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We study the coarsening dynamics of two-dimensional hexagonal patterns formed by single microdomain
layers of block copolymers, using numerical simulations. Our study is focused on the temporal evolution of the
orientational correlation length, the interactions between topological defects, and the mechanisms of coarsen-
ing. We find no free disclinations in the system; rather, they are located on large-angle grain boundaries,
commonly where such boundaries bifurcate. The correlation lengths determined from the scattering function,
from the density of dislocations, and from the density of disclinations exhibit similar behavior and grow with
time according to a power law. The orientational correlation length also grows following a power law, but with
a higher exponent than the other correlation lengths. The orientational correlation length grows via annihilation
of dislocations, through preferential annihilation of small-angle grain boundaries due to poor screening of the
strain field around dislocations located on small-angle grain boundaries. Consequently, the patterns are char-
acterized by large-angle grain boundaries. The most commonly observed mechanism of coarsening is the
collapse of smaller grains residing on the boundary of two larger grains delimited by large-angle grain bound-
aries. Simulations agree remarkably well with experimental results recently obtained.
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I. INTRODUCTION

As a consequence of their ability to self-assemble into
nanoscale ordered structures block copolymers have received
great attention in recent years. In particular, in diblock co-
polymers the existence of four equilibrium structures has
been experimentally confirmed �1�: lamellae, hexagonally or-
dered cylinders, bicontinuous cubic gyroids, and spheres
packed on a body-centered cubic lattice. Theoretical model-
ing with a self-consistent field theory has successfully de-
scribed the existence of these phases as equilibrium struc-
tures �2,3�.

The ability of block copolymers to self-assemble into
nanoscale structures has been recently used to obtain quan-
tum dot arrays for lasers �4� and high-density arrays of mag-
netic domains for information storage �5–7�. However, the
use of block copolymers to obtain lithographic masks for
electronic applications requires the production of long-range
order and good control over the density of defects �8,9�. For
example, it is well known that dislocations destroy the trans-
lational order, while disclinations dramatically reduce both
translational and orientational order. In addition, other de-
fects such as undulations, grain boundaries, or Eckhaus in-

stabilities also affect the order of the pattern. To get good
control over the ordering process, it is important to deter-
mine the mechanisms that dominate its evolution towards
thermodynamic equilibrium.

Recently, by using an atomic force microscope in tapping
mode, taking advantage of the difference in modulus be-
tween the two blocks of a polystyrene-poly�ethylene-alt-
propylene� block copolymer, Harrison et al. have tracked the
time evolution of the density of defects and the orientational
correlation length of cylinder-forming �8,9� and sphere-
forming �10,11� block copolymer thin films. By tracking the
density of disclinations it was found that the dominant
mechanism of coarsening in cylinder-forming block copoly-
mers �striped patterns� involves the annihilation of three or
four disclinations �“multipoles”� and that the orientational
correlation length �2�t� grows with time according to a power
law with an exponent of 1 /4 ��2�t�� t1/4� �8,9�. In the
sphere-forming system it was experimentally found that the
orientational correlation length also scales with time with an
exponent of 1 /4 ��6�t�� t1/4�, although the mechanism of
coarsening was different. In this case, it was observed that
most of the dislocations and disclinations condense into
grain boundaries and the coarsening process is dominated by
the annihilation of smaller grains residing on the boundary of
two larger grains. In addition, characteristic correlation
lengths obtained from the densities of dislocations and dis-
clinations also grew following a power law, but with a
slightly smaller exponent ��1/5� �11�.
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Although with the atomic force microscopy �AFM� tech-
nique it is possible to accurately track the orientational cor-
relation length, in the sphere-forming system it is difficult to
follow the motion of individual defects. Although time reso-
lution can be controlled by adjusting the annealing tempera-
ture, experimental difficulties such as piezoelectric creep in
the AFM �12� make the accurate determination of the motion
of individual dislocations and disclinations very difficult. On
the other hand, computer simulations have been used exten-
sively to predict the evolution towards equilibrium structures
�13,14�, shear induced instabilities �15�, interface dynamics
�16�, and the effect of directional quenching �17�. Most of
these studies, however, have been focused on the lamellar
phase. To the best of our knowledge, there have been no
studies concerning the relationship between correlation
lengths and topological defects in structures other than
lamellae. In addition, at present there is no comparison be-
tween recent experimental data and simulation results.

In this work we study the kinetics of coarsening of a
two-dimensional block copolymer hexagonal phase, with the
cell dynamics method �18�. The dynamics are modeled fol-
lowing the standard time-dependent Ginzburg-Landau equa-
tion for a conserved order parameter and the mean field free
energy functional for a diblock copolymer proposed by Ohta
and Kawasaki �19,20�. The degree of ordering is studied by
determining the scattering function, the orientational correla-
tion length, and the densities of topological defects �disloca-
tions and disclinations�.

II. MODEL AND CELL DYNAMICS METHOD

The dynamics of microphase separation for a diblock co-
polymer in the absence of macroscopic flow can be described
by the following time-dependent Ginzburg-Landau equation
for a conserved order parameter �Cahn-Hillard-Cook equa-
tion� �13�:

��

�t
= M�2� �F

��
� + ��r�,t� �1�

where the order parameter � is defined in terms of the local
densities of each block in the block copolymer, M is a phe-
nomenological mobility coefficient, F��� is the free energy
functional for a diblock copolymer, and ��r� , t� is a random
noise term, with zero average and a second moment related
to the mobility coefficient through the fluctuation-dissipation
relation:

���r�,t���r��,t��	 = − �M�2��r� − r�����t − t�� . �2�

Here � is the noise strength, proportional to the temperature
in the system after a quench below the order-disorder tem-
perature. The free energy functional F��� includes a short-
range and a long-range term, expressed as

F��� = FS��� + FL��� . �3�

The short-range term has the form of a Landau free energy,

FS��� =
 dr��H��� +
D

2
��� ��2� �4�

where H��� represents the mixing free energy of the homo-
geneous blend of disconnected A and B homopolymers, the
term containing the gradient represents the free energy pen-
alty generated by the spatial variations of � �interfacial en-
ergy�, and D is a diffusion coefficient. The free energy H���
in the functional given by Eq. �4� has the form

���� = 1
2 �− � + 	�1 − 2f�2��2 + 1

3
�3 + 1
4��4 �5�

where 	, 
, and � are phenomenological constants and � is a
parameter related to the Flory-Huggins parameter � through
�17�

� = 8f�1 − f�
0� −
2s�f�

f�1 − f�N
. �6�

Here 
0 is the monomer density, f =NA / �NA+NB� is the A
block fraction, N=NA+NB is the total length of the diblock
copolymer chain, where NA and NB are the chain lengths
corresponding to each block, and for a given f , s�f� is a
constant of order unity. The long-range free energy contribu-
tion arises from the chain connectivity of the two blocks and
can be expressed as �13,14�

FL��� =
�

2

 dr��dr� G�r� − r�����r����r��� �7�

where G�r�−r��� is the solution of �2G�r��=−��r�� �14�. Al-
though the parameters 	, 
, �, and � in the free energy
expression can be derived from the vertex function given by
Leibler �21�, here we consider these parameters as phenom-
enological constants, chosen to obtain the desired phase.

In this work, Eq. �1� is simulated by the cell dynamics
method on a two-dimensional square lattice. The evolution
of the order parameter � can be expressed as �14,20�

��n� ,t + 1� = �„��n� ,t�… − ���„��n� ,t�… − ��n� ,t�		 − ���n� ,t�

+ ��̃�n� ,t� �8�

where

�„��n� ,t�… = f„��n� ,t�… + D�����n� ,t�		 − ��n� ,t�� �9�

and the map function f(��n� , t�) is given by �13,14�

f��� = �1 + � − 	�1 − 2f�2�� − 
�3 − ��4. �10�

Here n� = �nx ,ny� designates the lattice points and ���		 rep-
resents an average over all neighbors of an arbitrary function
�, and is related to the isotropic Laplacian through �13�

�2� = 3����		 − �� . �11�

For a two-dimensional system,

����r��		 =
1

6 

s��NN

��s�� +
1

12 

s��NNN

��s�� �12�

where NN and NNN represent the nearest-neighbor and next-
nearest-neighbor lattice sites, respectively �18�. It can be
shown that by properly choosing the map function f(��n� , t�),
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Eq. �8� corresponds to a particular discretization of Eq. �1�.
The term ��̃�n� , t� in Eq. �8� represents a thermal noise �or
external field�. In this work the thermal noise is given by

� ��̃x�nx + 1,ny,t� − �̃x�nx,ny,t� + �̃y�nx,ny + 1,t� − �̃y�nx,ny,t��
�13�

where � is the noise amplitude and �̃x�nx ,ny , t� and

�̃y�nx ,ny , t� are random numbers uniformly distributed in the
interval �−1,1� �22,23�. Following this criterion, the random
noise is a globally conserved quantity.

In our simulations the block copolymer composition was
fixed at f =0.25, and the map function parameters, long-range
strength, and diffusion coefficient were selected to be 	
=0.06, �=0.3, �=0.38, 
=0.23, �=0.03, and D=0.3, re-
spectively. The two-dimensional mean-field equilibrium
structure for these parameters is hexagonal. The noise ampli-
tude was fixed at �=0.25, except where indicated otherwise.
This particular choice of noise amplitude yields results
which are in very good agreement with the experiments. We
have observed that in the absence of noise the pattern is
frozen after a few simulation steps. Yokojima and Shiwa
have also observed this feature in a similar system �24�. On
the other hand, at large noise amplitudes �n�0.5� the system
undergoes an order-disorder transition induced by noise �25�.

Our simulations employed cyclic boundary conditions,
typically on a 512�512 lattice. However, a perfect hexago-
nal pattern can only match cyclic boundary conditions in the
special case where the box and the pattern are commensu-
rate; in all other cases, the imposition of cyclic boundary
conditions introduces defects. To ensure that the few defects
imparted by the boundary conditions did not dominate the
results, some simulations were rerun on lattices with differ-
ent dimensions, and were found to yield consistent results.
The initial state was prepared by setting the order
parameter to a uniformly random distribution in the interval
�−0.01,0.01�.

III. ORDERING DYNAMICS

To evaluate the degree of ordering in the system we com-
puted the circularly averaged scattering function S�k , t� and
the orientational correlation function g6�r , t�. The scattering
function is defined as

S�k,t� = ��̃�k�,t��̃*�k�,t�	 �14�

where �̃�k� , t� represents the Fourier transform of the order
parameter and k� is the wave vector. Figure 1 shows simula-
tion results for kS�k , t� at two different stages of the coars-
ening process, corresponding to the patterns in Fig. 2. One
immediately notices the increase in order in Fig. 2�b� as
compared with Fig. 2�a�. At short times it is possible to ob-
serve in Fig. 1 a liquidlike order, with a main peak charac-
terizing the average distance between spheres. At long times,
the scattering function shows an increase in the main peak
intensity, a reduction in the peak width, and well-defined
second-, third-, and fourth-order peaks at the positions ex-

pected for a hexagonal phase �ratios 1, �3, �4, and �7�. All
of these features indicate an increase in the degree of order-
ing as time proceeds. From the main peak position we deter-
mine the lattice constant to be a=6.15 lattice units. Charac-
teristic length scales for the average microdomain size can be

FIG. 1. Circularly averaged scattering function S�k�, multiplied
by the wave vector k, at two different times �short time, continuous
line; long time, dotted line�. The pattern corresponding to long
times was vertically shifted by a factor of 10. The arrows indicate
the peak positions corresponding to a hexagonal phase.

FIG. 2. �Color online� Patterns and orientational maps obtained
at different simulation times. The patterns on the left panel corre-
spond to short times �103 time steps� and on the right to long times
�105 time steps�. The bottom of the figure shows the gray scale
�color scale� used to indicate orientation.

ORDERING MECHANISMS IN TWO-DIMENSIONAL… PHYSICAL REVIEW E 71, 061803 �2005�

061803-3



obtained through the full width at half maximum of the main
peak of S�k , t� as �S��SHW�t�−1 �24�.

The orientational correlation function for a system with
hexagonal symmetry is defined as �11,24�

g6�r,t� = �exp�6i���r� + r��,t� − ��r��,t���	 �15�

where ��r�� is the local intersphere “bond” orientation, deter-
mined in real space by a Delaunay triangulation through the
center of the spheres. More details about the data processing
can be found elsewhere �11�. Recently, Yokojima and Shiwa
have used another method to determine the orientational field
��r�� �24�. Instead of calculating the orientational field in real
space these authors have employed a Fourier space filtering
method to study the influence of hydrodynamic interactions
on the scattering function and orientational correlation func-
tion. A filtering operator �Gaussian� is applied to reduce the

amplitude of the components of �̃�k� , t� that lie outside a ring
centered around the main peak of S�k� , t�. Note that although
it is computationally simple, this method has the disadvan-
tage of smearing the orientational field. As a consequence,
very interesting features of the patterns, such as grain bound-
aries, can be modified by the filtering process. In addition,
such a filtering procedure may artificially increase the orien-
tational order in the system. The lower panels in Fig. 2 show
gray-scale �color� maps of the orientational field for the same
images at the top in Fig. 2, with the gray-scale �color� key
�shown at the bottom in Fig. 2� indicating the orientational
field over the range �0,� /3�, as appropriate for a sixfold
symmetric structure. Through the gray-scale �color� map, re-
gions with similar orientation can be identified easily.

Figure 3 shows the orientational correlation function ob-
tained from the orientational field at three different times.
The roughly exponential decay of the orientational correla-
tion function allows us to define an orientational correlation
length �6 as

g6�r,t� � exp�−
r

�6�t�� . �16�

In Fig. 3 the circles and squares represent the short- and
long-time correlation functions corresponding to the two pat-
terns shown in Fig. 2, respectively. At short times, the orien-
tational correlation length is approximately one lattice con-
stant ��6�a�, and both translational and orientational
correlation lengths are short ranged �see also Fig. 1 and the
left panels of Fig. 2�. At long times �see Fig. 1 and the right
panels of Fig. 2�, the greater ordering is evidenced through
the increase in the orientational correlation length ��6�6a�.

It is important to emphasize that the exponential decay in
the orientational correlation function found here is not re-
lated to the Kosterlitz-Thouless-Halperin-Nelson-Young
�KTHNY� theory �26,27�. According to the KTHNY theory,
above the characteristic temperature at which the hexatic
phase becomes unstable, both translational and orientational
correlation lengths are short ranged and decay exponentially
with distance. However, the KTHNY theory is a model for a
system in complete thermodynamic equilibrium, while the
system studied here is far from equilibrium.

IV. FEATURES OF THE PATTERNS

The features of the patterns and degree of ordering
strongly reflect the presence of topological defects. To under-
stand the evolution of the pattern, it is essential to know the
topological defects present in the system, as well as their
influence on the ordering process. In addition to the orienta-

FIG. 3. Orientational correlation functions at three different
times. Squares correspond to the orientational correlation function
of the pattern depicted on the right side of Fig. 2. The continuous
lines represent single exponential fits.

FIG. 4. �Color online� Defects analyzed in this work. Spheres
with seven neighbors are indicated with a light gray �green� dot,
those with five neighbors in dark gray �red�. �a� Dislocations are
formed by a pair of 5-7 disclinations separated by one lattice con-
stant, and are indicated by a connecting pale gray �yellow� line
segment. �b� Linear array of dislocations delimiting a grain bound-
ary. �c� and �d� shows disclinations bound to a LAGB.
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tional map, through the Delaunay triangulation it is possible
to determine the number of dislocations and disclinations in
the system �11�. For the hexagonal phase, dislocations are
defined as pairs of spheres with five and seven nearest neigh-
bors separated by a lattice constant �27�. Disclinations are
identified as “free,” rather than bound into a dislocation, if
all the nearest neighbors are free of defects, or engaged in
other dislocations.

Figure 4 illustrates the different kinds of defects analyzed
in this work. In Fig. 4�a� we show a hexagonal lattice con-
taining two dislocations with similar orientations but oppo-
site Burgers vectors. Note that each dislocation introduces
two extra “lines” in the hexagonal array. Here we indicate
defects with five neighbors in dark gray �red�, and those with
seven neighbors in light gray �green�. Dislocations are indi-
cated as pale gray �yellow� line segments uniting nearest-
neighbor “fives” and “sevens.” In Fig. 4�b�, we show a line
of dislocations delimiting two grains with a large-angle grain
boundary �LAGB�. The largest possible mismatch in orien-
tation for our patterns is 30°; thus, we define a “large-angle”
grain boundary as one with an orientational mismatch in the
range 10°–30°. Unpaired disclinations �“fives” and “sevens”�
are highlighted by circling the defect with a range of the
same gray level �color�. Figures 4�c� and 4�d� show lines of
dislocations with bound disclinations.

Figure 5 shows the results of a Delaunay triangulation on
a pattern at a late stage of coarsening. This figure corre-
sponds to a small portion of a larger picture �obtained
through a 1024�1024 simulation�. Figure 6 shows the ori-
entational map corresponding to Figure 5; three specific
grains are labeled in both figures, to facilitate comparison.
These and other patterns present the following recurring

characteristics. �1� Most of the grain boundaries are LAGBs,
consisting of lines of dislocations. Although small-angle
grain boundaries �SAGBs� can also be observed in Fig. 5,
their population is clearly smaller. �2� In many cases, the
grains do not have well-defined contours. This is more
clearly visualized in the gray-scale �color� map of Fig. 7,
which shows another region of the simulation depicted in
Figs. 5 and 6. In Fig. 7, we have labeled four “grains” with
letters A through D. The A /B and B /C grain boundaries
cannot be clearly defined, in contrast with the sharp transi-
tion in the orientational field between grains B and D. For
SAGBs, the distance between dislocations grows as a /�,
where � �in radians� represents the mismatch in orientation
between two adjacent grains �27�. Note that for small angles,
the distance a /� can become comparable to the characteristic
distance between LAGBs; in that case, a SAGB cannot be
defined as a line of dislocations in a polycrystal. �Obviously,
in a system consisting of only two grains, a SAGB can be
defined as a line of dislocations simply by considering grains
“large enough” that their boundaries involve many disloca-

FIG. 5. �Color online� Delaunay triangulation of the pattern at a
late stage of coarsening. Light gray �green� and dark gray �red�
triangles indicate forks containing positive and negative disclina-
tions, respectively. The black triangle �thin line� indicates a fork
free of disclinations. Light gray �green� and and dark gray �red�
circles indicate positive and negative disclinations located on
LAGBs. The white square indicates a “free” dislocation, located in
the interior of a relatively well-defined grain.

FIG. 6. �Color online� Orientational map of the pattern shown in
Fig. 5. The gray �color� scale is the same as in Fig. 2.

FIG. 7. �Color online� Gray-scale �color� map depicting the dif-
ficulties in locating SAGBs. Note the fluctuations in the orienta-
tional field. The gray �color� scale is the same as in Fig. 2.
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tions. Thus, in the polycrystal, there is really no distinction
between an isolated dislocation and one on a grain boundary
having such a small angle that only one dislocation will be
present along its length�. In the interior of large grains, it is
possible to observe a small amount of “free” dislocations. In
Fig. 5, we have indicated the presence of one of these “free”
dislocations with a white square; there is no clear way to
identify which grain boundary this dislocation belongs to, if
any. �3� In the interior of the grains it is possible to visualize
small fluctuations in the orientational field, indicating the
presence of orientational distortions �Figs. 6 and 7�. These
fluctuations are expected to reduce the translational correla-
tion length. However, the fluctuations would have little in-
fluence on the orientational correlation length. �4� There are
no free disclinations; all the disclinations present in the sys-
tem are bound to LAGBs. In Fig. 5 we have emphasized the
presence of a few representative disclinations; most are
bound to “forks,” where grain boundaries bifurcate, as indi-
cated in Fig. 5 with light gray �green� and dark gray �red�
triangles. There is also a small population of disclinations
located on grain boundaries, but not at forks, indicated in
Fig. 5 with circles. Note, however, that not all forks contain
disclinations; one such fork is indicated in Fig. 5 with a
black triangle.

V. GROWTH LAWS FOR CORRELATION LENGTHS

Figure 8 shows the temporal evolution of the correlation
length �S�t� and orientational correlation lengths �6�t� �here t
represents the number of time steps�. The results reported in
this figure correspond to an average of six different runs.
While both correlation lengths scale with time according to a
power law, we find different exponents in the two cases:
�S�t�� t1/5, while �6�t�� t1/4. Recently, by using cell dynam-
ics simulations, Yokojima and Shiwa �24� found exponents
of 0.17 for �S�t� and 0.2 for �6�t�. In their simulations these
authors use a slightly different model and parameters, and
their simulations do not include random fluctuations �i.e., �
=0�; nonetheless, Yokojima and Shiwa also find slightly
smaller exponents for �S�t� than for �6�t�.

Previous experimental results from our group on mono-
layers of cylinder-forming block copolymers clearly showed
that the orientational correlation length is dominated by the
annihilation of topological defects �8,10�. We also found a
remarkable decrease in the density of topological defects
during the simulated coarsening process. This result suggests
that in a hexagonal system, the orientational correlation
length may also be determined by the interaction between
topological defects. To establish the relationship between
correlation lengths and topological defects, it is important to
track the temporal evolution of the defects during the coars-
ening process.

Close inspection of the coarsening process indicates that
the main mechanism of coarsening proceeds via grain anni-
hilation. If grain rotation is frustrated during the coarsening
process, the ratio between grain size and number of disloca-
tions clustered along the grain remains roughly constant. As-
suming that the average grain radius is R, then the number of
dislocations on the grain boundary scales as 
DLR2, where

DL is the dislocation density. If the average distance be-
tween dislocations DDL remains constant during the annihi-
lation �i.e., no grain rotation� then the number of dislocations
per grain scales as R /DDL. Comparing, we have or 
DLR2

�R /DDL or R��DDL
DL�−1. Then, if the orientational corre-
lation length �6�t� is dominated by the density of dislocations
�observe Fig. 5� and DDL remains constant, the orientational
correlation length should evolve as �6�t���DDL

0 
DL�t��−1,
where DDL

0 is the characteristic distance between disloca-
tions.

Figure 8 also shows �DDL
0 
DL�t��−1 as function of time.

The average distance between dislocations along LAGBs
was observed to have a roughly constant value of DDL

0

=2.5a; assuming that the SAGB approximation is valid, this
value of DDL

0 corresponds to a misorientation of 20°, which is
close to the observed average misorientation between grains.
Observe in Fig. 8 that although �DDL

0 
DL�t��−1 is also well
described by a power law, the exponent is smaller than the
exponent corresponding to the orientational correlation
length ��DDL

0 
DL�t��−1�
DL�t�−1� t0.2 vs �6�t�� t0.25�. This
may indicate a residual contribution coming from a decrease
in the average distance between dislocations, i.e., DDL
� t−0.05 instead of DDL=DDL

0 =const, which may indicate ei-
ther preferential annihilation of SAGBs or grain rotation, as
discussed further below.

On the other hand, if coarsening is dominated by the an-
nihilation of disclinations, as in the case of smectics �8�, we
may expect that �6�t��
DL

−1/2, where 
DS represents the den-
sity of disclinations. Figure 8 also shows the evolution of this
quantity, which also follows the power law 
DS

−1/2� t0.2. Thus,
for the hexagonal system studied here we have �S�t��
DL

−1

�
DS
−1/2� t0.2, which suggests that these correlation lengths

are controlled by similar mechanisms. However, the higher
exponent for �6�t� indicates that a different process must be
affecting the orientational order. These results are in very
good agreement with the recent measurements of Harrison et
al., which show similar characteristics �11�.

VI. GRAIN ROTATION IN CIRCULARLY
SYMMETRIC GRAINS

To test the possibility of grain rotation, we prepared an
initial configuration consisting of a circular misoriented grain

FIG. 8. Different correlation lengths analyzed in this work �in-
dicated in the figure�, and best-fit power laws �solid lines�.
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surrounded by an otherwise perfect crystal �neglecting
boundary defects produced by the cyclic boundary condi-
tions�. To obtain the initial configuration, we employed the
wave vector k�0 determined through the main peak of the
scattering function of a pattern obtained from a randomly
disordered initial condition at a late stage of coarsening. The
external crystal was obtained by using the following initial
condition in Eq. �8�:

�i�r�� = 1
2�0


j=1

3

�ek� j.r� + c.c.� . �17�

Here �0 is the initial amplitude and k�1= �k0 ,0�, k�2= �−k0 ,
−�3/2k0�, and k�3= �−k0 ,�3/2k0� are the wave vectors corre-
sponding to a hexagonal pattern. The circular grain was also
obtained through Eq. �17�, but employing a wave vector ro-
tated to the desired angle.

Figure 9�a� depicts a circular grain with a misorientation
of 10° at early times �104 time steps� and without random
fluctuations ��=0�; note the ill-defined spheres and defects
at the interface. Figure 9�b� shows the array of dislocations
around the grain depicted in Fig. 9�a�; the dislocations are
evenly distributed along the grain boundary. In the absence
of random fluctuations, beyond about 104 time steps the
shape and size of the misoriented grain remain roughly con-
stant, even after a large number of time steps �106�. Some
simulations showed facets with well-defined orientation, re-
vealing the influence of the anisotropy in the “surface” ten-

sion. Facets were found at different misorientations of the
circular grain, ranging from 10°–30°.

When random fluctuations are added, the motion of the
interface is activated and the grain collapses. Figure 10
shows the circularly averaged local orientation as a function
of the distance from the center of the circle �in units of a�.
The initial mismatch in orientation between both grains is
10°. Figure 10 shows that the orientational mismatch in-
creases with time, while the domain size decreases. During
the process depicted in Fig. 10, the number of dislocations
remains constant, indicating that the distance between dislo-
cations has been reduced �DDL�a /��.

Figure 11 shows the temporal evolution of the average
grain orientation ��t�, the average distance between disloca-
tions DDL, and the average grain size �R	. The average grain
orientation was determined by fitting the circularly averaged
orientation with a sigmoid �Boltzmann�. The grain size was
obtained as the value of R at which the orientation changes
by � /2. The average distance between dislocations was ob-
tained by taking the average distance between nearest-
neighbor dislocations. Figure 11 shows that all of these quan-
tities grow following power laws with similar exponents:
��t��DDL

−1 ��R	−1� t0.1, in agreement with the SAGB ap-
proximation. Let NDL��R	 /DDL be the number of disloca-
tions along the grain boundary; then, �R	 can be related to
��t� through �R	�NDLDDL�t��NDL��t�−1, or �R	�DDL�t�
���t�−1, because NDL remains constant during the grain
shrinking process depicted in Figs. 10 and 11. Note that al-
though NDL remains constant during the time window de-
picted here, this is not generally the case; since � has a finite
upper bound of 30°, once the misorientation becomes close
to 30°, grain shrinking must proceed via annihilation of dis-
locations.

This result appears to be at odds with the coarsening
model recently proposed by Moldovan et al. �28�, where
coarsening involves the coordinated rotations of neighboring
grains with the consequent elimination of their common
grain boundary �i.e., � is a decreasing function of time�.

FIG. 9. �Color online� Circular misoriented grain in the interior
of a larger one. �a� Hexagonal pattern containing a circular grain
with a 10° orientational mismatch. �b� Corresponding line of dislo-
cations along the grain boundary. �c� Line of dislocations for an
originally circular grain with a 5° orientational mismatch. �d� Gray-
scale �color� map corresponding to �c� �observe the fluctuations in
orientation at the bottom of the “grain”�. The gray �color� scale is
the same as in Fig. 2.

FIG. 10. Grain orientation as function of distance from the cen-
ter at four different times. The initial orientational mismatch of the
circular grain was 10°.
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According to the Read-Shockley formula, the energy per
unit of length of a small-angle grain boundary is given by
�27�

���� � ��1 − � ln���� �18�

where � is the misorientation angle across the grain boundary
�expressed in radians� and � is a constant related to the core
energy of the dislocation. This model is based on a disloca-
tion structure; for three-dimensional crystals, experimental

data show that ���� has a maximum for � in the range 30°–
40°. So, in our case, according to the approximation given by
Eq. �18�, the energy density ���� increases during the shrink-
ing; however, the total surface energy ��R����� decreases
because the grain becomes smaller as rotation proceeds. Note
also that the growth law for ��t� determined for this particu-
lar misorientation does not agree with our previous scaling
laws for �6�t� or �S�t� starting from a random initial condi-
tion. This demonstrates that the dynamics of individual grain
boundaries depend strongly on both ���� �27� and “rotational
mobility” �28�, which are functions of the misorientation
angle.

In simulations with small misorientations ���5° �, the
dynamics of coarsening appear to be different. Figures 9�c�
and 9�d� show the results of a simulation for a circular grain
with �=5°. If the mismatch in orientation is small, the num-
ber of dislocations is not conserved during the rotation; dif-
ferent regions of the grain can rotate to cancel the local mis-
match in orientation. In this case, the rotation is
accomplished by moving dislocations from regions where
they are widely spaced toward regions with a higher concen-
tration of dislocations. The annihilation events are produced
in the small regions where the density of dislocations is
large. This characteristic can be observed in the region con-
tained within the white rectangle at the bottom of Figs. 9�c�
and 9�d�; note the small distance between dislocations, and
the distortions in the orientational field in this region. We
also have observed that the mobility of such dislocations is
higher than the mobility of dislocations linked to LAGBs, as
discussed further below. In the case of small misorientations,
it is difficult to characterize the temporal evolution of the
“grain size” through the same parameters as for LAGBs, for

FIG. 11. Orientation, average grain size, and average distance
between dislocations along the grain boundary as function of time.
The symbols are indicated in the figure and the lines correspond to
best-fit power laws.

FIG. 12. �Color online� Main mechanism of coarsening observed in the simulations: the collapse of small grains lying on the boundaries
of large grains.
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three reasons: �1� the grain contour is ill defined, �2� the
dislocations are not uniformly distributed along the grain
boundary, and �3� the change of orientation is not circularly
�polar� symmetric, as shown in Fig. 9�c�.

VII. MECHANISM OF COARSENING

The temporal evolution of the patterns reveals that the
bounded disclinations move easily along dislocation lines,
while spending most of their time at the forks, as shown in
the snapshot of Fig. 5. Although coarsening involving only
one grain �the collapse of loops� or more than three grains
has been observed, the main mechanism of coarsening at
LAGBs is the annihilation of small grains located at the in-
tersections of larger grains. This mechanism of annihilation
is illustrated in the sequence of Fig. 12. In Fig. 12�a�, two
smaller grains �indicated as I and II in the figure� are seen in
the “sea” formed by two larger grains �III and IV�. Figure
12�b� shows the shrinking of the two smaller grains at longer
times. Figures 12�c� and 12�d� show the collapse of grain I
and the shrinking of grain II. During this process, the dis-
tance between the forks indicated with the black arrow in
Fig. 12�d� remains essentially the same as in Fig. 12�a� �al-
though there are fluctuations around their average positions�.
In the subsequent Figs. 12�e� and 12�f�, we observe the com-
plete annihilation of grain II, located at the intersection of the
two larger grains.

This process of coarsening is markedly different from that
observed in other systems; such as coarsening is driven by
curvature. During the process of grain annihilation, the mo-
tion of dislocation lines �LAGBs� appears to be independent
of the presence of other dislocation lines, except at the forks.
The color maps for the orientational fields indicate that the
distortions introduced into the lattice by lines of dislocations
decay to negligible values in a few lattice constants, i.e., the
strain field appears to be strongly screened �see discussion
below�. Only if the distance between two roughly parallel
dislocation lines becomes comparable to one lattice constant,
can the dislocations glide recombine or annihilate with oth-
ers of opposite sign. This certainly happens at the forks,
where two dislocation lines merge to a point and can be
roughly parallel to each other.

The motion of the forks appears to be activated by motion
of the dislocation lines. If the effects of anisotropy are small,
when the angle between dislocation lines at the fork is 120°,
the net force on the fork is null and the fork is pinned at its
position. On the other hand, if one of the angles between two
of the three lines merging at the fork is strongly reduced
below 120°, a net force acts on the fork. However, to activate
the motion of the fork, the potential barriers imposed by the
lattice and dislocation lines must be overcome. In Fig. 12
this activation appears to be triggered by the annihilation of
the smaller grain. Once the fork motion is activated, the
grain shrinkage accelerates, and the small grain collapses
with a roughly elliptical self-similar shape �compare the
grain’s shape in Figs. 12�d� and 12�e��, with the forks located
along the major axis of the ellipse. To keep the self-similar
shape, the velocity of displacement of the fork must be
greater than the speed of dislocations located near the minor
axis of the ellipse.

In the absence of external fields, two dislocations with

Burgers vectors b�1 and b�2 interact with each other with a
long-range potential of the form

V = −
K

4�
�ln�r�1 − r�2�b�1 · b�2 −

b�2 · �r�1 − r�2�b�1 · �r�1 − r�2�
�r�1 − r�2�2

�
�19�

where K is a function of the elastic constants. From this
functional relation, it is possible to calculate the energy U
associated with a pair of parallel lines of dislocations �grain
boundaries� with opposite Burgers vectors. If the distance
between grain boundaries is z, the energy density becomes
short ranged and has the form �29�

FIG. 13. �Color online� Misoriented grain with straight grain
boundaries. The difference in orientation between both grains is
20°. �a� Array of spheres. �b� Orientational gray-scale �color� map
�scale same as in Fig. 2�.

FIG. 14. �Color online� Delaunay triangulation for misoriented
grains with straight grain boundaries at the two different simulation
times, as indicated in the figure. The top panels have an initial
misorientation of 20°, those at the bottom 2.5°.
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U�z� =
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s

K

4�
�ln�sinh��z

s
�� −

�z

s
coth��z

s
� + ln� s

�
��
�20�

where s is the distance between dislocations. Although in our
case the dislocation lines are curved rather than straight, we
can expect that the strain field introduced by dislocations
located along LAGBs also becomes screened at large dis-
tances, but we do not expect any significant screening at
distances lower than s ��a for a LAGB�.

The situation changes for dislocations located along
SAGBs. Let RLA be the average size of a grain defined ex-
clusively by the LAGB. As we mentioned previously, in the
interior of such grains it is possible to have fluctuations in
orientation and a small number of “free” dislocations; we can
expect that the strain field surrounding these interior disloca-
tions is poorly screened by other dislocations, since few will
be located at distances lower than RLA. Consequently, a
higher mobility for such “free” dislocations is expected.

To test the effect of screening, we ran simulations from
the type of initial condition depicted in Fig. 13, involving
two grains �misoriented by 20° in Fig. 13�, with a straight
grain boundary. Figures 14�a� and 14�b� show the results
after 104 and 6�105 time steps, respectively; Figs. 14�c� and
14�d� show analogous results for the case where the initial
misorientation angle was only 2.5°. In Fig. 14�a� the average
distance between dislocations along the grain boundary is
1−2a, while the distance between the dislocation lines is 6a.
In Fig. 14�c�, the average distance between dislocations is
23a, while the distance between the dislocation lines remains
6a. In the case of LAGBs, at long times the dislocation lines
undulate �Fig. 14�b��. Although it is possible to observe dis-
sociation and recombination of dislocations, the number of
dislocations is roughly conserved during this stage. In addi-
tion, the motion of individual dislocations is strongly pinned
to the grain boundary and dislocations cannot move more
than a few lattice spacings away; the diffusion of disloca-
tions to larger distances can be accomplished only through
the cooperative motion of the line of dislocations.

At times longer than those in Fig. 14�b� �around 106 time
steps, not shown here�, as a consequence of the undulations,
the dislocation lines with opposite Burgers vectors touch
each other, annihilate some dislocations, and form small
“drops.” As time proceeds, these drops shrink and collapse
individually. On the other hand, when the distance between
dislocations along the grain boundary becomes larger than
the distance between grain boundaries �Figs. 14�c� and
14�d��, the situation is very different. In this case the strain
field of the individual dislocations has a range larger than the
distance between grain boundaries. Compared with disloca-
tions bound to LAGBs, this yields a higher mobility for the
dislocations; note in Figs. 14�c� and 14�d� the annihilation of
dislocations and the decrease in the average distance between
the two remaining ones. These defects speed up the coarsen-
ing process because they can move over large distances
�many lattice constants� in a relatively reduced number of
time steps.

The patterns studied here are dominated by the presence
of LAGBs, which may be a consequence of the preferential

annihilation of SAGBs or/and grain rotation. From the two
possible mechanisms proposed here, we favor the selective
annihilation of SAGBs. According to our previous discus-
sions, to have an orientational correlation length dominated
exclusively by dislocations, the interdislocation distance
must decrease as DDL� t−0.05. Under the small-angle ap-
proximation this implies the unexpected result of grain rota-
tion towards increasing misorientation. Since DDL�a /�, by
imposing �6�t���DDL
DL�−1 we must have � growing with
time as �� t0.05. Since the misorientation angle has an upper
bound of 30°, the power law for �6�t� cannot remain valid at
long times. Then, if grain rotation is the mechanism respon-
sible for the 1/4 exponent in �6�t�, in the long-time regime
this power law must break down and �6�t� must become par-
allel to 1 /
DL �exponent 1 /5�. Although we have observed
grain rotation in circularly symmetric grains in the previous
section, in the case of polycrystals each grain is surrounded
by other grains with different orientations and grain rotation
is expected to be highly frustrated. On the other hand, for the
preferential annihilation of SAGBs, there is no limitation on
the time scale for validity of the power law for �6�t�, and the
results are in good agreement with the observations, i.e., high
mobility of dislocations located along SAGBs and patterns
dominated by the presence of LAGBs.

VIII. DISCLINATIONS

In our simulations we have not found free disclinations;
all disclinations were bound to LAGBs, most commonly at
the forks. To analyze the stability of free disclinations we
prepare an artificial starting condition with free positive and
negative disclinations �Figs. 15�a� and 15�b��. In the absence
of random fluctuations, the patterns for both disclinations

FIG. 15. �Color online� Negative �left� and positive �right� dis-
clinations and the corresponding two-dimensional Fourier transform
�bottom�. The gray �color� scale is the same as in Fig. 2.
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remain stable, even after a large number of time steps. Ob-
serve in Fig. 15 that the domains are strongly stretched as
consequence of the strain field introduced by the disclination.
This highlights an important difference between the behavior
of block copolymers and simulations of other types of mate-
rials, such as arrays of atoms interacting via Lennard-Jones
potentials �30�. In atomistic simulations the shape of the el-
ementary units is not perturbed by the strain field. Here,
however, the polymer chains can stretch to change the shape
of the microdomains.

In Figs. 15�c� and 15�d� we show the scattering function
for these same two disclinations. Instead of the hexagonally
ordered spots observed for monocrystals with hexagonal
symmetry, we find a flowerlike pattern, with a number of
“petals” revealing the symmetry of the disclinations: 10 pet-
als for a negative disclination �a “five”� and 14 “inverted
petals” for a positive disclination �a “seven”�. As a conse-
quence of the strain, there is broad range of characteristic
distances and the circularly averaged scattering functions do
not present a simple structure like those in Fig. 1. Note also
that in the presence of disclinations, both orientational and
translational correlation functions become short ranged.

When random fluctuations are included in the simulations,
the disclination strain field quickly becomes disturbed by
dislocations, as shown in Fig. 16 for a negative disclination;
similar results were found for positive disclinations. Most of
the dislocations are arranged in lines radiating from the core
of the original disclination, and the strain originally present
in the disclination has been strongly reduced by the disloca-
tion lines, making the strain field of the disclination short
ranged. During this process, the microdomains recover
roughly circular symmetry. Dislocation lines radiating from a

disclination core have also been observed in two-
dimensional Lennard-Jones systems at equilibrium �30�.

IX. COMPARISON WITH EXPERIMENTAL DATA

By comparing our simulations with recent experimental
results of Harrison et al. �11� we find, in general, very good
agreement. Both experiments and simulations show higher
exponents in the power laws for �6�t� than for 
DL

−1 �t� or

DS

−1/2�t�, and the differences between exponents ��0.05� is
consistent. In addition, there are a number of points where
the similarity is remarkable: �1� there are no free disclina-
tions; all are bound to LAGBs; �2� most of the dislocations
are contained in LAGBs; �3� in many cases grain boundaries
are ill defined, and there are fluctuations in the orientational
field; �4� dislocation pairs are annihilated at the forks by the
gliding of two roughly parallel dislocations; and �5� the dy-
namics of coarsening are dominated by the collapse of small
grains located at the intersection of two larger grains.

CONCLUDING REMARKS

In this work, we have used cell dynamics simulations to
analyze the features and the mechanism of coarsening in the
two-dimensional patterns present in single-layer films of a
sphere-forming block copolymer. We have tracked the time
evolution of the orientational correlation length, and correla-
tion lengths determined through densities of topological de-
fects and from scattering functions. Simulations with pre-
defined, straight LAGBs indicate that the strain field
surrounding lines of dislocations is short ranged. This ex-
plains why a dislocation line moves independently and inter-
acts with others mainly at the forks, where the distance to
dislocations belonging to other lines becomes very small. In
addition, we have observed that the strain field associated
with isolated dislocations, or those in SAGBs, is poorly
screened. As a consequence the dislocations can move over
large distances to find a partner with opposite Burgers vector
and annihilate. This also explains why the patterns show a
large population of LAGBs.

All disclinations are located in LAGBs, predominantly at
the forks. The strain field of these disclinations is short
ranged and appears to have no effect on the orientational
order. Simulations starting from isolated positive or negative
disclinations reveal that they are strongly unstable, and the
strain field quickly becomes relaxed by the spontaneous cre-
ation of dislocation lines radiating from the disclination.

One of the most important results of this work is the
higher exponent in the power law observed for �6�t� than for
the other correlation lengths �
DL

−1 , 
DS
−1/2, or �S�t��, in agree-

ment with the experimental results of Harrison et al. �11�.
The difference in the exponents can arise from either grain
rotation or preferential annihilation of SAGBs; we favor the
selective annihilation of SAGBs, as in this case the power
laws observed in both simulations and experiments are not
limited in the time scales over which they are valid. Finally,
cell dynamics simulations are shown to be a very important
tool for understanding the basic mechanisms of coarsening
of these types of soft materials.

FIG. 16. �Color online� Top: Delaunay triangulation for a nega-
tive disclination in the absence �left� and presence �right� of random
fluctuations. Bottom: orientational color maps corresponding to the
figures on top, with the gray �color� scale the same as in Fig. 2.
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