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Directed polymers with constrained winding angle
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In this paper we study from a nonperturbative point of view the entanglement of two directed polymers
subjected to repulsive interactions given by a Digfunction potential. An exact formula of the so-called
second moment of the winding angle is derived. This result is used to provide a thorough analysis of entangle-
ment phenomena in the classical system of two polymers subjected to repulsive interactions and related
problems. No approximation is made in treating the constraint on the winding angle and the repulsive forces.
In particular, we investigate how repulsive forces influence the entanglement degree of the two-polymer
system. In the limit of ideal polymers, in which the interactions are switched off, we show that our results are
in agreement with those of previous works.
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[. INTRODUCTION full &function potential is not a central potential, since it
o ) i mixes both radial and angular variables. For this reason, the
The statistical mechanics of two polymers with con-ysyal procedure of going to polar coordinates and then solv-
straints on their winding angle has been extensively studiethg the differential equation satisfied by the partition function
in order to understand the behavior of physical polymer sysof the entangled polymers with the method of separation of
tems, like for instance biological macromolecules of DNA variableg19], does no longer produce simple formulas as in
[1] or liquid crystals composed of stacks of disk-shaped molihe situations in which only central forces are present.
eculeq 2], see Refd3-18|. A detailed review on the subject, To avoid these difficulties, one possibility is to approxi-
together with interesting proposals of how to include in themate thes-function potential with some radial potential, like
treatment of topologically entangled polymer link invariantsfor instance the hard core potential of RET]. However,
which are more sophisticated than the winding number, cahere we shall adopt a different strategy, based on field theo-
be found in Ref[19]. Up to now, however, despite many ries, which does not require any approximation. This strategy
efforts, mainly ideal polymer chains or loops winding aroundhas been developed in Re{®,12] (see also Ref{19] for
each others have been considered, while the repulsive intefdore detailsto cope with ideal closed polymers whose tra-
actions between the monomers have been treated approxiniE-CtO”eS are concatenated._AIso s_uch systems are character-
tively or exploiting in a clever way scaling arguments inte-'2€d by @ noncentral potential, which comes out as a conse-
grated by numerical simulations, as for instance in Ref. quence of the topological constraints imposed on the

Here we concentrate ourselves on the case of two direct jectories. In the field theoretical formulation of Refs.
polymers interacting via a repulsive Dira@function poten- 12,19 the computation of the second moment is reduced

tial [20,21. We are particularly interested. in the average de.-]Eioeltg ?hpergrb;.e? t?;rfgsmizué'%%isd%rgebgcmsI?;gntg;rtlctﬂ?sni c?r];f
gree of entanglement of the system, Wh'c_h we wish to esti; utation requires just a finite number of Feynman diagrams
mate by computing the square average winding angle of thi) 1o o\ ajuated. In the present case, due to the presence of
two P?'ymefs- This quantity Is also called second moment ol e 5 function potential, the field theory which we obtain is
the winding angle or simply second moment and is a speci

le of th logical first introduced in Ref o longer free as that of Reff8,12,19. Nevertheless, we
example of the topological moments first introduced in Rety ;i seq that the theory is still linear and thus it can be ex-

[22]. To achieve our goals, we develop an approach, Whicr?;\ctly solved once its propagator is known. Luckily, this

combines quantum mechanical and field theoretical techs 4 qat0r may be computed exactly using powerful nonper-
niques. With respect to previous works, we are able to obtaily, paiive techniques developed in the context of quantum
exact results even if the repulsive interactions aré NOpechanics to deal with Hamiltonian containidefunction
sw:tcheq Oﬂ'l h ¢ b ble like th potentials, see Refd23-32. Basically, starting from the

n_principie, the average o any opservaple like .t.eGreen function of a particle whose dynamics is governed by
squa_red winding angle_ can be derl_ved once the partition, given Hamiltoniar,, these techniques provide an algo-
function of the system is known, but in our case it turns oUty, 16 construct the Green function of a particle corre-
that the partition function is simply too complicated to obtalnS onding to aerturbedHamiltonian=",+V;, whereV,

any analytical result. This happens essentially because tg yhe 5 function potential. One advantage of these methods

is that there is a long list of potentials for which the Green
functions of the unperturbed Hamiltoniahg, are known. In

*Electronic address: ferrari@univ.szczecin.pl this way, it is easy to generalize our treatment including in-
"Electronic address: rostiash@mpip-mainz.mpg.de teractions, which could be relevant in polymer physics, like
*Electronic address: vilgis@mpip-mainz.mpg.de for instance the Coulomb interaction. The price to be paid is
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that the quantum-mechanical algorithm works when thes-function potential is responsible of the appearance of sin-
Green functions are expressed as functions of the energyularities in the propagator at short distances, which have
instead of the time. In the polymer analogy, assuming thabeen regulated here with the introduction of a cutoff. This
the ends of the polymers are attached to two planar surfacgocedure is motivated by the fact that in polymer physics
perpendicular to the axis and located at the positiorsO  there is no point in considering distances which are smaller
andz=L, the role of time is played by the distantewhile  than the dimensions of a monomer. A comparison with the
the energy corresponds to the chemical potential conjugatggore rigorous method of renormalization is made, showing
L. To recover the original dependence bnone needs t0 he consistency of the two procedures. The propagator de-
calculate an inverse Laplace transform of the field propagatqfeq in Sec. IV has a particularly nice form, in which the
with respect to the energy. In general, this is not a simple,,yiptions coming from the repulsive forces can be sepa-
task. rated from the free part of the propagator, which is related to

Once the propagator of the linear field theory is known, : . s
the correlation functions which enter in the expression of thethe random_walk Of. ideal ponmer;. This sphtpng of the
ropagator is used in Sec. V to discuss qualitatively and

second moment may be calculated contracting the fields i 2 o .

all possible ways usi%g the Wick prescription A? the end Wequantltatlvely the effects of thé&function interactions on the

get in this way an exact formula of the second moment as §nt@nglement of the system. The results of Secs. Ill and IV
function of theenergy which, we remember, has here the Provide in principle all the ingredients of the second mo-
meaning of the chemical potential conjugated to the distancB'ent. However, the amplitudes of the linear field theory de-
L. In the L space, due to the problems of computing thefived in Sec. lll should still be evaluated. In this task one
inverse Laplace transform of the propagator mentione@ncounters the typical prpblems occurring in the evaluation
above' On'y an approximated expression Of the Second m@f the analyt|ca| eXpI’ESSIOI’lS Of Feynman dlagra.ms. In the
ment will be given in the limit of large values df and  case of the second moment there are just tree diagrams, but

assuming that the strength of thdunction potential is weak Still one has to perform complicated integrations over the
enough to allow a perturbative approach. spatial coordinates which are transverse toztaxis. Even

Our results allow both a qualitative and quantitative un-2ssuming that polymers are ideal, the analytical evaluation of
derstanding of the way in which the repulsive interactionsth€Se integrations requires drastic approximations, see for in-
affect the entanglement of two directed polymers. The corStance Ref[8]. To avoid these difficulties, we average the
rections introduced by these interactions in the expression ¢técond moment with respect to the positions of the endpoints
the second moment of ideal polymers have been studied ifif the two polymers. This averaged version of the second
some interesting limits. First of all, it has been examined thénoment can be computed without any approximation in the
limit of long polymer trajectories, in which we show that €Nergy representation. This is done in Sec. VI. The expres-
repulsive interaction become particularly relevant. MoreoverSion of the averaged second moment in thepace is pro-

we have investigated also the perturbative regime and thwded instead only at the first perturbative order in the
strong coupling limit, which is important to recover the ex- strength of the repulsive potential and assuming additionally

cluded volume interactions. While it is not a problem to takethat the value ot is large. We give also an exact formula of
the strong coupling limit within our exact treatment of the the second moment without performing any averaging pro-
repulsive interactions, it turns out that, in this case, the excedure as a function df. This formula is however explicit
pression of the second moment is particularly complicated’”'y up to the calcu_latlon of the inverse Laplace transforr_n of
from the analytical point of view. For this reason, in the the propagator derived in Sec. IV. In Sec. VII we consider
Conclusions we will discuss the application of a powerfulthe situation in which the polymers are not interacting in
perturbative method to study field theories at strong coupling@rder to allow the comparison with previous results. Finally,
due to Kleinert[33-35. Finally, the consistency of our re- he discussion of the obtalne_d results and _|deas for further
sults with the previous ones has been checked by studying€velopments are presented in the Conclusions.
the limit of ideal polymers.

The material presented in this paper is divided as follows,; tHE STATISTICAL MECHANICS OF TWO DIRECTED

In the next secti(_)n,_the problem of C(_)mputing the seC(_)nd POLYMERS WITH CONSTRAINED WINDING
moment of the winding angle of two directed polymers in- ANGLE

teracting via as-function potential is briefly illustrated using

the path integral approach. A constraint on the winding angle Our starting point is the action of two directed polymérs
is imposed by coupling the trajectories of the polymers withand B,

a suitable external magnetic field, following the strategy of L 5 )

previous works like for instandes,14,15,19. In Sec. Il the Ao:f dz{c(dL*) +c(%) ~\(rp- fs)], (1)
second moment is expressed in the form of a finite sum of 0 dz dz

amplitudes of a linear field theory. These amplitudes may be . )
computed once the propagator of the theory is constructed?NereV(ra=re) is the potential,

In our case, th_e propagator coin(_:ides with Fhe Green fL_mction V(ra-Tg) = —0od(Fa—Tg), ve>0. )

of a particle diffusing in as-function potential. The deriva-

tion of this Green function in the energy representation using he sign ofvy has been chosen in such a way that the inter-
nonperturbative techniques developed in the context of quar&ction associated to the potentllr) is repulsive. The pa-
tum mechanics[23-37 is the subject of Sec. IV. The rametersc andL determine the average length of the trajec-
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tories of the polymers. The ends of the polymers are 2 dN

supposed to be fixed on two surfaces perpendicular ta the am-x) = om INm), (10)

axis and located at the heights 0 andz=L. Both polymers —

have a preferred direction along thelirection. The vectors gq. (5) can be rewritten as follows:

ra(z) andrg(z), 0<z<L, measure the polymer displace-

ment along the remaining two directions of the space. (AN
The action of Eq(1) resembles that of two quantum par- Zm= » Ze‘ 2xs (11)

ticles in the case of imaginary tine To stress these analo-

gies with quantum mechanics, tzevariable will be treated where

as a pseudotime and renamed using from now on the letter

instead ofz. - ~fdtc
In the system of the center of mass, 2= f bre-o. (12

: _Iatrg The LagrangiarC is that of a particle immersed in the mag-
r=ra—rs R= 5 () netic potential associated to the vector fi€k),
the action(1) becomes r= E(d_r>2 i ¥ Ao VI(r). (13)
2\ dt dt
L olcfdr)? dr\? _ o o
Ag=| dt S\ at +2c at =V(r)|. (4) The Fourier transformed partition functiaB, is the grand
0 canonical version of the original partition functiaf,, in

The motion of the center of mass, which is a free motionWhiCh the numbem is allowed to take any possible value.
' Z, coincides with the propagatdk, (L;rq,rp), which sat-

described by the coordinaf(t), will be ignored. - . e .
We consider the partition function of the above two- isfies the following pseudo-Schrdinger equation:

polymer system with the addition of a constraint on the en- J
tanglement of the trajectories, <I - H)QA(L;Fl,fo) =0, (14)
z = f Dr e JGatl(E2)(drrdy?+v(n)] s(m-y) (5) 'H is the Hamiltonian of the system, computed starting from
m ' the Lagrangiar(13),
is the so-called winding angle. Its expression is given b 1
X g.and P given by H= - (V=iNA2+V(r). (15)
L 2c
X= JO A(r (1) -dr(v), 6) Equation(14) is completed by the boundary condition lat
:0,
whereA(r) is a vector potential with components
( ) P P g)\(o;rl,ro)zﬁ(rl_ro). (16)
Ar) = ie,,ﬁ ij=1,2. 7) The average degree of entanglement of the two polymers
! 27 r2t ' can be estimated computing the topological moments of the

winding angle(mz‘()rl’ro, k=0, 1, 2,... [22]. Once the parti-
tion function is known, the(mzk%l,ro may be expressed as
follows:

In the above equation we have represented the veaising
Cartesian coordinates,x?, i.e.,r =(xt,x?). Moreover, from
now on, middle italic indices,j,...=1, 2 will label the di-
rections which are perpendicular to thaxis. The definition o
of the partition functionZ,, is completed by the boundary dm nf<z,,
conditions att=0 andt=L, (Mm%, = —

170

r=rq, r(L)=ry. (8) f dmz,,

The quantity in Eq(6) becomes a topological invariant if the +o = gn
polymer trajectories are closed. In the present case, in which f dm n?"f —€™G,\(L;ry,ro)
the trajectories are opep,just counts the angle with which _Jo o 2T
one polymer winds up around the other. Thus, the partition - +o0 Al

f dmf o MG (L;ry,To)

. (17)
function Z,,, gives the formation probability of polymer paths
winding up of an angle
e k -y
AG= 2. 9) The quantitiegn? >f1vfo depend on the boundary cond_ltlons
rq,r, and, of course, on the parameterandL. For practical

Exploiting the Fourier representation of Dirac reasons, we will also consider the followimgeragedtopo-
é-functions, logical moments:
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5 5 . theoretical formulation of the polymer partition function. The
Jd fof d flf dmnf“z,, starting point is provided by the formula of the second mo-
e ) (18)  ment in theL space suitably rewritten in the following way:
2 2
fdrojdrljdmzm ) N(L;r o)
<m >r To =~ - (21)
1o D(L;rq,rp)

As Eq. (18) shows, the average is performed with respect to

the relative positionsg,r, of the endpoints. This is equiva- For consistency with Eq17), the numeratoN(L:ry,r) and

lent to an average over the positions of the endpoint ; . o
rat), rg(t) at the instant$=0 andt=L, because the coordi- ?22 ?:rrr:])mlnatoD(L,rl,ro) appearing in Eq(21) must be of

nates of the center of mass have been factored out from the
partition function and thus they do not play any role. The +o0 N
advantage of the averaged topological moments is that, a N(L;rl,ro):f dmn?f o MG (Lir,re) (22
posteriori, it will be seen that their computation is easier than - —o £T
that of the topological moments given in Ed.7). From the
physical point of view, the averaged topological moments2nd
measure the entanglement of two polymers, whose ends are . g
always fixed at the he|gh1$0 a_ndt=_L but are otherwise D(L;ry,ro) :f de —)\e‘m*GA(L;rl,ro). (23)
free to move in the remaining directions. o o 2T
Here we will be interested only in the second moment ] o ]
<m2>r1,ro and in the averaged second momém), i.e., in the Using Eq.(19), it is now straightforward to compute the
casek=1 of Egs.(17) and (18). The second moment is in L@place transform oN(L;ry,ro) andD(L;ry,ro),
fact enough in order to estimate the formation probability of . .
entanglement yvith a given Winding_ angle and'to determine N(E;r,ro) :f dmm’-f dr MG (E:ryro), (24)
how the winding angle grows with increasing polymer — w 2T

lengths.
In the following it will be useful to work in the so-called . -

energy representa.\t.ion, i.e.,.considering th.e Laplace trans- D(E;rl,fo):f dmf d—)\eim”gx(E;rl,ro). (25)
formed of the partition functio, (L;r,rq) with respect to —e w 2
L:

- Once the functiondN(E;r,,rp) andD(E;rq,ro) are known,

G\ (E:ry,ro) :f dLeELG, (L:ry,ro). (19)  One can construct the ratio
0
N(E;ry,ro)

The partition functionG,(E;r,r,) describes the probability (M) 1 (E) = — (26)

of two entangled polymers of any length subjected to the D(E:r1.70)

condition that the relative positions of the polymer end at the,ich is nothing but the second moment of the winding
initial and final instantd, andt, are given by the vectons,  gngie expressed as a function of the chemical poteftial
andr . th respect to the formulation in the space, ho_vv- We remark that the Green functigh (E;rq,r,) is related
ever, the distancg —t, is no longer exactly equal to, but is to the Feynman propagator of the séirAharonov-Bohm
allowed to vary according to a distribution which is governedproblem in quantum mechanics. In principle, this Green
. L - :
by the Bqltzmann type fac_tan - Thus, E plays the role_ of function can be computed exactly starting from E80)
the chemical potential conjugated to the end-to-end distan 9], but its final expression is too complicated for our pur-

?gr;[]zem%gﬁ;gt trrijjca?”is gz‘aliihr?dlrsenigﬁn\./z;rulj fivo%g?ret? poses. Moreover, the method used in R&8] to renormal-
' ghly sp 9, ize the singularities coming from the presence of the

2p823 :8 LﬁgaTl Vglluiz gif VSVP;L?.r:ar?rigage(slgzaﬁgrrr: S-function potential is valid only in a restricted region of the
P vaid : ing q: domain of A. This is incompatible with our requirements,

calling the boundary conditior6), it is easy to check that because, to derive the second moment, one must integrate

GuE;ry,ro) satisfies the stationary pseudo-SchrodlngergA(E;rl,ro) with respect ton over the whole real line. For

equation, this reason, we prefer here to use a field theoretical represen-
(E-H)G\(E;ry,rg) = 8(ri—rg), (20) tation of this Green function. This is achieved by noting that
G\ (E;rq,ro) coincides with the inverse matrix element of the
whereH is always the Hamiltonian of Eq15). operatorE-H,
IIl. CALCULATION OF THE SECOND MOMENT USING G\(E;ry,ro) =<rl|ﬁ|ro>, (27

THE FIELD THEORETICAL FORMULATION

In this section we wish to evaluate the expression of theand may be expressed in a functional integral form in terms
second moment as a function of the eneEyysing a field of replica fields,
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G\(E;ry,rg) = lim fD\PD\P*(»l’l(rl)(//;(ro)e_aw*'w)- D(E,ry,ro) = lim fD"P*D\P'pl(r1)'!/;_(r0)e_80<w*’q,)-
n—0 n—0

(28 (37

The right-hand sides of Eq&36) and(37) represent vacuum

expectation values of a field theory governed by the action

(29) S(P, W) of Eq. (32). In the formulation in terms of quan-
tum operators we have

In the above equatioW”, ¥ are multiplets of replica fields,

U= (g, th), V=)

with action N(E; 11,7 o) = im (O] (r 1) (1 ) 2S(¥", W)[0),
n—0
SV, W) :f AW * (E - %;(VX_ iNA)2 - anw(x))wy_ - rlm<0|t!fl(rl)ebi(ro)(Sl(‘I’*,‘P))2|0>n,
(30) (38)
The symbol in Eq. (28) denotes summation over the replica D(E;ry,ro) = Lif%<0| A A[O (39

index. For exampleW" »W=3"_ 4 4,. Below it will be
use_d qlso the conventiow**\lf:|\1f_|2. The_ details _of t_he The correlation functions have a subscripto remember
derivation of Eq.(28) can be found in previous publications that, according to the replica method, they should be com-

on the subjecf12,29 and will not be provided here. puted first assuming that the number of replinds an arbi-
In order to proceed, it will be convenient to expand thetrary positive integer and then taking the limit florgoing to
action (30) in powers of\, Zero.
The above correlators may be evaluated using standard
SV, W) = (U, W) + AS(¥", W) + \2S,(V", ), field theoretical methods. One could be tempted to use a

(31) perturbative approach assuming that the valuejodppear-
ing in the actiorS,(¥", W) of Egs.(36) and(37) is small, but
where we have set this is not necessary. As a matter of fact, if it is true that
S(W", W) does not describe free fields because of the pres-
1 ence of thes-function potential, it is also true that it is just
S, W) :f d2x<—| VV|?+[E- vo&(x)]|llf|2>, quadratic in the fields. As a consequence, one is allowed to
2c define a propagatds(E;x,y) associated with this action. It
(32) s easy to check tha®(E;x,y) satisfies the equation

i (E—ivi—voa(x)>e(|z;x,y) = 8(x,y). (40)
SV, W) = e f XA [T * (V) = (VI") » ¥], 2c

¢ Using the above propagator, one can evaluate the amplitudes
(33) in Egs.(38) and (39) exactly by contracting the fields in all
possible ways according to the Wick theorem. After straight-
forward calculations, one finds

* — i 2 2 2
SV =5 f EXATPE. (34 MOl 10100 =CEirurg, (41

At this point we come back to the computation of the
quantitiesN(E;r4,rg) and D(E;rq,ro) appearing in the ex- |im(0|¢1(f1)¢1(ro)32(‘1’*.‘I’)|0>n:K(rl,fo). (42)
pression of the second moment. Exploiting the form of the n—0
partition function given by Eq928)—(34), together with the

relation Limo<o| n(r ) (ro)(Sy(¥", ¥))?|0),,
fmdmn’feim)‘:zw(i)”ayé(i\), »=01.... (35 =14(ry,ro) +12(ry,ro) +13(ry,ro) +14(ry,ro), (43
o 2 where

and the fact thatZ,..=0, it is possible to rewrite Eq$24) - 1 f 2 2 . .

and(25) as follows[44]: K(ruro) 2c BATIGErLXICEX ), (44)
. x . 1

N(E;r,ro) = ”mof DY DV iy (r )y (r[2S,(V, W) 11(r1,7o) =T o2 f d>XPy[A(X)G(E; X, )

— (S (W W))W, (36) X(V,G(E;y, xDAW(VLG(E;ro, )], (45)
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A A A A

0 "

r r,
) ] ) FIG. 2. Feynman diagram corresponding to the amplitude of Eq.
FIG. 1. Feynman diagram corresponding to the amplitudes 0f44). The two polymersA andB start at a distancg | from each
Egs. (45-(48). The two polymersA andB start at a distanclol  other and interact with the the external fiéld At the final instant
from each other and interact twice with the the external fheld\t t=L, the relative position of the endpoints is given tyy The four
the end, the relative position of the endpoints at the instahtis  yetices appearing in this figure are related to the interaction de-
given byr,. The three vertices appearing in the figure are related tQ,.(ipeq by Eq(34).
the interaction described by E@3J).

these relative vectors are allowed to take any value. This
implies that the distance between the polymer segments
when the interaction witi\ occurs can be arbitrarily large.
_ j _ Now that the correlation functions which are present in
XG(E;y, XA (Y(VyG(E;roy))], (46)  the expressions M(E;r,,re) andD(E:ry,ro) given in Egs.

(38) and (39 have been evaluated, see EG&)—48), we

_,. 1 o . may put everything together and give to the second moment
l3(ry.ro) = + 2¢2 f dXPYAKIG(E;T0,X) of Eqg. (26) a more explicit form,

X (VI VIGE;: X, YA Y)GE:y,r)], (47

Io(ry,ro) = +%fdzxdzy[Ai(x)(Vi(G(E;x,rl))

4
2K(rO!rO) - E Iw(r01r0)
w=1

(M) 1o GErorg : (49

: - In conclusion, the initial problem of computing the second
X(VGEXYDAWVGEY.r))]. 48 moment of the winding anglém?), , has been reduced to

From the physical point of view, the above equations may béhe evaluation of a finite number of integrals, which are

interpreted in the following way. The fieldB(x) and ¥ (x) given in Eqgs.(44)—(48). Of course, to make these integrals

contain operators which, inside each replica sector, createally explicit, we still need to derive the propagator

and annihilate segments of the two polymers, whose relative(E;X,Yy), which is so far the only missing ingredient. This

positions are given by the vectar The two polymer system Will be done in the next section.

has been projected in the two-dimensional plane perpendicu-

lar to thet axis. For this reason, there appear only the trans-

verse coordinates. The only remnant of the third dimension

is the dependence on the enefgyThe correlation functions

(42) and (43) describe the fluctuations of the two polymers | et Gy(L;x,y) be the solution of the differential equation

immersed in thes-function potential and subjected to the

interactions represented by the vector poteriial\We recall J . _

that the origin of the latter interactions is the presence of the ((9|_ HO) Go(L:x,y) =0 (50

constraint on the winding angle in the partition functi@. . o o

To evaluate the correlation functior@?) and (43), one for agiven Hamiltoniart{,. WhenL =0, Go(L;x,y) satisfies

needs to consider only a finite number of Feynman diagramdhe boundary condition

correspondmg to the relevant processes with which the .two Go(0:x,y) = &(x - ). (51)

polymers interact together. The result, after the analytical

evaluation of these diagrams, is provided by Ed%)—(48). In the case of a Hamiltoniak/, obtained by adding @7, a

Let us note that in these equations the repulsive interactiongfunction potential as a perturbation,

due to thes-function potential are hidden in the propagators _

G(E;x,y). The Feynman diagrams related to the amplitudes H(X) = Ho(X) = vod(X), (52)

of Egs.(45)—48) are all topologically equivalent to the dia- we consider the analogous differential problem

gram of Fig. 1. The amplitude of E@44) is related instead ;

to the Feynman diagram of Fig. 2. The vectorsandry o . _

denote the relative positions of the endpoints of the two (aL H>G(L’X'y)_0’ (53

polymers at the initial and final instants, as already men-

tioned. The integration variablesandy appearin_g in I_Eqs. G(0:x,y) = 8(X —y). (54)

(44)—48) may be regarded as the vectors which give the

relative positions of the trajectories of the two polymers atWe wish to computé(L;x,y) starting from the Green func-

the instants in which they interact together via the externation Go(L;X,y), which is supposed to be known. It is pos-

vector potentialA of Eq. (7). There is no restriction on the sible to show thatG(L;x,y) and Gy(L;x,y) are related by

domain of integration ok andy, so that the components of the integral equatiof30,31:

1
la(ruro) == 53 f d2XAPY[A(X)G(E; T ,X)

IV. GREEN FUNCTIONS IN THE CASE OF
HAMILTONIANS WITH A 6-FUNCTION POTENTIAL
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is equal to infinity, i.e.{1/vg)+Gy(E;0,0)= +o. This is due
to the fact thatKy(z) diverges logarithmically in the limit
z—0,

L
G(L;x,y)=GO(L;x,y)—vof dsf d?zGy(L
0

-5;X,2)8(z2)G(s;z,y). (55)

We see that on the right-hand side of the above equation the
presence of thé-function forces us to consider the functions 9 : .
polymer physics, it has no sense to consider lengths which

GolL;x,y) andGi(L;x,y) evaluated at the poinis=0 and/or are smaller than the size of the molecules which compose the

y=0. Usually, at these points Green functions may be no olymers. Thus, it seems reasonable to regulate ultraviolet
well defined due to the presence of singularities. A concret&®” : ! g

procedure to remove these singularities will be indicate<fj'verger?ceS by mtroduu_ng a cutaifa short.d|stances.'The
later. For the moment, we go further with formal manipula- engtha is comparable with the molecular size. According to

tions, assuming that some kind of consistent regularization otTh'S prescription, by inserting the Green function of E&g)

the possible divergences has been introduced. in Eq. (60), we obtain
First of all, we perform the integration ovefz in Eq.

Ko(z) ~—-logz forz~ 0. (63)

A natural regularization is suggested by the fact that, in

(55), G(E;x,y) = %Ko(vﬁjx—yp
L [
G(L;x,y) =Go(L;x,y) - voJ dsGy(L - s;%,00G(s;0,y). _ (3)ZKo(vTBZIXI)Ko(\"ZECIyI) 64
0 o

1 Cc [

— + —Ky(vV2EcC

(56) by T oV2Eca

The integral inds appearing on the right-hand side of Eq. The symbok means that the quantity on the left-hand side
(56) is a convolution which can be better treated after aof an equation has been replaced on the right-hand side with
Laplace transform. Thus, we transform both sides of thidts regulated version. The above Green function is what we

equation with respect th,

G(E;x,y) = Go(E;X,y) = voGo(E;x,00G(E;0,y), (57)
where
G(E;x,y) = f: e ELG(L;x,y)dL (58)
and
Go(E;x,y) = f: e ELGy(L;x,y)dL. (59

At this point, it is easy to extract from E@57) the expres-
sion of G(E; x,Y),

Go(E; x,0)Gy(E;0,y)

G(E;x,y) = Go(E;x,y) - (60)

— +Gy(E;0,0
Uo

The above formula may be used in order to solve(EQ). In
this caseH, coincides with the free action

1
=—V? 1
Ho P (61)
and the functiorGy(E; x,y) is given by
c —
Go(E;x.y) = —Ko(V2Eclx ~y]). (62

need in order to evaluate explicitly the amplitudes of Egs.
(41)—(43).

The infinities coming from thé-function potential should
be treated with some care in order to avoid ambiguities. For
this reason, we would like to compare the naive prescription
used here to derive Eq64) with the more rigorous proce-
dure of renormalization. It is known in fact that the renor-
malization of the infinities coming frond-function interac-
tions produces physically sensible resuli82]. The
divergences will be regulated introducing a cutdffin the
momentum space. As a consequence, it will be convenient to
express the free Green function of H§2) in momentum
space. To this purpose, we use the following formula:

P (x=y)
p?
To evaluate the Green function at the singular poirty
=0 we need to compute the following divergent integral:

1 dp
|(m)—zf p2+m2.

Using the above cutoff prescription to eliminate the ultravio-
let singularities we get, in the assumptiad> nv,

1
o=y = [ o 9

+m?’

(66)

A
I(m) ~ log—. 67
(m) ~log—~ (67)
Now, according to the spirit of renormalization, we subtract
the infinities from the bare parameters of the theory. In our
case, after choosing an arbitrary mass sgalevhich gives

HereKo(2) denotes the modified Bessel function of the secthe renormalization point, we renormalize the bare coupling

ond kind of order zero.
Clearly, we cannot apply directly E¢60) without intro-

constani . Actually, it will be better to call ivy,,einstead of
vo in order to distinguish it from the effective coupling con-

ducing a regularization. As a matter of fact, if not treated, thestantv, appearing in Eq(64). The subtraction of infinities is
naive denominator in the second term of the right-hand sid@erformed in such a way that the quantity
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1 c A%\ ¢ m?
- Gy(E;0,00=—+ —log| — | - s—log| —
Ubare Uren £T M 2m M

(68)

PHYSICAL REVIEW E71, 061802(2005

ri=ri+a (76)

Clearly the propagatof62) is invariant under the above
transformations. This kind of invariance can be explained as

becomes finite. We choose a sort of minimal subtractiorfollows. As far as the two polymer& andB do not interact,

scheme, in which the renormalized coupling constggtis
related to the bare coupling constant,. as follows:

A%\ 1
ol 5 )=—.
M Uren

Applying the last two above equations back to E&), we
get as a result,

1
4o
Upare 2T

(69)

C [p—
G(E;x,y) = ;Ko(v’ZECIX )

) (E>2K0(\"’2_EC|X|)KO(\/2_EC|y|) . (70)

a 1 ¢ <2Ec)
___|Og_

2 u?

Uren

Equations(64) and(70) are reciprocally compatible. In fact,
since a is very small, because it is the smallest possible
length scale in our polymer problem, one can use the follow-

ing approximationsee Eq.(63)] in the denominator of the
second term of Eq.64):

1 ¢ — 1 c
— + —Ky(v2Eca) ~ — - —log(2Eca). (71)
o n

Vo vg 2
Comparing with the analogous denominator in Etf), it is
possible to relata with the inverse of the mass,

(72)

Moreover, the effective coupling constantof Eq. (64) may
be identified with the renormalized coupling constap,
which gives the strength of the repulsive interacti@ at
distance scales of ordex

each of them may be treated as an independent system. If we
translate for instance both ends of polym&rat t=0 and
t=L in the symmetrical way shown by Eq§.3) and(74), the
number of configurations of polyméy and consequently the
configurational entropy of the whole system do not change,
because the transformation is equivalent to a translation of
polymerA in the space. Of course, this invariance disappears
as soon as the two polymers start to interact or if they are
entangled together. Indeed, if one adds to the free Hamil-
tonian(61) a §-function potential, the propagator stops to be
translational invariant as shown by the Green function of Eq.
(60), which does not depend on the differencey.

V. REPULSIVE FORCES AND WINDING
ANGLES: QUALITATIVE AND QUANTITATIVE
CONSIDERATIONS

In principle we have at this point all the ingredients which
are necessary to compute the second moment ofZ&j. In

Egs. (38) and (39), in fact, the quantitieN(E;r,rg) and
D(E;rq,rp) are written as linear combinations of the ampli-
tudes of Egs(41)—(43), which can be explicitly evaluated
using the propagato&(E,u,v) given in Eq.(64) [45] and

the formulas of Eqs(44)—(48). The remaining task is to per-
form the integrations over the coordinatesandy in Egs.
(44)—(48). From the analytical point of view, the evaluation
of these integrals poses severe technical problems, which can
be solved only with the help of drastic approximations. How-
ever, the difficulties become milder if we average the second
moment over the endpoints of the polymers as shown in Eq.
(18). In the energy representation, which we are using, this
means that we must consider the following averaged version

Before concluding this section, we make a small digres©f the second moment in E6):
sion about the translational invariance of the free Hamil-

tonian(61) and consequently of the free Green functi6g).

Clearly, this is not the same translational invariance that was

already present in the original actigh) due to the transla-
tional invariance of the potenti@®). This new invariance is

rather related to the fact that the physics of the two polymer

system in the absence of any interaction does not change if
we modify the relative positions of the polymer ends at
t=0 andt=L in a symmetric way. An example of such trans-

formations is the translation of both ends of polymeat the
initial and final points by a constant vectay

ra(0) =ra(0) +a, (73

ra(L)=r(L) +a. (74)

As a result of the translation&3) and (74), the relative
vectorr (t) of Eqg. (3) at the instant$=0 andt=L changes as
follows:

ro=ro+a, (75

_NE)
(MP)(E) = DE)’ (77)

where
N(E):fdzroderlN(E;rl,ro), (78
D(E)=JdzrofdzrlD(E;rl,ro). (79)

Accordingly, we need to integrate the quantitigs ,,ro) and
1,(ri,ro), w=1,...,4 of Egs.(44)—(48) with respect ta'; and
ro. Setting

K(E):Jd2r0fd2rlK(r1,ro), (80)
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1,....4 (81

|w(E)=fd2r0Jd2r1|w(|'1:ro)y ®

we obtain from Eqgs(42) and(43) the following expressions
of N(E) andD(E):

4
N(E) = 2K(E) - 2 1,,(E),

w=1

(82

D(E) = f d?rod?r,G(E;rq,ro). (83)

It will also be convenient to split the propagats(E;u,v) of
Eq. (64) into two contributions,
G(E;u,v) = Go(E;u,v) + G1(E;u,v), (84)

whereGy(E;u,v) is the free propagator of E¢62), which is
invariant with respect to the transformatio(¥5) and (76),
while

C —
Gy(E;u,v) = 7—TA(E)KO(\s’ﬁ|u|)Ko(\e’2Ec|v|). (85)

PHYSICAL REVIEW E1, 061802(2009

(91). Looking at Eq.(82), it is clear that the whole function
N(E) is characterized by the leading scaling behaWoE)
~E™. In the L space, after an inverse Laplace transform,
this behavior corresponds to the following scaling law, which
is typical of ideal polymersN(L) ~L. The powers of\(E),
appearing in the expressionskf’(E) andlg‘)(E), introduce
corrections to this leading behavior that are at most logarith-
mic in E. As a matter of fact, if the conditionExa&<1 is
satisfied, we have that

c c — \71
(vgl—;log(\ZEca)> .

w

NE) (92

Naively, the above seems to be the only logarithmic correc-
tion which is possible in the expressions NfE) and D(E)
whenE is small. However, this is not true. In fact, in deriv-
ing Egs.(90) and (91), we have not considered the diver-
gences which arise in some of the integrations over the vari-
ablesx, vy, ro, andr,. After regulating these divergences with
some prescription, as for instance the ultraviolet cutoff
used in Eq.(64), we will see in Sec. VI that the naive res-
caling of variables exploited in order to obtain E¢80) and

In the above equation we have isolated in the expression C{bl) does no longer work and one should add extra logarith-

Gy(E;u,v) the factor

Ma:—i

-1
(i + EKo(\"ZEca)> . (86)
Uo T

It is clear that the origin of the ter@,(E;u,v) in the propa-
gator is due to presence of tl&function interaction(2) in
the polymer action(1). In fact, if v,=0, this term vanishes
identically. Thus, using the splitting of the propagator of Eq.
(84), it is now possible to separate in Eq#4)—(48) the
contributions to entanglement given by repulsive forces.

It seems natural to expand the quantifixE), K(E), and
I,(E) defined in Eqgs.(79), (80), and (81) with respect to

ME) as follows:

D(E) =DO(E) + DY(E), (87)
K(E) =KO(E) + KY(E) + K?(E), (88)
LE =126 +10PE+12E®)+1PF), (89

where the superscripgin), with n=0, 1, 2, 3, denotes the
order in\(E). There are no higher order terms witk= 4, so
the above expansions are exact.

It is easy to show how((E) and thel ,(E)'s depend on the
pseudoenergi. After a rescaling of the integration variables
r1, o, X, andy in Egs.(78) and(79), one finds in fact that

KMW(E)=\"(E)EK"™, n=0,1,2, (90)

IM(E)=A"(E)EA", n=0,1,2,3, (91)

where the factork™'s and thel™’s are functions of the
parameters andc, but not ofE or v,. In fact, the coupling
constantvy appears only inside the powers ®fE). Let us
note the presence of the overall fac®r in Egs.(90) and

06180

mic factors to these equations.

Equations(90) and (91) may be also useful to study the
case of polymers in confined geometries. As a matter of fact,
for large values oE, one recovers the limit of small values
of L, in which the region between the initial and final height
is very narrow. Looking at Eq$90) and(91), it is clear that
the only interesting corrections whénis large come from
the powers of(E). To evaluate these corrections, one should
note that the modified Bessel function of the second kind
Ko(2) goes very fast to zero for large valuesofAs a con-
sequence, already in the domain of parameters in which
2Eca&=10, it is possible to make the very interesting ap-
proximation

MEyv—%%. (93)

Unfortunately, it turns out that the values of the energy for
which the above equation is satisfied are not physical, as it
will be shown below.

Other useful information on the influence of repulsive
forces on the winding angle can be obtained studying the
form of the functionG,(E;u,v) of Eq.(85). We remember in
fact that all the effects of the repulsive forces are concen-
trated in this component of the propagator. Supposing, for
example, that the value ¢l is very large, i.e.,

ul > ——, (99

ul V2EC
we have the following approximate expression of
G4(E;u,v):
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c 114 TEG| — grows with the length of the polymers with a law which has
G4(E;u,v) = —==\(E)(2E0) & IKo(V2EQV]). been given in Eq(104).
N2 ) . . . .
In the rest of this section we will analyze some interesting
(95  limiting cases, in which repulsive interactions become par-

. . ticularly weak or strong. To this purpose, it would be appeal-
A relation analogous to Eq95) may be written also for the ing to consider the quantity\(E), where\(E) has been

variable v. In practice, Eq.(95 means that the repulsive given in Eq.(86), as an energy dependent effective or run-
interactions do not play any particularly relevant role in ning coupling constant of the repulsive interactions. This

polymer configurations in which the ends of the trajectories .
at some point are very distant. This is not a surprise. If th could be suggested by the expansions of E88}-(89) and

Y . . )
trajectories at some heiglitare very far from each other, ei)ytt)he fact thl‘.'ﬂ the qu;:mttltg; S(Ezjhas th(_a”nght ;:ihlmtetrk]]smn
they will have little or no chance to interact together via the 0 be a coupling constant. Indeed, we will see that there are
repulsive interactions of Eq2), which are of short range. cases in which the s_trength oi(E) really det_er_mmes the .
Equation(95) gives the concrete law with which the contri- strength of the repulsive forces. HOW‘?V‘?“ this is not true in
butions of the repulsive forces are suppressed in configur«’ﬂeneral' as it should be because) is just a param_eter
tions of this kind. In particular, if the distance between the?WNich has been factored out from the expression of
trajectories is much greater than tibaracteristic length ©1(E;U,Vv) and thus its meaning does not coincide with that
scale of a running coupling constant. Keeping that in mind, we
start to study the perturbative regime, in whigh is very
lrep= 11\2Ec (96)  small. In the part of the propagator in which there are the
contributions of the repulsive forces, i.e., the function
the influence of the repulsive forces ceases to be relevant. @,(E;u,v), vg is present only insida(E). Expanding this
course, even if at some points the trajectories are very digjuantity in powers o, we obtain
tant, polymers will always have a chance to get near enough
to be able to interact if they are sufficiently long. As a con- c c i
sequence, we expect that the characteristic lemgghin- NE) ~ —<—vo+ ~v2Ko(\V2Eca) + ) (97)
creases with the increasing of the lengths of the trajectories. m m
It is easy to check that this is exactly the case. To show that, _ _ _ _
let us consider the dependencelgf on the polymer length. We see that, at the leading orderuig, \(E) is proportional
One parameter which determines this length is the distance to vy and thus, as it could have been expec®gE;u,v)
between the ends of the polymers along tifeis. Indeed, a may be treated as a small perturbation with respect to the
trajectory connecting the two ends of a polymer must be veryree propagatoGy(E,u,v). Let us now go back to Eq93).
long if these ends are located at very distant heights. In thén that equation it turns out that(E) has the same behavior
energy representation, large valuesLotorrespond to small as in the perturbative regime, even if E§3) has been de-
values of E. For example, in the limi€=0, which corre- rived in the hypothesis thatEza’= 10, but without suppos-
sponds to infinite polymer lengths, we have thgi=, con-  ing thatv, is small. Before dwelling upon the physical mean-
firming our intuitive expectations. Another confirmation ing of this coincidence, let us see what is the significance of
comes from Eq(104) below, where a rough estimation of the the condition Eca?=10. To this purpose, we make the fol-
behavior ofl ¢, with respect to the distandeis given. The  lowing approximations:
dependence oh is not the whole story. As a matter of fact,
during their random walk in the direction fromt=0 to 1
t=L, polymers are also allowed to wander in the remaining L~E?Y =—~a. (98)
two directions. Loosely speaking, the variations in the length ¢
of the trajectories associated to the fluctuations in these
transverse directions are taken into account by the parameté&s mentioned before, it is quite reasonable to assume that the
c. Smaller values of correspond to longer trajectories and lengthL is proportional to the inverse of the energywhile
vice versa, see Ref36]. It is now easy to realize from Eq. the second approximation implies that polymers are very
(96) that the characteristic lengil, increases whew de-  flexible. For example in polyethylene the Kuhn lengti/c
creases as expected. Taking into account all the above coif Of the order of molecular sizes. Exploiting E(@8), it
siderations, it is possible to conclude that repulsive forcedurns out that the conditionExe®= 10 is equivalent to the
give relevant contributions to the second moment only in thecondition L<a/5. This would mean that our system is
case of configurations of the system in which the trajectorie§gqueezed in a volume whose heighis smaller than the size
of the two polymers are not too far from each other. As aof & monomer. Clearly, this situation is not very physical.
matter of fact, in the propagators appearing in the amplitudes Since we have been able to compute the exact form of the
of Egs. (44)—(48) all configurations in which the distance PropagatorG(E;u,v), it is not difficult to study also the
between the trajectories at some height intthgis is bigger ~ strong coupling limitvy— . As in the perturbative case, the
than a few characteristic lengthg, are exponentially sup- only affected part of the propagatt84) is the factori(E)
pressed according to E¢95). One may also add that this appearing irG,(E;u,v). After a trivial calculation, one finds
suppression becomes milder in the case of long polymersghat, in the strong coupling limit, the form &,(E;u,v) is
because we have seen that the characteristic lerigths given by
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Gy(E;u,v) ~ [Ko(V2Eca ] Ko(V2Edu|)Ko(vV2EdV)). ment will be presented in Sec. VI after performing the ex-
plicit computation of the amplitudes of Eqgl4)—(48).
(99) To conclude this section, let us give some concrete values
Assuming that polymers are very long, let us study the left-of the involved parameters. First of all, let us estimate the
hand side of the above equation. This is a ratio of modified/alues ofL, for which the two polymer system is in the
Bessel functions of the second kind. Sirecés a very small ~ regime (101). Using the approximations made in E@8),
quantity and these functions have a logarithmic singularity iftve may conclude that, if the relatiqd0l is satisfied, the

their argument is small, see E@3), it is licit to suppose that lengthL needs such that>2a, i.e., L is at least of the order
of hundred molecular lengths or moile>100a. Moreover,

Ko(V2Eca) > Ko(V2Edul)Ko(V2EClv|) (1000 it is possible to give a rough estimation of the maximum
distance of the endpoints, after which the two polymers are
too far from each other to allow a relevant contribution to the
winding angle due to repulsive interactions. Using B4,

unless|u|~a and/or |v|~a. On the other side, we know
from Eq. (94) that, if |Mv|>%, the product of modified
Bessel functionsKo(v2Ecju])Ko(v2ECiv]) ‘?‘ecays exponen- fact, it turns out that the repulsive interactions are relevant
tially. Ir_l other \_/vords,_on the left-hand side of EQ9) the only in the range of distances,

denominator will dominate over the numerator whenever the
distance between the polymer trajectories is not of the order La

of a few molecular sizes. Thus, ify is large, the major luf < \ %5~ lrep
contributions to winding angle coming from the repulsive

interactions occur when the trajectories are very near to eadfinally, the situation opposite to conditig0l) is not real-
other. This could be expected from the fact that, in the strongstic, because it leads to the constrain 2a. This would
coupling limit, one recovers the excluded volume interac-corresponds to the case of a polymer which is shorter than

(104)

tions. the size of the molecules composing it.
Finally, let us study the domain of the parametérandc
in which the condition VI. CALCULATION OF THE AVERAGED SECOND
MOMENT
2Eca <1 (101

is verified. We will see that this domain is particularly inter- At this point we are ready to compute the quantifi¢&)

esting, because if conditiofd01) is verified, the corrections andD(E) of Egs.(78) and (79)'_ We start withD(E). Using
of the repulsive interactions to the entropy dominated beha/EdS- (83) and (87) and the splitting(84) of the propagator,
ior of ideal polymers become relevant. It has been alread$"€ has at the zeroth order iGE),

shown that under the assumption made in Edfl), the

parametei\(E) is approximated as in E492). Even if it is DO(E) :f dzrof dr Go(E;r 1)

not strictly necessary, we suppose here thahas some fi-

nite value, while polymers are so long that the following c —
inequality is satisfied: = f d’rg f dzrngo(\"ZECh'l_roD- (105
vgt<- £|0g(\/ﬁa). (102  After a shift of variables, the above equation gives
o
cC
This further assumption is to eliminate the dependence,pn DO(E) = SJ d2f17—TKo(\’ZEC|F1|), (106

which could introduce confusion in the following discussion
due to possible interferences of conditid®1) with those of  whereS=[d?r, is the total surface of the system in the two-
the perturbative and strong coupling regimes. Inltrgpace, dimensional space, which is transverse to thaxis. Using
Eq. (102 corresponds to the inequaligf”@o<L/2a. Now  the identity
G;(E;u,v) may be approximated as follows:
o, C o 1
c J— — dr,—Ko(V2Edr,|) = =, (107
Ga(E;U,v) ~ ——————Ko(V2EQU|)Ko(V2ECV]). f tr 0 YE

7 log(\'2Eca) .
one finds
(103

(0) =
As promised, the above equation does not contain the param- D™(E) =SE. (108
eterv,. We see from the left-hand side of Eq03 that the  This expression oD'®(E) has the following interpretation:
functionG,(E;u,v) is logarithmically suppressed, due to the We are performing here an average of the second moment
presence of log/2Eca) in the denominator. This suppression with respect to all possible initial and final positions of the
effect is counterbalanced only at short distances by the twgndpoints of the polymers arid(E) countsthe number of
modified Bessel functions of the second kind appearing ithese configurations. The compondd®(E) of D(E) de-
the numerator, which diverge logarithmically wheneverpends only on the free propaga®g(E;x,y), which is trans-
V2EcJu|=0 and/ory2Edv|=0. The total result of these op- lational invariant in the sense discussed after @@). This
posite effects in the expression of the averaged second maavariance explains why the number of configurations grows
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proportionally to the surfac&. The reason is that, for each
configuration of the polymers, one can obtain other equiva

PHYSICAL REVIEW E71, 061802(2005

tities K(E) andl ,(E) of Eqgs.(88) and (89), respectively. At
the zeroth order we have f&(E),

lently probable configurations by the symmetric translation

of their ends on the surfacgat the initial and final instants.
Let us now apply td?(E) an inverse Laplace transform, in
order to go back to the space. After a simple calculation we
obtain

DO(L) =S,

i.e., DO(L) does not depend oh.
The next and last contribution ©(E) is given by

(109

DW(E) = J d?ro0?r1G4(E;r,1o)

C —
- J dzrodzrlgk(E)Ko(\e'ﬁh1|)K0(V'2Ec|r0|).

(110

Exploiting Eq.(107) to integrate out the variableg andr 4,
we get

DY(E) = 7—;)\(E)E‘2. (111)
We remark that the above contribution B{E) vanishes in
the limit vg=0. This could be expected due to the fact that
DW(E) collects all contributions coming from the repulsive
interactions. These interactions break explicitly the transla
tional invariance of the free part of the action and, as a con
sequenceD™(E) is no longer proportional to the surfae
as DIO(E). Unfortunately, it is not easy to compute the in-
verse Laplace transform &Y (E) without making some ap-
proximation. To this purpose, we assume that the repulsiv
interactions are weak, i.evg<<1, and that the value df is
large. In this case, since we are in the domain of siaallit
is possible to expanB™(E) up to the second order i, as
follows:

2 .
DW(E) ~ Z[EE 2y (Evo) E -2 Iog(\'ZEca)].
C| T o
(112

In order to obtain the above equation we have used both Eq
(63) and (97). The inverse Laplace transform of E{.12
gives

1 C 5
L+ —ugl loglL,
2m

(113

c — C
DI(L) ~ {vo— —v§<log(\2ca) +
T

whereC~0.577 215 664 is the Euler constant.
Setting Eqs(108) and (111) together, we obtain

K(O)(E):ﬁfdzxAZ(x)fdzrlKO(\rEcrl—xD

X f erOKO(v’TE:|rO—x|). (115

After performing easy integrations over the coordinates
ro, 1, ONe obtains

KO(E) = iE‘Z J d>xA?(x). (116)

The remaining integral with respect to tixecoordinate is
both ultraviolet and infrared divergent and needs to be regu-
lated. We have already seen that the singularities in the ul-
traviolet domain may consistently be eliminated with the in-
troduction of the small distance cutodf A large distance
cutoff is instead motivated by the fact that the size of a real
system is necessarily finite. Implicitly, we have already used
this kind of infrared regularization in Eq106), where we
have assumed that the total surfé&&®f the system in the
directions which are transverse to thaxis is finite. Suppos-
ing that the shape @is approximately a disk of radiug, so

that S~ 7R?, we may write

1

I
TJa P

J d?xA2(x) = >

(117

Substituting Eq(117) in Eqg.(116), one obtains the following

gxpression oK O(E):

1 S
KOE)=—E2lo (—) 118
(B) Bore 9\ 2, (118
The inverse Laplace transform Bf?(E) gives
L S
KO(L)=—1lo (—) 119
(L) 8¢9 22 (119

s, We must now compute the quantitielé(f)(E), with
w=1,..., 4. The expressions of thé?)(E)’s may be obtained
from Eqgs.(45)—(48) and(81), by substituting everywhere the
propagatorG(E; x,y) with its free versionGy(E;x,y). It is
easy to show that

19%)=0 forw=1,...,4. (120

This vanishing, which is actually a double vanishing, is due
to the fact that each of thléf)(E)'s contains an integral of a

total divergence together with an integral which is zero for
symmetry reasons. For some valueswgflike for instance
when w=3, to isolate such integrals it is necessary to per-
form some integrations by parts. This is allowed because the

D(E) =DO(E) + DV(E) = SE™1 + %T)\(E)E 2 (114

This is an exact result. An approximated expressiob (f)
can be derived instead from Eq4.09 and(113). Iff)(E)’s are not affected by divergences, contrarilyk(E).

Now we turn to the derivation di(E). We start by com- As an example, we work out explicitly the case of
puting order by order in(E) the contributions to the quan- I<1°)(E). The first vanishing integral is the following:
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: c : —
fd2r0Vi,Go(E;r0,y)=;fdzr()Vi,Ko(\’ZEdro_yD.
(121)

This is of course zero due to symmetry reasons. The seco
vanishing integral irl(lo)(E) is of the form

I:fdzxfdzrlAi(x)Go(E;rl,x)VixGO(E;y,x). (122

After performing the integration over; with the help of a
shift of variables and of Eq(107), we have, apart from a
proportionality factor,

| oc f XA (X) V3 Go(E3Y,X). (123
Since A(x) is a divergenceless vector potential, i.e.,
VI Ai(x)=0, 1 can be rewritten as the integral of a total di-
vergence,

=< f dXVI[AXK((V2Edy - x]. (129
o

Clearly, the left-hand side of the above equation is zero. Thi%
fact can be also checked passing to the Fourier represent

tion. Exploiting Eq.(65) and the formula

) 1 T
i - 2 ij Ml Aipx
A'(x) 2 fd pe pzel (125
in Eq. (123), one obtains
1 €'pp,
l=- 2 ey 126
(2w>2J P (p?+ 2E0p? (126

Thusl =0 because' pipe-):o. In an analogous way one shows
that alsol?, 1, and1}” are identically equal to zero.

We are now ready to compute the contributionS\{(@&),
which are linear in\(E). First of all, we treat the term

K®(E), which is given by

1
K(l)(E)=z:fd2xJerOszrlAZ(x)

X[G1(E;r1,X)Go(E; X,rp)

+ Go(E;r1,X)G1(E; x,ro)]. (127

The integrations over, and r; may be easily performed
using Eq.(107) and give as a result a factor which is propor-
tional to E™2. After that, only the following integral inx
remains to be done

— 1 [
f d>XA%(x)Ko(V2ECX|) = J dZXWKO(\'ZEc|x|).
[x|=a

1
(2m)?
(128

PHYSICAL REVIEW E1, 061802(2009

1 1 — 1 (™ Ko(V2E
—Zf d2x—5Ko(V2ECX|) = —f dpM.
(2m) x|=a |X| 2m ), p

(129

r@etting everything together, one arrives at the final result,

Ko(V2Ecp)

1 +oc
KD(E) = —E "A\(E) f dp (130)
2mC a

If the quantity V2Eca is small, it is possible to derive the
following asymptotic expression i¢V(E):

1 —
KD(E) ~ ——E \(E)log?(\2Eca). (131)
47C
To go from Eg. (130 to Eqg. (131), we have used the
asymptotic formula

f” JKol\2Ecp) _ 1
a

Slog*(V2Eca)
which is valid for small values of2Eca We see from Egs.
130 and (132 that the presence of ultraviolet divergences,
ogether with the needed regularization, has modified the na-
e form of KY(E) as a function of the pseudoenergy
given in Eq.(90). The modification consists in the appear-
ance of the factorf;”(dp/p)Ko(\2Ecp), which exhibits a
square logarithmic singularity in the limi2Eca=0.

The inverse Laplace transformed KfY(E) can be de-
rived only making some approximation. As in the case of
DM(E), we will work in the double limit, in whichy, is very
small andL is very large. After a few calculations we obtain

(1

d (132

Uo

KO~

L
Zf ddlog(L —s) + C](logs+C)

0

1 1
tgk log(2ca®) + 5Iog(2ca2)

X[(C-1)L-Llog L]) . (133

At this point we must compute the expressions of the
|S')(E)’S, w=1, ..., 4. Itis possible to show that these contri-
butions vanish identically, i.e.,

IDE)=0 forw=1,..,4. (134

The motivations of this vanishing are similar to the motiva-
tions for which there are no contributions at the zeroth order.
All terms which appear in the quantitidgl)(E) contain at
least one integral of a total divergence or one integral, which
is zero for dimensional reasons. As in the case of the
If)(E)’s, there are some values offor which it is necessary

Here the ultraviolet divergence, which is present on the left!0 perform an integration by parts in order to isolate these
hand side, has been regulated in the usual way with the inzanishing integrals. Once again, this is allowed because the

troduction of the short distances cutdadf Infrared diver-

l)(E)'s do not contain divergences.

I
w

gences are absent. Going to polar coordinates, the right-hand At the next order il\(E), we have the last contribution to

side of the above equation becomes

K(E),
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1 N — 1 X dKo(vV2Edx])

K@(E =—fd2xfd2r ViKo(V2Edx]) = ———> . (139
(E) 2 1 Koy ) V"2EC|X|2 x| (139
Substituting Eq.(139 in Eqg. (138 and using the explicit

expression of the vector potenti&j(x) of Eq. (7), we get

(139 B0 = 1 exx dKo(V2Ecx))

After performing the integrations in; andrg with the help 2y 2Ec Ix|* d[x|
of Eq. (107), Eqg. (135 becomes

XJerOAZ(x)Gl(E;rl,x)Gl(E;x,rO).

(140

Clearly, the right-hand side of the above equation is zero

o - becauseejxx'=0. If w=3, instead, the vanishing function
K(2>(E):E)\Z(E)E‘zfd2xA2(x)[Ko(V’2Ec|x|)]2. B(x) of Eq. (138 may be isolated in the expression of
éz)(E):O only after an integration by parts.
(136) Finally, at the third order in(E) we have only the quan-
3
The integral inx is divergent and needs a regularization. tities I¥(E)'s, sinceK(E) has at most quadratic powers of
Going to polar coordinates, we obtain the result \(E). It is easy to realize that
+00 d J— _
K@(E) = TAHBE f LIKo(\2Ecp)P. (137) 21'5?)<E> =0, (14
a P w=

Also in this case, we note that the presence of the regulaécause the following relations hald6]:
ization modifies the dependencek?(E) on the pseudoen- 13E) =-19(E) =1P(E) =-12(E). (142

ergy E with respect to the naive formula of E(QO) The L
tion con5|sts in the factd?(dp/ p)[Ko PEc )2 In As a consequence of E¢l41), it is clear that there are no
correc Pl PILROINEEEP contributions toN(E) at this order.

the limit V2Eca=0, this factor diverges as powers of Using Eqs.(118), (130, and(137), we arrive at the final

log(\/ 2Eca) result forN(E
To conclude the analysis of the contributionN¢E) at the ®.

i @) identi- 1 S 1 d —
second order in\(E), we show that the '(E)’s are identi N(E) = —E 2|09<a >+ S AE)E" f —pKO(v’ZECp)
p

cally equal to zero. As a matter of fact; it is easy to verify 47C a
that forw=1, 2, 4 eacH f)(E) contains terms of the follow- 5 + g
ing kind: + N(BE f LIko(\2EcH) 2. (143
) JR— a P
B(x) = Ai(x)V,Ko(V2ECX|). (138

We can now insert in the formula of the second moment
These terms vanish identically because of the followingof Eq. (77) the functionsD(E) andN(E) given in Egs.(114)

identity: and (143, respectively. The outcome is
|
+00 d
1 (s fKO( 2Ee) =
E? _|09(T) +NE)— 22T f ’J[Koqucp)]
4mC am mC a
(M?)(E) = : (144

S+ %)\(E)E’l

In the L space, the already mentioned difficulties with the

L S
— +KO(L
og( 3271') L

computation of the inverse Laplace transform«fE) and , _ 8mC

N(E) allow an analytical result only in the double limit of (m%) = Stol : (149
weak coupling constant, and of large values of. At the  \yhereK¥(L) has been given inOEc(133).

first order invo, the expression ofim?) reads as follows: So far, we have considered the averaged second moment

of Eq. (26), corresponding to the case in which the polymer
ends are not fixed. In the energy representation, we have seen
that this version of the second moment can be exactly com-
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puted. To conclude this section, we would like to show that itlf we knew how to compute the propagaiB(L ;x,y) start-

is possible to provide also an exact expression of the secoriflg from its Laplace transforme¢64), we could evaluate
moment(mz>rrro in theL space and with fixed polymer ends explicitly the expression of the second moment in the
up to an inverse Laplace transform of the propagator given ispace. Unfortunately, it is too complicated to perform the
Eqg. (64). The starting point is the exact formula of the sec-inverse Laplace transform of the propagaBi{E;x,y). Due
ond moment<m2>r1,r0(E) of Eq. (49). All the ingredients of to this technical difficulty, Eq(151) is only formal. Progress
this formula are defined in Eq$26), (38), (39), and(41)—  can be made however in the limig=0, in which the propa-

(48). Looking at Eq.(49), it is clear that gator is given by the Green functidby(E; x,y) of Eq. (62).
4 This will be done in the next section.
N(E;ry,ro) = 2K(ry,rg) = 2 1,(rurg) (146
w=1

VIl. THE CASE OF IDEAL POLYMERS
and . . :
In order to allow the comparison with previous results,
D(E;ry,ro) =G(E;ry,ro). (147 this section is dedicated to the case of ideal chains in which
vo=0. First of all, we discuss the formula of the averaged

Let us note that the functionis,(r,rg) are all equal up to : X . .
integrations by parts, which can shift the differential opera-Second moment derived in the previous section,(E45). In

tors V, andV, in Egs.(44)—(48). This fact will be used in the limit v,=0, Eq.(145 becomes

order to simplify the expression of the inverse Laplace trans- L IS
formed ofN(E;r4,r) in theL space. To compute the inverse (MP)g = ?Csbg 2. (152
Laplace transforms of botN(E;rq,rp) andD(E;r4,rp), we

use the following property of the inverse Laplace transformThe presence of a geometrical factor like the surfaoéthe

of the product of two function$(E) andg(E): system in the expression @), has been already related to
L the translational symmetry of Eq&/5) and (76). Assuming
LYUf(E)g(E)] :f dsf(L - 9)g(s). (149  that this surface has approximately the shape of a disc of
0 radiusR, we can seB=7R? as in Eq.(117). Equation(152)

predicts that the average degree of entanglement scales as

Applying Eq. (148 to evaluate the inverse Laplace trans-¢;iiows with respect to the distande

forms of K(E) and of thel ,(r,ro) in Egs.(146) and (147),
we obtain after some calculations, logR

R? -

(mP)g (153

. — 2 2 2 : . .
N(Lirs,ro) = c f ™A (X)L dsAL =siryX)G(SX.o) The meaning of Eq(153) is the following. We remember
L that the averaged second momént), describes the en-
_2 J dzxf dzyf G(L-s:X,T) tanglement of two closed polymers whose ends on the sur-

c? 0 S faces at=0 andt=L are not fixed. In this way, the polymers
s are allowed to move freely and it is natural to suppose that,
Xf ds'dd G(s the bigger will be the volumeL in which the polymers

0 x“y fluctuate, the bigger will be also the average distance be-

tween them. Thus, if the surfac® increases its area, the

=8y X)G(S" 10, Y)AA(Y), (149 probability of entanglement must decrease. The exact law of
this decreasing is given by E¢L53).
D(L;ra,ro) = G(L;ry,ro). (150 On the other side, one would expect that the probability of

The second term on the right-hand side of Etg9 is the  9etting entangled is higher for long polymers than for short
contribution given by the functions,(ry,ro), w=1,...,4, polymer_s. Equation(152 gives a result which is in agree-
while the first term comes fror(r,r,). Remembering the MeNt with the above expectation, because the second mo-
definition (21) of the second moment in terms NfL:r,ro) ment(m?), scales as follows with respect to the parameters

andD(L:ry,ro), we get andc, which determine the polymer length,
2 - ), o = 154
(M), = [GILir 1T J dBAZ(X) f dslL (Moo c: (154
0
5 In particular, one can show that the total length of a polymer
- S;1,X)G(S;X,I o) — f dZXf d?y increases proportionally tb and it is inversely proportional
Cc to the square root of [36]. Accordingly, we see from Eq.
L s o (154 that (n?), increases proportionally tb and inversely
XJ dsGL - s;x,rl)J ds' dhdlG(s=s';y,x) proportional toc.
0 0 At this point we wish to study the second moment
(mz>0,rl,,0 of polymers with fixed endpoints. The subscript 0
XG(s'; 1o, Y)AAY) |- (151)  has been added to the symbol of the second moment to re-
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member that we are working in the limit=0. Since we are We notice that, as it could be expected, EtpD coincides
dealing with ideal polymers, we must substitute everywheravith the expression obtained in R¢8] for the second mo-
in Eq. (151 the full propagatoG(L;x,y) with the free one. ment of one polymer winding up around an infinitely long

The result of this operation is straight wire lying along the axis. Luckily, the propagator
L Go(L;rq,rg) can be explicitly constructed upon computing
2 ; o
(Mo, =[Go(Liruro]™Y = f dzxAZ(x)J dsGy(L the inverse Laplace transform of the propag&@g(E;rq;ro)
f1fo s c 0 of Eq. (62),

=5;11,X)Go(S; X, o)

2 L c
—2 f d?x f d?y f dsGy(L GO(L;x,y):ﬁeWZL)lx-ylz. (156)
0

s o It is easy to check that the second term on the right-hand
- S;erl)J ds’ &, Go(s side of Eq.(155), which is associated with the contributions
0 coming from thel ,(rq,rq)’s, does not grow with increasing
values ofL. As a matter of fact, after a rescaling of variables,
-s ;an)GO(S,;rO!y)Ai(X)Aj(y)i|- (159  the numerator of this term gives

L S
éfdzxfdzyf dsGD(L—s;x,rl)f ds' &3 Go(s= "1y, X)Go(S' ;1 0, Y)AX)A ()
0 0

1 t
-_C f RENG f &y’ f dtie—[cfzu—m\x'—<r1/L)|2 f dt'i ie—[c/za—t')]\x'—y'\? xle—[clza')]\y'—(ro/ulz_
AL o 1-t o t=t'\dgd, t/

(157

In the limit L — <, the quantity on the right-hand side of the ing the cutoffa. After a rescaling of all variables similar to
above equation scales At ™1, whereA is a constant. More- that of Eq.(157), we get
over, the propagatof156), which is in the denominator,
scales a4 ™%, Thus, the ratio between the right-hand side of
Eqg. (157) and the propagatof156) does not depend oh. (Mo, ~ E[GO(L;rl,ro)]_l
This completes the proof of our statement. roo¢

As a consequence of this statement, as far as the scaling 1 2
of <mz>0,,rro for large values of is concerned, it is possible Xf L(i)
to make the following approximation: o S'(1=s)\2m

¢x 1

o o2
W|=@oD L X

w e 1/21-)]x’ - rl\fﬁ\ze—(uzs/)\x’ - ro\s“ﬁlzl

2 L
<m2>0,r1,r0~ E[Go(Lirl,ro)]_lf dZXAZ(X)JO dsGy(L 159

=Sir1,X)Go(S; X, o). (158
_ ~ Togo further, following Ref[8], we assume that the relevant
Unfortunately, despite of the fact that we are treating ideakontribution to the integral ird®’ comes from a narrow

polymers, the integral id’x appearing in the above equation region around the singularity i’ =0. Thus, we may set
is still complicated and requires some approximation to be

evaluated analytically. We will apply to this purpose the
strategy used in Ref8] to compute the second moment of J ﬁe_[llz(l_sr)]‘xr ~ L1721 = 1\ EL2
three-dimensional polymers, adapting it to our two- |

dimensional case. First of all, let us note that the integral in

(158 is ultraviolet divergent. However, the infrared diver- _ 2W|09< \/E a) 1112018 ]|r 1 T P [1/2(1-8' ) B2
gences which appeared in the energy representation are ab- c

sent. This is due to the behavior of the propagator
Go(L;x,y), which is much milder at infinity than the behav-
ior of the Green functiorGy(E;x,y). To regulate the singu-
larities at small distances, we proceed as usual by introdudfter making the above crude approximation, we obtain

o !
x'|=(avc/\L) X

(160
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2 c : -1 \/I m2 \/I rirgc® 2
(MYorprg ™ E[Go(Lyrl.l’o)] log Ea (MYor,r,~~2l0g Ea log TEN 2(log L)*.
1 16
XJ dS/( 1 e [1/2(1-8)r {(e/L) g=(1/25 )rj(ciL) (167
0 1-¢ This is exactly the behavior of the second moment derived in
1 Ref.[8].
+ ge—[1/2(1—s')]rf(c/L)e—(l/ZS’)rg(c/L)). (161)
. . . VIIl. CONCLUSIONS
In deriving the above equation we have used the simple re-
lation In this paper we have studied the entanglement of two
directed polymers from a nonperturbative point of view. Our
1 _ 1 + 1 formulas of the second moment, a quantity which measures
s'(l-s') (1-¢) s the degree of entanglement of the two polymers, take into
i account the repulsive forces acting on the segments of the
Let us now study the integral polymers and are exact. The averaged second moment de-
5 1dg , , fined in Eq.(18), a version of the second moment corre-
I :J —,e-[1/2(1-5’)]f1(°/L>e-<1/25'>fo(°/L>, (1620  sponding to the situation in which the end points of the poly-
o S mers are free to move, has been computed in(E44) as a

function of the chemical potentid conjugated to the dis-
tanceL between the endpoints in thelirection. The case of
free ends is relevant in the treatment of nematic polymers
and polymers in a nematic solve®l]. Let us note that also
the expression of the second moment without any averaging
and in theL space can be computed. This has been done in
Eqg. (151). However, this equation is explicit only up to the

The other integral imls’ appearing i(161) can be treated in
the same way after the change of variables’=t. It is not

to allowed to take on the right-hand side of EG62) the
limit L—<0 because in this way the integral will not be con-
vergent due to the singularity isf =0. For this reason, we
split the domain of integration as follows:

_ U g L L inverse Laplace transform of the propagaté4), which is
I :f —-g [HALSIry(ell) g-(1/25)rp(elL) too hard to be obtained in closed form.
oS Equation(144) shows that the averaged second moment is

14y L L of the form (m?)(E)=E"*f(E). The overall factorE™* coin-
+ f — g VLSOl (W2srgell) - (163)  cides with the scaling power law of two ideal polymers. The
u S correctionf(E) to this fundamental behavior due to the re-
where 0<u< 1. Clearly, the second integral converges afterPUlSive interactions is a complicated function i6f whose
performing the limitL — o in the integrand and gives analysis would require numerical methods. Nevertheless, it is
possible to identify a dominance of the repulsive interactions
1dg 1 in the domain of parameters in which the conditig2Eca
o log. (164 —0 is satisfied. This corresponds roughly speaking to the
! situation in which polymers are very long. In this region, the

The first integral instead diverges logarithmically with grow- Scaling laws with respect to the energyof the numerator
ing values ofL. However, now it is possible to expand the @hd denominator appearing on the right-hand side of Eg.
exponentiale‘[l’z(l‘S')]ri(c’” in powers of its argument, be- (144 are corrected by factors which are logarithmic powers

cause the singularity is’ =1 lies outside the intervdD,u]. of log(v2Eca), see for instance, E132).

Keeping only the leading order term with respectLtowe One_ a_dvantage of our approach is that it is easy to Sepa-
get rate within the expression of the second moment the contri-

butions of purely entropic origin which are typical of free
- rgc polymers from the contributions coming from the presence
I ~= Ei(‘ —) —logu (165  of the s-function potential in the polymer action. This is
essentially due to the splittingd95) of the propagator
where E{2) is the exponential-integral function. Whenis ~ G(E;u,v) appearing in the amplituded4)-(48). The com-
large, this function may be approximated as followstzEi ~Ponent Go(E;U,V)_ of the propagator _commdes with the
~log(-2) and, as a consequence, propagator of ideal polymers, while the component
G4(E;u,v) takes into account the effects of the interactions.
~ réc Thanks to the splitting95), it has been possible to study the
| ~—log oL ) (166 way in which the repulsive forces affect the average degree
of entanglement of the two polymers. This has been done in
The second integral which we have left in E461) gives  Sec. V. Our results are in agreement with the intuition. The
the same result. Setting everything together in the expressigorecise law with which the effects of the repulsive forces on
of the second moment of E@161), we obtain the final re- the entanglement decrease when the distance between the
sult, trajectories increases is given by H§5). Sec. V also dis-
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cusses the strong coupling limit, which should be taken tdhat the application of Chern-Simons field theory to directed
recover the limit of excluded volume interactions. In our polymers should be considered with some care.
exact approach, it is not difficult to consider the case in We have also not made any attempt to introduce in the
which the coupling constani, is large. For instance, the treatment of polymer entanglement more sophisticated con-
componentG,(E;u,v) of the propagator, which is respon- straints than those which can be imposed with the help of the
sible of the effects due to the repulsive interactions, has beewinding angle. This is in effect still an unsolved problem,
given in the strong coupling limit in Eq99). Studying the despite the fact that two powerful strategies have been pro-
form of this component assuming that polymers are veryposed for its solutiof38—4(Q. In the first approach, pio-
long, it has been argued that, at strong coupling, the majoneered independently by Kleinert, Kholodenko, and Vilgis
contributions to the winding angle coming from the repulsive[11,38,39, the constraints are expressed via the Wilson loop
interactions occur when the trajectories are very near to eachmplitudes of non-Abelian Chern-Simons field theories.
other. Many other qualitative and guantitative characteristic&ome progresses toward a concrete realization of this pro-
of the behavior of the two polymer system under considergram in polymer physics have been made in Ref§,42. In
ation have been presented in Sec. V. the second approach, developed by Nechaev and co-workers,
The case of ideal polymers, in whiel3=0, has been dis- see Ref[40] and references therein, polymer trajectories are
cussed at the end of Sec. VII in order to make comparisomapped on a complex plane with punctures. The link invari-
with previous works. The scaling of the averaged secondnts necessary to impose the constraints are then constructed
moment for large values df obtained in Eq.(154) is in  using the properties of conformal maps.
agreement with the results of R¢f], if one takes into ac- Another possible development is the treatment of attrac-
count the fact that, after the averaging procedure of(E§). tive interactions, in which the strengihy in Eq. (2) takes
and the infrared regularization of Eq406) and(117), one is  negative values. In this case, tAdunction potential admits
effectively treating a system of polymers confined in a cyl-a bound statg32] and the propagator of E¢64) develops a
inder of finite volumeSL In Sec. VII we have evaluated the singularity, in which\(E) =, at the energy corresponding to
second moment, always of two ideal polymers, using thehis bound state. It would be extremely interesting to inves-
approach of Ref.[8]. The outcome of this calculation, tigate how these facts affect the polymers’ entanglement. An-
namely the scaling behavior (Ifn2>o,r1,r0 at the leading order other issue which deserves attention is that of hairpin turns.
in L, is reported in Eq(167). This result is in agreement with Hairpins are important in nematic solveri&l] and can be
the square logarithmic behavior obtained in R&1, but not  included with the help of field theoriggl3]. We note also
with the logarithmic behavior predicted in RET]. However, that in our formalism it is also possible to study the entangle-
this discrepancy can be expected due to the fact that, in Se@ent of polymers in confined geometries. For example, val-
VII, we have assumed, following Ref8], that the most rel-  ues of E which are near t@ {E<a™) correspond roughly
evant contribution to the second moment coming from thespeaking to the situation in which polymers fluctuate in a
integral in Eq.(159 is concentrated in a narrow region near quasi-two-dimensional environment, in which the height in
the singularity inx’ =0. This clashes with the assumptions of the t direction is of the order of a few molecular sizes.
Ref.[7], in which instead it is argued that the main increase Finally, an open problem, which has not been discussed
in the winding angle does not occur when the polymer tra-here because we were mainly interested in the second mo-
jectories are near, but rather when they are far one from thement, is the derivation of the full partition function
other. Finally, there is also an apparent discrepancy betweef, (E;r,ro) of Eq.(19). As anticipated in the Introduction, it
the linear scaling with respect 1o of the averaged second is not an easy task to computg(E;r,,ro) because the re-
moment(m?), and the square logarithmic scaling of the sec-pulsive potential of Eq(2) is not central. We note however
ond moment{n?}oyrl,ro. This disagreement is explained by that the expression @, (E;rq,rq) coincides with the Green
the fact that, in the first case, the ends of the polymers artunction of a spin-1/2 Aharonov-Bohm problem in the
free to fluctuate, while in the second case they are fixed. It ignaginary time formulation of quantum mechanics. This
therefore licit to expect that two polymers with free ends areGreen function has been already derived in R28] using
more likely to entangle than two polymers whose ends arsophisticated techniques developed in R€2,32, which
constrained. bypass all the difficulties of dealing with a noncentral poten-
Concluding, we would like to discuss possible further de-tial. Thus, in principle, the expression of the partition func-
velopments of this work, together with some problems whichtion G,(E;r,rq) is known. Unfortunately, some of the con-
are still left open. First of all, the number of entangling poly- sistency conditions imposed on the parameters in R&f
mers has been limited to two. To go beyond this restrictionseem to be incompatible with the requirements of our physi-
one should explore the possibility of replacing the externakal problem, as noted in Sec. Ill. For these reasons, the com-
vector potentialA;(x) of Eq. (7) with Chern-Simons fields. putation of the full partition functiorg, (E;rq,ro) is still a
Abelian Chern-Simons field theories have been already sug@roblem which needs further investigations. Luckily, the
cessfully applied in order to impose topological constraintsknowledge of the partition function is not necessary if one is
to the trajectories of an arbitrary number of closed polymeiinterested to study the excluded volume interactions, which
rings in Ref[37]. We hope to extend those results also to thearise in the strong coupling limit. In fact, in this case it is
case of directed polymers in a forthcoming paper. Of coursepossible to apply a powerful method due to Kleirl&3-35.
if the polymer trajectories are open, the constraints amonghis method turns the weak coupling expansion into a strong
them are no longer of topological nature as in R8f], so  coupling expansion which is convergent for large values of
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vo and is able to accommodate also the anomalous dimerion function of the Aharonov-Bohm problem without the
sions of quantum field theories. The convergence of thisnsertion of thes-function potential[19] and treating this
strong coupling expansion is mostly very fast, so that only gotential as a small perturbation assuming that the value of
few coefficients of the weak coupling expansion must bevy is small. The application of Kleinert's method in order to
known, see Refd.19,35 for more details. These coefficients complete the brief analysis of the strong coupling limit made

can be easily computed starting from the well-known parti-in this paper is work in progress.
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