.004, andl1

B

=0.012,l2
B=0.002.

Let us consider first a single network without coupling
fEqs.s2ad ands2bd with gi =0g. Although a detailed analysis
is possible forN=3 f9g, this is not the case for more complex
networks. WhenN.3, the system may have several differ-
ent heteroclinic orbits according to the strength of inhibition.
This has been demonstrated to be a powerful strategy for
modeling memoryf18g and other mechanisms of information
processingf5g. Those considerations give theoretical support
for the six neuron model: the ensemble is built with two
triangular subnetworks of inhibitory neuronsssee Fig. 2d.
The individual network dynamics of each triangle, which is
weakly coupled to the other through the peripheral connec-
tions, can be understood from the three-dimensional case.
The origin of the chaoticity in the six-dimensional dynamical
system can be intuitively explained in the following manner:
independently, each triangle has a closed heteroclinic orbit
that becomes a strange attractor or a limit cycle under the
action of a small perturbation. This perturbation comes here
from the hunting neuron and from the inhibitory connections
with the other triangle. The weak interactions of these two
winnerless competitive nonlinear oscillators generate chaos
over a large region of parameters.

As mentioned above, the individual statocyst dynamics is
determined by the external inputssHid and by the nonsym-
metrical inhibitory connections between neurons that com-
pete against each other. In some regions of the control pa-
rameters, as the result of such competition, the output
spatiotemporal pattern of the network produces a sequence
of pulses generated by different neurons at different instants
of time, i.e., WLC. The origin of the sequence generation can
be easily explained in terms of the inhibition. Suppose that
each neuron can be just in two states, i.e., silent or active.
When a neuron is active, it inhibits several other neurons
within the network. These silent neurons, in turn, allow the
activation of the neurons that they inhibited before, and so
forth. Thus it is not difficult to formulate the conditions for
the connection matrix, e.g., inequalities for the values ofri j
f5g. The excitation from the hunting neuron and the nonsym-
metrical inhibitory connections guarantees the presence of
the switching. Such sequential firing or switching can be
periodic or chaotic depending on the control parameter val-
uessconnection matrix and hunting vectord.

The chaotic sequences generated by the discussed net-
works have a very interesting specific feature. In spite of the
hyperchaoticitysthe corresponding strange attractor is char-
acterized by two positive Lyapunov exponentsd, the order of
the neural switching is invariant for those neurons that are
activated in a particular time window; only the time intervals

FIG. 2. sColor onlined Network configuration used in our study.
Resistor represents the electrical coupling between the two net-
works. Inhibitory connections within each ensemble are represented
by white dots. Thicker traces mean stronger connections. The exci-
tatory action of the hunting neuron on all the cells is represented by
the arrows. In our study we change the number of connections and
the strength of the coupling between these two networks.
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between the switching are chaoticssee panel C in Fig. 3d.
Thus activation sequence lock in this context means that the
order of activation of the neurons in a short time window is
the same. Note that not all the neurons need to be activated
in a particular sequence. However, the order in the sequence
for those that are activated is preserved.

Based on this knowledge it is reasonable to expect that, as
a result of coupling between two similar but not identical
networks, the corresponding output sequences can be coor-
dinated in some sense or even synchronized. By coordination
below we mean a stable regime with a fixed order of the
switching in the sequencessin those neurons that are acti-
vated at a particular time windowd but with uncorrelated tim-
ing. Complete synchronization means that both chaotic time
series have the same order of switching and the same timing.

We can hypothesize that a richer dynamics will arise from
the connection between two such networks, so that more
complex signals can be generated in these sensory receptors
during hunting behavior. This hypothesis will be tested in the
next section.

B. Coupled networks

Electrophysiological recordings have shown that in
Clione both statocysts are electrically coupled, although the
degree and strength of these connections are unknownf13g.
Using our model we can analyze the effect of coupling one
or more receptor neurons belonging to each statocyst on the
common dynamics of the two networks.

If only one neuron is connected to the corresponding cell
in the other networkssee Fig. 4d, there is an almost complete

FIG. 3. sColor onlined Chaotic sequential switching displayed by the activity of the neurons in networksad and of networksbd when there
is no coupling between the networks. Units are dimensionless. Panelscd displays the time intervals in which each neuron is activesai

.0.03d. Each neuron is represented by a different color/gray scale. The dotted rectangles point out the activation sequence lock among the
units that are active at a given time interval within each network for time windows in which all six neurons are active.
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synchronization of the activation time of the connected neu-
ronssa1 andb1, with g1=2d. In panel A of Fig. 4 one can see
that these two neurons fire and remain silent at the same
epochs but with a slightly different amplitude. The rest of
corresponding neurons in both networks have a large degree
of independent behavior. As an illustration of this, panel B in
Fig. 4 displays the activity of neuronsa6 andb6 that have no
direct connection. There is no synchronization in the activity
of these neurons: there are several epochs in which neurona6
remains silent whereas neuronb6 is active; However, tran-
sient synchronization and activation sequence locks can also
be observed at some time windows when both neurons are
active. Panel C shows that there is no continuous sequence
lock between neurons of different networks except for those
neurons that are directly coupled. It is also difficult to find
periods with a sustained activation sequence lock for all neu-
rons within the same network. The switching is still chaotic
in both networks. In this case the calculation of the
Lyapunov exponents yields that three of them are positive
and the Kolmogorov-Sinai entropyhKS=oli.0li .2. This
fact is understandable: the initial system had two separated
six neuronal ensembles; it becomes a 12 neuronal ensemble
when adding the electrical connection, with more combina-
tions available for the switching activity. The connection in
this case seems to diminish to a great extent the activation
sequence lock present in the independent networks. How-
ever, if additional connections with a similar strength are

built, for example between neuronsa2 and b2, we observe
synchronization for the neurons connected and an increased
activation sequence locking for the others.

So far we have seen that it is possible to synchronize
individual neurons of each network by connecting them. But
is it possible to have a strong activation sequence locking
between the neurons of different networks while keeping the
chaoticity? As mentioned before, each of the six-neuron net-
works is built out of two oscillator subcircuits that consist of
three neuronsstwo trianglesd and an external loop connecting
them. We have tried to synchronize the neurons of the stron-
ger inhibitory triangle of networksA andB by coupling them
sg1=g3=g5=0.01d. Panels A and B of Fig. 5 show the activ-
ity of neurons in each of the two triangle subnetworks. Al-
though there is no complete synchronization between the
neurons of the connected triangle, we see that they both ac-
tivate and deactivate at the same timespanel Bd. However,
the activity of neurons that belong to the other triangleswith-
out internetwork connectionsd are not synchronizedspanel
Ad. Panel C shows that in this case a high degree of activa-
tion sequence lock is present for all the neurons, even among
neurons that belong to the two different networks. The cal-
culation of the Lyapunov exponents from the vector field
yields five positive exponents in this case andhKS=oli.0li

.6. The Kolmogorov-Sinai entropy is two orders of magni-
tude larger than in the case of the independent six neuron
networks.

FIG. 4. sColor onlined Activity
of the networks with one electro-
tonic connection between them.
The coupling vector is g
=s2,0,0,0,0,0d. Panelsad shows
the synchronized activity of neu-
rons labeled as 1 in both net-
works. Panelsbd shows the activ-
ity of neurons labeled as 6. Panel
scd shows the time intervals in
which each neuron is activesai

.0.03d. Only intermittent activa-
tion sequence locks can be ob-
served for neurons within the
same network.
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One way to obtain complete synchronization for all neu-
rons is to connect each neuronai with its corresponding neu-
ron bi. Such a complete synchronization was not observed
with less than six connectionsssee Fig. 6d. We found that, for
a one-to-one connection architecturesai to bid, the two net-
works could display very different behaviors depending on
the strength of the coupling constantgi =g, ∀ i. With small
coupling sg<10−6d, the activity of each neuron is periodic
with the same frequency, and both neuronsai andbi oscillate
in antiphase. In this case the coupling term in Eqs.s2ad and
s2bd has the same effect as an inhibitory connection which
drives the system to a limit cycle. However, the system re-
mains chaotic when the coupling conductances are lower
than g=10−9 or higher thang=10−6, displaying in all cases
the activation sequence lock.

With a strong couplingsup to g=0.12d, there is complete
synchronization for the chaotic activity ofai and bi, with
slight differences in the amplitude of the signals. In this case,
there is a single positive Lyapunov exponent. However, if the
coupling is too highsgi .0.12d the sequential switching is
destroyed and the system displays no oscillations after a tran-
sient period.

The study of the two electrically coupled networks shows
that there is a wide variety of rich behaviors as a function of
the coupling. The two networks are able to generate chaotic
signals with an activation sequence lock for several connec-
tion architectures. Even for the cases in which the sequence

FIG. 5. sColor onlined Activity
of the networks with three electro-
tonic connections between them.
The coupling vector is g
=s0.01,0,0.01,0,0.01,0d. Panel
sad shows activity of neurons la-
beled as 6 in both networks. Panel
sbd shows the activity of neurons
labeled as 3. Panelsbd shows the
time intervals in which each neu-
ron is activesai .0.03d. Note the
activation sequence lock even
among neurons of different net-
works sthe dotted rectangles point
out some examplesd.

FIG. 6. sColor onlined Description of the network activity when
all the neurons of the two networks are electrically coupled one to
one sai to bid as a function of the strength of the couplinggi.
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lock is intermittent, this can be a desirable feature of a neural
system that has to produce multiple signals to drive a com-
plex but at the same time coordinated motion.

IV. DISCUSSION

In this paper we have studied the coordination and syn-
chronization between two sensory organs described with
small neural ensembles. One could argue that neural net-
workssand mostly sensory onesd are often larger than our six
neuron statocyst model. However, our approach is to look at
the dynamics of small building blocks or microcircuits to
understand the dynamical behavior of larger networks as in
Ref. f19g. Here we have seen that two coupled statocyst net-
works provide richer dynamics for the sequential switching.
The activation sequence locking observed in the single net-
works is preserved when the two ensembles are coupled with
a sufficient number of connections. Furthermore, the switch-
ing can now take place among neurons of different networks.
This greatly increases the richness of the sequential signals.
Clione uses the signals from the statocyst to generate and
coordinate two distinct motor activities during hunting: the
acceleration of the wing beating and the bending of the tail in
different directions. Both the acceleration of the wings and
the tail bending appear to change randomly, but they are
nevertheless coordinated to produce a coherent motion. In
this context, the generation of a chaotic signal with activa-
tion sequence locks is an appropriate feature of the statocyst
network. Sensory organs are generally receptors that gather
information about the environment; then the central nervous
system integrate incoming signals and adapt the response to
external conditions. But forClione’s gravimetric organs
things seem to work on a different way. These organs have
dynamics on their own and generate complex signal that are
used to generate the hunting search motor program. On that
respect statocyst can actively participate in a motor behavior.
WLC among the receptor neurons allow this transition be-
tween sensory activityswinner-take-all moded and complex
locomotor activity whenClione is hunting. The two statocyst
networks can together create new information with features

suitable for their use in driving complex but coordinated
movements.

It is common to find in physiology processes that involve
the synchronization between different organsf20g. For in-
stance, the heartbeat has been known to be synchronized
with ventilation in some casesf21g. But unlike hunting be-
havior of Clione, most physiological processes use periodic
or nearly periodic oscillations. As a matter of fact neural
networks often require rhythmicity for the response imposed
to the living organism by the environment which is not con-
sistent with chaotic behavior. Our analysis showed that a
small interaction between the two networks leads to the regu-
larization of the chaotic dynamics making their sequential
activity purely periodic as for two coupled CPG chaotic neu-
rons f22g. For the hunting search behavior ofClione such
statocyst dynamics is not useful. On the other hand, a mod-
erate coupling can coordinate the two network dynamics
through the control of the order of the sequential switching
and leave to both of them enough degrees of freedom to
generate signals with high informational content. We think
that these results are widely spread and nature could use this
approach in other contexts. For example, the brain of bird-
songs has two high vocal centerssHVCsd that generate se-
quences that control the rhythm and motif of the songs. The
neural system of birdsongs is bilaterally organized and a
good song that has a sexual meaning is the result of the
coordination of the sequential dynamics of both left and right
HVCs f23g. The song sequence is not random, but is not
periodic nor completely predictable. We think that the coor-
dination snot a complete synchronizationd of the HVCs se-
quential dynamics, through the acoustic feedback, for ex-
ample, is able to solve the contradiction between the richness
of the song and reproducibility of the motif.
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