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In this paper we study from a nonperturbative point of view the entanglement of two directed polymers
subjected to repulsive interactions given by a Diracd-function potential. An exact formula of the so-called
second moment of the winding angle is derived. This result is used to provide a thorough analysis of entangle-
ment phenomena in the classical system of two polymers subjected to repulsive interactions and related
problems. No approximation is made in treating the constraint on the winding angle and the repulsive forces.
In particular, we investigate how repulsive forces influence the entanglement degree of the two-polymer
system. In the limit of ideal polymers, in which the interactions are switched off, we show that our results are
in agreement with those of previous works.
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I. INTRODUCTION

The statistical mechanics of two polymers with con-
straints on their winding angle has been extensively studied
in order to understand the behavior of physical polymer sys-
tems, like for instance biological macromolecules of DNA
f1g or liquid crystals composed of stacks of disk-shaped mol-
eculesf2g, see Refs.f3–18g. A detailed review on the subject,
together with interesting proposals of how to include in the
treatment of topologically entangled polymer link invariants
which are more sophisticated than the winding number, can
be found in Ref.f19g. Up to now, however, despite many
efforts, mainly ideal polymer chains or loops winding around
each others have been considered, while the repulsive inter-
actions between the monomers have been treated approxima-
tively or exploiting in a clever way scaling arguments inte-
grated by numerical simulations, as for instance in Ref.f7g.

Here we concentrate ourselves on the case of two directed
polymers interacting via a repulsive Diracd-function poten-
tial f20,21g. We are particularly interested in the average de-
gree of entanglement of the system, which we wish to esti-
mate by computing the square average winding angle of the
two polymers. This quantity is also called second moment of
the winding angle or simply second moment and is a special
example of the topological moments first introduced in Ref.
f22g. To achieve our goals, we develop an approach, which
combines quantum mechanical and field theoretical tech-
niques. With respect to previous works, we are able to obtain
exact results even if the repulsive interactions are not
switched off.

In principle, the average of any observable like the
squared winding angle can be derived once the partition
function of the system is known, but in our case it turns out
that the partition function is simply too complicated to obtain
any analytical result. This happens essentially because the

full d-function potential is not a central potential, since it
mixes both radial and angular variables. For this reason, the
usual procedure of going to polar coordinates and then solv-
ing the differential equation satisfied by the partition function
of the entangled polymers with the method of separation of
variablesf19g, does no longer produce simple formulas as in
the situations in which only central forces are present.

To avoid these difficulties, one possibility is to approxi-
mate thed-function potential with some radial potential, like
for instance the hard core potential of Ref.f7g. However,
here we shall adopt a different strategy, based on field theo-
ries, which does not require any approximation. This strategy
has been developed in Refs.f8,12g ssee also Ref.f19g for
more detailsd to cope with ideal closed polymers whose tra-
jectories are concatenated. Also such systems are character-
ized by a noncentral potential, which comes out as a conse-
quence of the topological constraints imposed on the
trajectories. In the field theoretical formulation of Refs.
f8,12,19g the computation of the second moment is reduced
to the problem of computing some correlation functions of a
field theory. A bonus is provided by the fact that this com-
putation requires just a finite number of Feynman diagrams
to be evaluated. In the present case, due to the presence of
the d-function potential, the field theory which we obtain is
no longer free as that of Refs.f8,12,19g. Nevertheless, we
will see that the theory is still linear and thus it can be ex-
actly solved once its propagator is known. Luckily, this
propagator may be computed exactly using powerful nonper-
turbative techniques developed in the context of quantum
mechanics to deal with Hamiltonian containingd-function
potentials, see Refs.f23–32g. Basically, starting from the
Green function of a particle whose dynamics is governed by
a given HamiltonianH0, these techniques provide an algo-
rithm to construct the Green function of a particle corre-
sponding to aperturbedHamiltonianH=H0+Vd, whereVd

is thed-function potential. One advantage of these methods
is that there is a long list of potentials for which the Green
functions of the unperturbed HamiltoniansH0 are known. In
this way, it is easy to generalize our treatment including in-
teractions, which could be relevant in polymer physics, like
for instance the Coulomb interaction. The price to be paid is
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that the quantum-mechanical algorithm works when the
Green functions are expressed as functions of the energy
instead of the time. In the polymer analogy, assuming that
the ends of the polymers are attached to two planar surfaces
perpendicular to thez axis and located at the positionsz=0
andz=L, the role of time is played by the distanceL, while
the energy corresponds to the chemical potential conjugated
L. To recover the original dependence onL, one needs to
calculate an inverse Laplace transform of the field propagator
with respect to the energy. In general, this is not a simple
task.

Once the propagator of the linear field theory is known,
the correlation functions which enter in the expression of the
second moment may be calculated contracting the fields in
all possible ways using the Wick prescription. At the end, we
get in this way an exact formula of the second moment as a
function of theenergy, which, we remember, has here the
meaning of the chemical potential conjugated to the distance
L. In the L space, due to the problems of computing the
inverse Laplace transform of the propagator mentioned
above, only an approximated expression of the second mo-
ment will be given in the limit of large values ofL and
assuming that the strength of thed-function potential is weak
enough to allow a perturbative approach.

Our results allow both a qualitative and quantitative un-
derstanding of the way in which the repulsive interactions
affect the entanglement of two directed polymers. The cor-
rections introduced by these interactions in the expression of
the second moment of ideal polymers have been studied in
some interesting limits. First of all, it has been examined the
limit of long polymer trajectories, in which we show that
repulsive interaction become particularly relevant. Moreover,
we have investigated also the perturbative regime and the
strong coupling limit, which is important to recover the ex-
cluded volume interactions. While it is not a problem to take
the strong coupling limit within our exact treatment of the
repulsive interactions, it turns out that, in this case, the ex-
pression of the second moment is particularly complicated
from the analytical point of view. For this reason, in the
Conclusions we will discuss the application of a powerful
perturbative method to study field theories at strong coupling
due to Kleinertf33–35g. Finally, the consistency of our re-
sults with the previous ones has been checked by studying
the limit of ideal polymers.

The material presented in this paper is divided as follows.
In the next section, the problem of computing the second
moment of the winding angle of two directed polymers in-
teracting via ad-function potential is briefly illustrated using
the path integral approach. A constraint on the winding angle
is imposed by coupling the trajectories of the polymers with
a suitable external magnetic field, following the strategy of
previous works like for instancef8,14,15,19g. In Sec. III the
second moment is expressed in the form of a finite sum of
amplitudes of a linear field theory. These amplitudes may be
computed once the propagator of the theory is constructed.
In our case, the propagator coincides with the Green function
of a particle diffusing in ad-function potential. The deriva-
tion of this Green function in the energy representation using
nonperturbative techniques developed in the context of quan-
tum mechanicsf23–32g is the subject of Sec. IV. The

d-function potential is responsible of the appearance of sin-
gularities in the propagator at short distances, which have
been regulated here with the introduction of a cutoff. This
procedure is motivated by the fact that in polymer physics
there is no point in considering distances which are smaller
than the dimensions of a monomer. A comparison with the
more rigorous method of renormalization is made, showing
the consistency of the two procedures. The propagator de-
rived in Sec. IV has a particularly nice form, in which the
contributions coming from the repulsive forces can be sepa-
rated from the free part of the propagator, which is related to
the random walk of ideal polymers. This splitting of the
propagator is used in Sec. V to discuss qualitatively and
quantitatively the effects of thed-function interactions on the
entanglement of the system. The results of Secs. III and IV
provide in principle all the ingredients of the second mo-
ment. However, the amplitudes of the linear field theory de-
rived in Sec. III should still be evaluated. In this task one
encounters the typical problems occurring in the evaluation
of the analytical expressions of Feynman diagrams. In the
case of the second moment there are just tree diagrams, but
still one has to perform complicated integrations over the
spatial coordinates which are transverse to thez axis. Even
assuming that polymers are ideal, the analytical evaluation of
these integrations requires drastic approximations, see for in-
stance Ref.f8g. To avoid these difficulties, we average the
second moment with respect to the positions of the endpoints
of the two polymers. This averaged version of the second
moment can be computed without any approximation in the
energy representation. This is done in Sec. VI. The expres-
sion of the averaged second moment in theL space is pro-
vided instead only at the first perturbative order in the
strength of the repulsive potential and assuming additionally
that the value ofL is large. We give also an exact formula of
the second moment without performing any averaging pro-
cedure as a function ofL. This formula is however explicit
only up to the calculation of the inverse Laplace transform of
the propagator derived in Sec. IV. In Sec. VII we consider
the situation in which the polymers are not interacting in
order to allow the comparison with previous results. Finally,
the discussion of the obtained results and ideas for further
developments are presented in the Conclusions.

II. THE STATISTICAL MECHANICS OF TWO DIRECTED
POLYMERS WITH CONSTRAINED WINDING

ANGLE

Our starting point is the action of two directed polymersA
andB,

A0 =E
0

L

dzFcSdr A

dz
D2

+ cSdr B

dz
D2

− Vsr A − r BdG , s1d

whereVsr A−r Bd is the potential,

Vsr A − r Bd = − v0dsr A − r Bd, v0 . 0. s2d

The sign ofv0 has been chosen in such a way that the inter-
action associated to the potentialVsr d is repulsive. The pa-
rametersc andL determine the average length of the trajec-
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tories of the polymers. The ends of the polymers are
supposed to be fixed on two surfaces perpendicular to thez
axis and located at the heightsz=0 andz=L. Both polymers
have a preferred direction along thez direction. The vectors
r Aszd and r Bszd , 0øzøL, measure the polymer displace-
ment along the remaining two directions of the space.

The action of Eq.s1d resembles that of two quantum par-
ticles in the case of imaginary timez. To stress these analo-
gies with quantum mechanics, thez variable will be treated
as a pseudotime and renamed using from now on the lettert
instead ofz.

In the system of the center of mass,

r = r A − r B, R =
r A + r B

2
, s3d

the actions1d becomes

A0 =E
0

L

dtF c

2
Sdr

dt
D2

+ 2cSdR

dt
D2

− Vsr dG . s4d

The motion of the center of mass, which is a free motion
described by the coordinateRstd, will be ignored.

We consider the partition function of the above two-
polymer system with the addition of a constraint on the en-
tanglement of the trajectories,

Zm =E Dre−e0
Ldtfsc/2dsdr/dtd2+Vsrdgdsm− xd, s5d

x is the so-called winding angle. Its expression is given by

x =E
0

L

A„r std… ·dr std, s6d

whereAsr d is a vector potential with components

Ajsr d =
1

2p
ei j

xi

r 2, i, j = 1,2. s7d

In the above equation we have represented the vectorr using
Cartesian coordinatesx1,x2, i.e., r =sx1,x2d. Moreover, from
now on, middle italic indicesi , j ,…=1, 2 will label the di-
rections which are perpendicular to thet axis. The definition
of the partition functionZm is completed by the boundary
conditions att=0 andt=L,

r s0d = r 0, r sLd = r 1. s8d

The quantity in Eq.s6d becomes a topological invariant if the
polymer trajectories are closed. In the present case, in which
the trajectories are open,x just counts the angle with which
one polymer winds up around the other. Thus, the partition
functionZm gives the formation probability of polymer paths
winding up of an angle

Du = 2pm. s9d

Exploiting the Fourier representation of Dirac
d-functions,

dsm− xd =E
−`

+` dl

2p
eilsmxd, s10d

Eq. s5d can be rewritten as follows:

Zm =E
−`

+` dl

2p
eimlZl, s11d

where

Zl =E Dre−e0
LdtL. s12d

The LagrangianL is that of a particle immersed in the mag-
netic potential associated to the vector fields7d,

L =
c

2
Sdr

dt
D2

+ il
dr

dt
·A − Vsr d. s13d

The Fourier transformed partition functionZl is the grand
canonical version of the original partition functionZm, in
which the numberm is allowed to take any possible value.

Zl coincides with the propagatorGlsL ; r 1,r 0d, which sat-
isfies the following pseudo-Schrödinger equation:

S ]

]L
− HDGlsL;r 1,r 0d = 0, s14d

H is the Hamiltonian of the system, computed starting from
the Lagrangians13d,

H =
1

2c
s=− ilAd2 + Vsr d. s15d

Equations14d is completed by the boundary condition atL
=0,

Gls0;r 1,r 0d = dsr 1 − r 0d. s16d

The average degree of entanglement of the two polymers
can be estimated computing the topological moments of the
winding anglekm2klr 1,r 0

, k=0, 1, 2,… f22g. Once the parti-
tion function is known, thekm2klr 1,r 0

may be expressed as
follows:

km2klr 1,r 0
=

E
−`

+`

dm m2kZm

E
−`

+`

dmZm

=

E
−`

+`

dm m2kE
−`

+` dl

2p
eimlGlsL;r 1,r 0d

E
−`

+`

dmE
−`

+` dl

2p
eimlGlsL;r 1,r 0d

. s17d

The quantitieskm2klr 1,r 0
depend on the boundary conditions

r 0,r 1 and, of course, on the parametersc andL. For practical
reasons, we will also consider the followingaveragedtopo-
logical moments:
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km2kl =
E d2r0E d2r1E dmm2kZm

E d2r0E d2r1E dmZm

. s18d

As Eq. s18d shows, the average is performed with respect to
the relative positionsr 0,r 1 of the endpoints. This is equiva-
lent to an average over the positions of the endpoints
r Astd , r Bstd at the instantst=0 andt=L, because the coordi-
nates of the center of mass have been factored out from the
partition function and thus they do not play any role. The
advantage of the averaged topological moments is that, a
posteriori, it will be seen that their computation is easier than
that of the topological moments given in Eq.s17d. From the
physical point of view, the averaged topological moments
measure the entanglement of two polymers, whose ends are
always fixed at the heightst=0 and t=L but are otherwise
free to move in the remaining directions.

Here we will be interested only in the second moment
km2lr 1,r 0

and in the averaged second momentkm2l, i.e., in the
casek=1 of Eqs.s17d and s18d. The second moment is in
fact enough in order to estimate the formation probability of
entanglement with a given winding angle and to determine
how the winding angle grows with increasing polymer
lengths.

In the following it will be useful to work in the so-called
energy representation, i.e., considering the Laplace trans-
formed of the partition functionGlsL ; r 1,r 0d with respect to
L:

GlsE;r 1,r 0d =E
0

+`

dLe−ELGlsL;r 1,r 0d. s19d

The partition functionGlsE; r 1,r 0d describes the probability
of two entangled polymers of any length subjected to the
condition that the relative positions of the polymer end at the
initial and final instantst0 and t1 are given by the vectorsr 0
andr 1. With respect to the formulation in theL space, how-
ever, the distancet1− t0 is no longer exactly equal toL, but is
allowed to vary according to a distribution which is governed
by the Boltzmann-type factoreEL. Thus,E plays the role of
the chemical potential conjugated to the end-to-end distance
of the polymer trajectories in thet direction. It is worth to
remember that, roughly speaking, small values ofE corre-
spond to large values ofL, while large values ofE corre-
spond to small values ofL. Starting from Eq.s14d and re-
calling the boundary conditionss16d, it is easy to check that
GlsE; r 1,r 0d satisfies the stationary pseudo-Schrödinger
equation,

sE − HdGlsE;r 1,r 0d = dsr 1 − r 0d, s20d

whereH is always the Hamiltonian of Eq.s15d.

III. CALCULATION OF THE SECOND MOMENT USING
THE FIELD THEORETICAL FORMULATION

In this section we wish to evaluate the expression of the
second moment as a function of the energyE using a field

theoretical formulation of the polymer partition function. The
starting point is provided by the formula of the second mo-
ment in theL space suitably rewritten in the following way:

km2lr 1,r 0
=

NsL;r 1,r 0d
DsL;r 1,r 0d

. s21d

For consistency with Eq.s17d, the numeratorNsL ; r 1,r 0d and
the denominatorDsL ; r 1,r 0d appearing in Eq.s21d must be of
the form

NsL;r 1,r 0d =E
−`

+`

dmm2E
−`

+` dl

2p
eimlGlsL;r 1,r 0d s22d

and

DsL;r 1,r 0d =E
−`

+`

dmE
−`

+` dl

2p
eimlGlsL;r 1,r 0d. s23d

Using Eq.s19d, it is now straightforward to compute the
Laplace transform ofNsL ; r 1,r 0d andDsL ; r 1,r 0d,

NsE;r 1,r 0d =E
−`

+`

dmm2È+` dl

2p
eimlGlsE;r 1,r 0d, s24d

DsE;r 1,r 0d =E
−`

+`

dmÈ+` dl

2p
eimlGlsE;r 1,r 0d. s25d

Once the functionsNsE; r 1,r 0d and DsE; r 1,r 0d are known,
one can construct the ratio

km2lr 1,r 0
sEd =

NsE;r 1,r 0d
DsE;r 1,r 0d

s26d

which is nothing but the second moment of the winding
angle expressed as a function of the chemical potentialE.

We remark that the Green functionGlsE; r 1,r 0d is related
to the Feynman propagator of the spin-1

2 Aharonov-Bohm
problem in quantum mechanics. In principle, this Green
function can be computed exactly starting from Eq.s20d
f29g, but its final expression is too complicated for our pur-
poses. Moreover, the method used in Ref.f29g to renormal-
ize the singularities coming from the presence of the
d-function potential is valid only in a restricted region of the
domain of l. This is incompatible with our requirements,
because, to derive the second moment, one must integrate
GlsE; r 1,r 0d with respect tol over the whole real line. For
this reason, we prefer here to use a field theoretical represen-
tation of this Green function. This is achieved by noting that
GlsE; r 1,r 0d coincides with the inverse matrix element of the
operatorE−H,

GlsE;r 1,r 0d = kr 1u
1

E − H ur 0l, s27d

and may be expressed in a functional integral form in terms
of replica fields,
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GlsE;r 1,r 0d = lim
n→0

E DCDC*c1sr 1dc1
*sr 0de−SsC* ,Cd.

s28d

In the above equationC* ,C are multiplets of replica fields,

C = sc1,…,cnd, C* = sc1
* ,…,cn

*d s29d

with action

SsC* ,Cd =E d2xC* ! SE −
1

2c
s=x − ilAd2 − v0dsxdDC.

s30d

The symbol! in Eq. s28d denotes summation over the replica
index. For example,C* !C=os=1

n cs
* cs. Below it will be

used also the conventionC* !C= uCu2. The details of the
derivation of Eq.s28d can be found in previous publications
on the subjectf12,29g and will not be provided here.

In order to proceed, it will be convenient to expand the
action s30d in powers ofl,

SsC* ,Cd = S0sC* ,Cd + lS1sC* ,Cd + l2S2sC* ,Cd,

s31d

where we have set

S0sC* ,Cd =E d2xS 1

2c
u = Cu2 + fE − v0dsxdguCu2D ,

s32d

S1sC* ,Cd =
i

2c
E d2xA · fC* ! s=Cd − s=C*d ! Cg,

s33d

S2sC* ,Cd =
1

2c
E d2xA2uCu2. s34d

At this point we come back to the computation of the
quantitiesNsE; r 1,r 0d and DsE; r 1,r 0d appearing in the ex-
pression of the second moment. Exploiting the form of the
partition function given by Eqs.s28d–s34d, together with the
relation

E
−`

+`

dmmneiml = 2psidn]ndsld
]ln , n = 0,1,…, s35d

and the fact thatZ±`=0, it is possible to rewrite Eqs.s24d
and s25d as followsf44g:

NsE;r 1,r 0d = lim
n→0

E DC*DCc1sr 1dc1
*sr 0df2S2sC* ,Cd

− „S1sC* ,Cd…2ge−S0sC* ,Cd, s36d

DsE,r 1,r 0d = lim
n→0

E DC*DCc1sr 1dc1
*sr 0de−S0sC* ,Cd.

s37d

The right-hand sides of Eqs.s36d ands37d represent vacuum
expectation values of a field theory governed by the action
S0sC* ,Cd of Eq. s32d. In the formulation in terms of quan-
tum operators we have

NsE;r 1,r 0d = lim
n→0

k0uc1sr 1dc1
*sr 0d2S2sC* ,Cdu0ln

− lim
n→0

k0uc1sr 1dc1
*sr 0d„S1sC* ,Cd…2u0ln,

s38d

DsE;r 1,r 0d = lim
n→0

k0uc1sr 1dc1
*sr 0du0ln. s39d

The correlation functions have a subscriptn to remember
that, according to the replica method, they should be com-
puted first assuming that the number of replicasn is an arbi-
trary positive integer and then taking the limit forn going to
zero.

The above correlators may be evaluated using standard
field theoretical methods. One could be tempted to use a
perturbative approach assuming that the value ofv0 appear-
ing in the actionS0sC* ,Cd of Eqs.s36d ands37d is small, but
this is not necessary. As a matter of fact, if it is true that
S0sC* ,Cd does not describe free fields because of the pres-
ence of thed-function potential, it is also true that it is just
quadratic in the fields. As a consequence, one is allowed to
define a propagatorGsE;x ,yd associated with this action. It
is easy to check thatGsE;x ,yd satisfies the equation

SE −
1

2c
=x

2 − v0dsxdDGsE;x,yd = dsx,yd. s40d

Using the above propagator, one can evaluate the amplitudes
in Eqs.s38d and s39d exactly by contracting the fields in all
possible ways according to the Wick theorem. After straight-
forward calculations, one finds

lim
n→0

k0uc1sr 1dc1
*sr 0du0ln = GsE;r 1,r 0d, s41d

lim
n→0

k0uc1sr 1dc1
*sr 0dS2sC* ,Cdu0ln = Ksr 1,r 0d, s42d

lim
n→0

k0uc1sr 1dc*sr 0dsS1sC* ,Cdd2u0ln

= I1sr 1,r 0d + I2sr 1,r 0d + I3sr 1,r 0d + I4sr 1,r 0d, s43d

where

Ksr 1,r 0d =
1

2c
E d2xA2sxdGsE;r 1,xdGsE;x,r 0d, s44d

I1sr 1,r 0d = −
1

2c2 E d2xd2yfAisxdGsE;x,r 1d

3„¹x
i GsE;y,xd…Ajsyd„¹y

j GsE;r 0,yd…g, s45d
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I2sr 1,r 0d = +
1

2c2 E d2xd2yfAisxd„¹x
i GsE;x,r 1d…

3GsE;y,xdAjsyd„¹y
j GsE;r 0,yd…g, s46d

I3sr 1,r 0d = +
1

2c2 E d2xd2yfAisxdGsE;r 0,xd

3„¹x
i ¹y

j GsE;x,yd…AjsydGsE;y,r 1dg, s47d

I4sr 1,r 0d = −
1

2c2 E d2xd2yfAisxdGsE;r 0,xd

3„¹x
i GsE;x,yd…Ajsyd„¹y

j GsE;y,r 1d…g. s48d

From the physical point of view, the above equations may be
interpreted in the following way. The fieldsCsxd andC*sxd
contain operators which, inside each replica sector, create
and annihilate segments of the two polymers, whose relative
positions are given by the vectorx. The two polymer system
has been projected in the two-dimensional plane perpendicu-
lar to thet axis. For this reason, there appear only the trans-
verse coordinatesx. The only remnant of the third dimension
is the dependence on the energyE. The correlation functions
s42d and s43d describe the fluctuations of the two polymers
immersed in thed-function potential and subjected to the
interactions represented by the vector potentials7d. We recall
that the origin of the latter interactions is the presence of the
constraint on the winding angle in the partition functions5d.
To evaluate the correlation functionss42d and s43d, one
needs to consider only a finite number of Feynman diagrams,
corresponding to the relevant processes with which the two
polymers interact together. The result, after the analytical
evaluation of these diagrams, is provided by Eqs.s45d–s48d.
Let us note that in these equations the repulsive interactions
due to thed-function potential are hidden in the propagators
GsE;x ,yd. The Feynman diagrams related to the amplitudes
of Eqs.s45d–s48d are all topologically equivalent to the dia-
gram of Fig. 1. The amplitude of Eq.s44d is related instead
to the Feynman diagram of Fig. 2. The vectorsr 1 and r 0
denote the relative positions of the endpoints of the two
polymers at the initial and final instants, as already men-
tioned. The integration variablesx and y appearing in Eqs.
s44d–s48d may be regarded as the vectors which give the
relative positions of the trajectories of the two polymers at
the instants in which they interact together via the external
vector potentialA of Eq. s7d. There is no restriction on the
domain of integration ofx andy, so that the components of

these relative vectors are allowed to take any value. This
implies that the distance between the polymer segments
when the interaction withA occurs can be arbitrarily large.

Now that the correlation functions which are present in
the expressions ofNsE; r 1,r 0d andDsE; r 1,r 0d given in Eqs.
s38d and s39d have been evaluated, see Eqs.s44d–s48d, we
may put everything together and give to the second moment
of Eq. s26d a more explicit form,

km2lr 1,r 0
=

2Ksr 0,r 0d − o
v=1

4

Ivsr 0,r 0d

GsE;r 0,r 0d
. s49d

In conclusion, the initial problem of computing the second
moment of the winding anglekm2lr 1,r 0

has been reduced to
the evaluation of a finite number of integrals, which are
given in Eqs.s44d–s48d. Of course, to make these integrals
really explicit, we still need to derive the propagator
GsE;x ,yd, which is so far the only missing ingredient. This
will be done in the next section.

IV. GREEN FUNCTIONS IN THE CASE OF
HAMILTONIANS WITH A d-FUNCTION POTENTIAL

Let G0sL ;x ,yd be the solution of the differential equation

S ]

]L
− H0DG0sL;x,yd = 0 s50d

for a given HamiltonianH0. WhenL=0, G0sL ;x ,yd satisfies
the boundary condition

G0s0;x,yd = dsx − yd. s51d

In the case of a HamiltonianH, obtained by adding toH0 a
d-function potential as a perturbation,

Hsxd = H0sxd − v0dsxd, s52d

we consider the analogous differential problem

S ]

]L
− HDGsL;x,yd = 0, s53d

Gs0;x,yd = dsx − yd. s54d

We wish to computeGsL ;x ,yd starting from the Green func-
tion G0sL ;x ,yd, which is supposed to be known. It is pos-
sible to show thatGsL ;x ,yd and G0sL ;x ,yd are related by
the integral equationf30,31g:

FIG. 1. Feynman diagram corresponding to the amplitudes of
Eqs. s45d–s48d. The two polymersA and B start at a distanceur 0u
from each other and interact twice with the the external fieldA. At
the end, the relative position of the endpoints at the instantt=L is
given byr 1. The three vertices appearing in the figure are related to
the interaction described by Eq.s33d.

FIG. 2. Feynman diagram corresponding to the amplitude of Eq.
s44d. The two polymersA andB start at a distanceur 0u from each
other and interact with the the external fieldA. At the final instant
t=L, the relative position of the endpoints is given byr 1. The four
vertices appearing in this figure are related to the interaction de-
scribed by Eq.s34d.
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GsL;x,yd = G0sL;x,yd − v0E
0

L

dsE d2zG0sL

− s;x,zddszdGss;z,yd. s55d

We see that on the right-hand side of the above equation the
presence of thed-function forces us to consider the functions
G0sL ;x ,yd andGsL ;x ,yd evaluated at the pointsx=0 and/or
y=0. Usually, at these points Green functions may be not
well defined due to the presence of singularities. A concrete
procedure to remove these singularities will be indicated
later. For the moment, we go further with formal manipula-
tions, assuming that some kind of consistent regularization of
the possible divergences has been introduced.

First of all, we perform the integration overd2z in Eq.
s55d,

GsL;x,yd = G0sL;x,yd − v0E
0

L

dsG0sL − s;x,0dGss;0,yd.

s56d

The integral inds appearing on the right-hand side of Eq.
s56d is a convolution which can be better treated after a
Laplace transform. Thus, we transform both sides of this
equation with respect toL,

GsE;x,yd = G0sE;x,yd − v0G0sE;x,0dGsE;0,yd, s57d

where

GsE;x,yd =E
0

+`

e−ELGsL;x,yddL s58d

and

G0sE;x,yd =E
0

+`

e−ELG0sL;x,yddL. s59d

At this point, it is easy to extract from Eq.s57d the expres-
sion of GsE;x ,yd,

GsE;x,yd = G0sE;x,yd −
G0sE;x,0dG0sE;0,yd

1

v0
+ G0sE;0,0d

. s60d

The above formula may be used in order to solve Eq.s40d. In
this case,H0 coincides with the free action

H0 =
1

2c
=2, s61d

and the functionG0sE;x ,yd is given by

G0sE;x,yd =
c

p
K0sÎ2Ecux − yud. s62d

HereK0szd denotes the modified Bessel function of the sec-
ond kind of order zero.

Clearly, we cannot apply directly Eq.s60d without intro-
ducing a regularization. As a matter of fact, if not treated, the
naive denominator in the second term of the right-hand side

is equal to infinity, i.e.,s1/v0d+G0sE;0 ,0d= +`. This is due
to the fact thatK0szd diverges logarithmically in the limit
z→0,

K0szd , − log z for z, 0. s63d

A natural regularization is suggested by the fact that, in
polymer physics, it has no sense to consider lengths which
are smaller than the size of the molecules which compose the
polymers. Thus, it seems reasonable to regulate ultraviolet
divergences by introducing a cutoffa at short distances. The
lengtha is comparable with the molecular size. According to
this prescription, by inserting the Green function of Eq.s62d
in Eq. s60d, we obtain

GsE;x,yd ;
c

p
K0sÎ2Ecux − yud

− S c

p
D2K0sÎ2EcuxudK0sÎ2Ecuyud

1

v0
+

c

p
K0sÎ2Ecad

. s64d

The symbol;means that the quantity on the left-hand side
of an equation has been replaced on the right-hand side with
its regulated version. The above Green function is what we
need in order to evaluate explicitly the amplitudes of Eqs.
s41d–s43d.

The infinities coming from thed-function potential should
be treated with some care in order to avoid ambiguities. For
this reason, we would like to compare the naive prescription
used here to derive Eq.s64d with the more rigorous proce-
dure of renormalization. It is known in fact that the renor-
malization of the infinities coming fromd-function interac-
tions produces physically sensible resultsf32g. The
divergences will be regulated introducing a cutoffL in the
momentum space. As a consequence, it will be convenient to
express the free Green function of Eq.s62d in momentum
space. To this purpose, we use the following formula:

K0smux − yud =
1

2p
E d2p

eip·sx−yd

p2 + m2 . s65d

To evaluate the Green function at the singular pointx=y
=0 we need to compute the following divergent integral:

Ismd =
1

2p
E d2p

p2 + m2 . s66d

Using the above cutoff prescription to eliminate the ultravio-
let singularities we get, in the assumptionL2@m2,

Ismd , log
L

m
. s67d

Now, according to the spirit of renormalization, we subtract
the infinities from the bare parameters of the theory. In our
case, after choosing an arbitrary mass scalem, which gives
the renormalization point, we renormalize the bare coupling
constantv0. Actually, it will be better to call itvbareinstead of
v0 in order to distinguish it from the effective coupling con-
stantv0 appearing in Eq.s64d. The subtraction of infinities is
performed in such a way that the quantity
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1

vbare
− G0sE;0,0d =

1

vren
+

c

2p
logSL2

m2D −
c

2p
logSm2

m2D
s68d

becomes finite. We choose a sort of minimal subtraction
scheme, in which the renormalized coupling constantvren is
related to the bare coupling constantvbare as follows:

1

vbare
+

c

2p
logSL2

m2D =
1

vren
. s69d

Applying the last two above equations back to Eq.s60d, we
get as a result,

GsE;x,yd =
c

p
K0sÎ2Ecux − yud

− S c

p
D2K0sÎ2EcuxudK0sÎ2Ecuyud

1

vren
−

c

2p
logS2Ec

m2 D . s70d

Equationss64d ands70d are reciprocally compatible. In fact,
since a is very small, because it is the smallest possible
length scale in our polymer problem, one can use the follow-
ing approximationfsee Eq.s63dg in the denominator of the
second term of Eq.s64d:

1

v0
+

c

p
K0sÎ2Ecad ,

1

v0
−

c

2p
logs2Ecad. s71d

Comparing with the analogous denominator in Eq.s70d, it is
possible to relatea with the inverse of the massm,

m2 =
1

a2 . s72d

Moreover, the effective coupling constantv0 of Eq. s64d may
be identified with the renormalized coupling constantvren,
which gives the strength of the repulsive interactions2d at
distance scales of ordera.

Before concluding this section, we make a small digres-
sion about the translational invariance of the free Hamil-
tonians61d and consequently of the free Green functions62d.
Clearly, this is not the same translational invariance that was
already present in the original actions1d due to the transla-
tional invariance of the potentials2d. This new invariance is
rather related to the fact that the physics of the two polymer
system in the absence of any interaction does not change if
we modify the relative positions of the polymer ends at
t=0 andt=L in a symmetric way. An example of such trans-
formations is the translation of both ends of polymerA at the
initial and final points by a constant vectora,

r As0d = r As0d + a, s73d

r AsLd = r AsLd + a. s74d

As a result of the translationss73d and s74d, the relative
vectorr std of Eq. s3d at the instantst=0 andt=L changes as
follows:

r 08 = r 0 + a, s75d

r 18 = r 1 + a. s76d

Clearly the propagators62d is invariant under the above
transformations. This kind of invariance can be explained as
follows. As far as the two polymersA andB do not interact,
each of them may be treated as an independent system. If we
translate for instance both ends of polymerA at t=0 and
t=L in the symmetrical way shown by Eqs.s73d ands74d, the
number of configurations of polymerA and consequently the
configurational entropy of the whole system do not change,
because the transformation is equivalent to a translation of
polymerA in the space. Of course, this invariance disappears
as soon as the two polymers start to interact or if they are
entangled together. Indeed, if one adds to the free Hamil-
tonians61d a d-function potential, the propagator stops to be
translational invariant as shown by the Green function of Eq.
s60d, which does not depend on the differencex−y.

V. REPULSIVE FORCES AND WINDING
ANGLES: QUALITATIVE AND QUANTITATIVE

CONSIDERATIONS

In principle we have at this point all the ingredients which
are necessary to compute the second moment of Eq.s26d. In
Eqs. s38d and s39d, in fact, the quantitiesNsE; r 1,r 0d and
DsE; r 1,r 0d are written as linear combinations of the ampli-
tudes of Eqs.s41d–s43d, which can be explicitly evaluated
using the propagatorGsE,u ,vd given in Eq.s64d f45g and
the formulas of Eqs.s44d–s48d. The remaining task is to per-
form the integrations over the coordinatesx and y in Eqs.
s44d–s48d. From the analytical point of view, the evaluation
of these integrals poses severe technical problems, which can
be solved only with the help of drastic approximations. How-
ever, the difficulties become milder if we average the second
moment over the endpoints of the polymers as shown in Eq.
s18d. In the energy representation, which we are using, this
means that we must consider the following averaged version
of the second moment in Eq.s26d:

km2lsEd =
NsEd
DsEd

, s77d

where

NsEd =E d2r0E d2r1NsE;r 1,r 0d, s78d

DsEd =E d2r0E d2r1DsE;r 1,r 0d. s79d

Accordingly, we need to integrate the quantitiesKsr 1,r 0d and
Ivsr 1,r 0d , v=1,…,4 of Eqs.s44d–s48d with respect tor 1 and
r 0. Setting

KsEd =E d2r0E d2r1Ksr 1,r 0d, s80d

FERRARI, ROSTIASHVILI, AND VILGIS PHYSICAL REVIEW E71, 061802s2005d

061802-8



IvsEd =E d2r0E d2r1Ivsr 1,r 0d, v = 1,…,4 s81d

we obtain from Eqs.s42d ands43d the following expressions
of NsEd andDsEd:

NsEd = 2KsEd − o
v=1

4

IvsEd, s82d

DsEd =E d2r0d
2r1GsE;r 1,r 0d. s83d

It will also be convenient to split the propagatorGsE;u ,vd of
Eq. s64d into two contributions,

GsE;u,vd = G0sE;u,vd + G1sE;u,vd, s84d

whereG0sE;u ,vd is the free propagator of Eq.s62d, which is
invariant with respect to the transformationss75d and s76d,
while

G1sE;u,vd =
c

p
lsEdK0sÎ2EcuuudK0sÎ2Ecuvud. s85d

In the above equation we have isolated in the expression of
G1sE;u ,vd the factor

lsEd = −
c

p
S 1

v0
+

c

p
K0sÎ2EcadD−1

. s86d

It is clear that the origin of the termG1sE;u ,vd in the propa-
gator is due to presence of thed-function interactions2d in
the polymer actions1d. In fact, if v0=0, this term vanishes
identically. Thus, using the splitting of the propagator of Eq.
s84d, it is now possible to separate in Eqs.s44d–s48d the
contributions to entanglement given by repulsive forces.

It seems natural to expand the quantitiesDsEd, KsEd, and
IvsEd defined in Eqs.s79d, s80d, and s81d with respect to
lsEd as follows:

DsEd = Ds0dsEd + Ds1dsEd, s87d

KsEd = Ks0dsEd + Ks1dsEd + Ks2dsEd, s88d

IvsEd = Iv
s0dsEd + Iv

s1dsEd + Iv
s2dsEd + Iv

s3dsEd, s89d

where the superscriptsnd, with n=0, 1, 2, 3, denotes the
order inlsEd. There are no higher order terms withnù4, so
the above expansions are exact.

It is easy to show howKsEd and theIvsEd’s depend on the
pseudoenergyE. After a rescaling of the integration variables
r 1, r 0, x, andy in Eqs.s78d and s79d, one finds in fact that

KsndsEd = lnsEdE−2Ksnd, n = 0,1,2, s90d

Iv
sndsEd = lnsEdE−2Iv

snd, n = 0,1,2,3, s91d

where the factorsKsnd’s and theIv
snd’s are functions of the

parametersa andc, but not ofE or v0. In fact, the coupling
constantv0 appears only inside the powers oflsEd. Let us
note the presence of the overall factorE−2 in Eqs. s90d and

s91d. Looking at Eq.s82d, it is clear that the whole function
NsEd is characterized by the leading scaling behaviorNsEd
,E−2. In the L space, after an inverse Laplace transform,
this behavior corresponds to the following scaling law, which
is typical of ideal polymers:NsLd,L. The powers oflsEd,
appearing in the expressions ofKsndsEd andIv

sndsEd, introduce
corrections to this leading behavior that are at most logarith-
mic in E. As a matter of fact, if the condition 2Eca2!1 is
satisfied, we have that

lsEd , −
c

p
Sv0

−1 −
c

p
logsÎ2EcadD−1

. s92d

Naively, the above seems to be the only logarithmic correc-
tion which is possible in the expressions ofNsEd andDsEd
whenE is small. However, this is not true. In fact, in deriv-
ing Eqs. s90d and s91d, we have not considered the diver-
gences which arise in some of the integrations over the vari-
ablesx, y, r 0, andr 1. After regulating these divergences with
some prescription, as for instance the ultraviolet cutoffa
used in Eq.s64d, we will see in Sec. VI that the naive res-
caling of variables exploited in order to obtain Eqs.s90d and
s91d does no longer work and one should add extra logarith-
mic factors to these equations.

Equationss90d and s91d may be also useful to study the
case of polymers in confined geometries. As a matter of fact,
for large values ofE, one recovers the limit of small values
of L, in which the region between the initial and final height
is very narrow. Looking at Eqs.s90d ands91d, it is clear that
the only interesting corrections whenE is large come from
the powers oflsEd. To evaluate these corrections, one should
note that the modified Bessel function of the second kind
K0szd goes very fast to zero for large values ofz. As a con-
sequence, already in the domain of parameters in which
2Eca2ù10, it is possible to make the very interesting ap-
proximation

lsEd , −
c

p
v0. s93d

Unfortunately, it turns out that the values of the energy for
which the above equation is satisfied are not physical, as it
will be shown below.

Other useful information on the influence of repulsive
forces on the winding angle can be obtained studying the
form of the functionG1sE;u ,vd of Eq. s85d. We remember in
fact that all the effects of the repulsive forces are concen-
trated in this component of the propagator. Supposing, for
example, that the value ofuuu is very large, i.e.,

uuu @
1

Î2Ec
, s94d

we have the following approximate expression of
G1sE;u ,vd:
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G1sE;u,vd =
c

Î2p
lsEds2Ecd1/4e−Î2EcuuuK0sÎ2Ecuvud.

s95d

A relation analogous to Eq.s95d may be written also for the
variable v. In practice, Eq.s95d means that the repulsive
interactions do not play any particularly relevant role in
polymer configurations in which the ends of the trajectories
at some point are very distant. This is not a surprise. If the
trajectories at some heightt are very far from each other,
they will have little or no chance to interact together via the
repulsive interactions of Eq.s2d, which are of short range.
Equations95d gives the concrete law with which the contri-
butions of the repulsive forces are suppressed in configura-
tions of this kind. In particular, if the distance between the
trajectories is much greater than thecharacteristic length
scale

l rep= 1/Î2Ec s96d

the influence of the repulsive forces ceases to be relevant. Of
course, even if at some points the trajectories are very dis-
tant, polymers will always have a chance to get near enough
to be able to interact if they are sufficiently long. As a con-
sequence, we expect that the characteristic lengthl rep in-
creases with the increasing of the lengths of the trajectories.
It is easy to check that this is exactly the case. To show that,
let us consider the dependence ofl rep on the polymer length.
One parameter which determines this length is the distanceL
between the ends of the polymers along thet axis. Indeed, a
trajectory connecting the two ends of a polymer must be very
long if these ends are located at very distant heights. In the
energy representation, large values ofL correspond to small
values ofE. For example, in the limitE=0, which corre-
sponds to infinite polymer lengths, we have thatl rep=`, con-
firming our intuitive expectations. Another confirmation
comes from Eq.s104d below, where a rough estimation of the
behavior ofl rep with respect to the distanceL is given. The
dependence onL is not the whole story. As a matter of fact,
during their random walk in thet direction from t=0 to
t=L, polymers are also allowed to wander in the remaining
two directions. Loosely speaking, the variations in the length
of the trajectories associated to the fluctuations in these
transverse directions are taken into account by the parameter
c. Smaller values ofc correspond to longer trajectories and
vice versa, see Ref.f36g. It is now easy to realize from Eq.
s96d that the characteristic lengthl rep increases whenc de-
creases as expected. Taking into account all the above con-
siderations, it is possible to conclude that repulsive forces
give relevant contributions to the second moment only in the
case of configurations of the system in which the trajectories
of the two polymers are not too far from each other. As a
matter of fact, in the propagators appearing in the amplitudes
of Eqs. s44d–s48d all configurations in which the distance
between the trajectories at some height in thet axis is bigger
than a few characteristic lengthsl rep are exponentially sup-
pressed according to Eq.s95d. One may also add that this
suppression becomes milder in the case of long polymers,
because we have seen that the characteristic lengthsl rep

grows with the length of the polymers with a law which has
been given in Eq.s104d.

In the rest of this section we will analyze some interesting
limiting cases, in which repulsive interactions become par-
ticularly weak or strong. To this purpose, it would be appeal-
ing to consider the quantityc−1lsEd, wherelsEd has been
given in Eq.s86d, as an energy dependent effective or run-
ning coupling constant of the repulsive interactions. This
could be suggested by the expansions of Eqs.s87d–s89d and
by the fact that the quantityc−1lsEd has the right dimension
to be a coupling constant. Indeed, we will see that there are
cases in which the strength oflsEd really determines the
strength of the repulsive forces. However, this is not true in
general, as it should be becauselsEd is just a parameter
which has been factored out from the expression of
G1sE;u ,vd and thus its meaning does not coincide with that
of a running coupling constant. Keeping that in mind, we
start to study the perturbative regime, in whichv0 is very
small. In the part of the propagator in which there are the
contributions of the repulsive forces, i.e., the function
G1sE;u ,vd , v0 is present only insidelsEd. Expanding this
quantity in powers ofv0, we obtain

lsEd ,
c

p
S− v0 +

c

p
v0

2K0sÎ2Ecad + ¯D . s97d

We see that, at the leading order inv0, lsEd is proportional
to v0 and thus, as it could have been expected,G1sE;u ,vd
may be treated as a small perturbation with respect to the
free propagatorG0sE,u ,vd. Let us now go back to Eq.s93d.
In that equation it turns out thatlsEd has the same behavior
as in the perturbative regime, even if Eq.s93d has been de-
rived in the hypothesis that 2Eca2ù10, but without suppos-
ing thatv0 is small. Before dwelling upon the physical mean-
ing of this coincidence, let us see what is the significance of
the condition 2Eca2ù10. To this purpose, we make the fol-
lowing approximations:

L , E−1,
1

c
, a. s98d

As mentioned before, it is quite reasonable to assume that the
lengthL is proportional to the inverse of the energyE, while
the second approximation implies that polymers are very
flexible. For example in polyethylene the Kuhn length,1/c
is of the order of molecular sizes. Exploiting Eq.s98d, it
turns out that the condition 2Eca2ù10 is equivalent to the
condition Løa/5. This would mean that our system is
squeezed in a volume whose heightL is smaller than the size
of a monomer. Clearly, this situation is not very physical.

Since we have been able to compute the exact form of the
propagatorGsE;u ,vd, it is not difficult to study also the
strong coupling limitv0→`. As in the perturbative case, the
only affected part of the propagators64d is the factorlsEd
appearing inG1sE;u ,vd. After a trivial calculation, one finds
that, in the strong coupling limit, the form ofG1sE;u ,vd is
given by
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G1sE;u,vd , fK0sÎ2Ecadg−1K0sÎ2EcuuudK0sÎ2Ecuvud.

s99d

Assuming that polymers are very long, let us study the left-
hand side of the above equation. This is a ratio of modified
Bessel functions of the second kind. Sincea is a very small
quantity and these functions have a logarithmic singularity if
their argument is small, see Eq.s63d, it is licit to suppose that

K0sÎ2Ecad . K0sÎ2EcuuudK0sÎ2Ecuvud s100d

unless uuu,a and/or uvu,a. On the other side, we know
from Eq. s94d that, if uuu , uvu@ 1

Î2Ec
, the product of modified

Bessel functionsK0sÎ2EcuuudK0sÎ2Ecuvud decays exponen-
tially. In other words, on the left-hand side of Eq.s99d the
denominator will dominate over the numerator whenever the
distance between the polymer trajectories is not of the order
of a few molecular sizes. Thus, ifv0 is large, the major
contributions to winding angle coming from the repulsive
interactions occur when the trajectories are very near to each
other. This could be expected from the fact that, in the strong
coupling limit, one recovers the excluded volume interac-
tions.

Finally, let us study the domain of the parametersE andc
in which the condition

2Eca2 ! 1 s101d

is verified. We will see that this domain is particularly inter-
esting, because if conditions101d is verified, the corrections
of the repulsive interactions to the entropy dominated behav-
ior of ideal polymers become relevant. It has been already
shown that under the assumption made in Eq.s101d, the
parameterlsEd is approximated as in Eq.s92d. Even if it is
not strictly necessary, we suppose here thatv0 has some fi-
nite value, while polymers are so long that the following
inequality is satisfied:

v0
−1 ! −

c

p
logsÎ2Ecad. s102d

This further assumption is to eliminate the dependence onv0,
which could introduce confusion in the following discussion
due to possible interferences of conditions101d with those of
the perturbative and strong coupling regimes. In theL space,
Eq. s102d corresponds to the inequalitye2p/cv0!L /2a. Now
G1sE;u ,vd may be approximated as follows:

G1sE;u,vd ,
c

p logsÎ2Ecad
K0sÎ2EcuuudK0sÎ2Ecuvud.

s103d

As promised, the above equation does not contain the param-
eterv0. We see from the left-hand side of Eq.s103d that the
functionG1sE;u ,vd is logarithmically suppressed, due to the
presence of logsÎ2Ecad in the denominator. This suppression
effect is counterbalanced only at short distances by the two
modified Bessel functions of the second kind appearing in
the numerator, which diverge logarithmically whenever
Î2Ecuuu=0 and/orÎ2Ecuvu=0. The total result of these op-
posite effects in the expression of the averaged second mo-

ment will be presented in Sec. VI after performing the ex-
plicit computation of the amplitudes of Eqs.s44d–s48d.

To conclude this section, let us give some concrete values
of the involved parameters. First of all, let us estimate the
values of L, for which the two polymer system is in the
regime s101d. Using the approximations made in Eq.s98d,
we may conclude that, if the relations101d is satisfied, the
lengthL needs such thatL@2a, i.e.,L is at least of the order
of hundred molecular lengths or more,L.100a. Moreover,
it is possible to give a rough estimation of the maximum
distance of the endpoints, after which the two polymers are
too far from each other to allow a relevant contribution to the
winding angle due to repulsive interactions. Using Eq.s94d,
in fact, it turns out that the repulsive interactions are relevant
only in the range of distances,

uuu !ÎLa

2
, l rep. s104d

Finally, the situation opposite to conditions101d is not real-
istic, because it leads to the constraintL!2a. This would
corresponds to the case of a polymer which is shorter than
the size of the molecules composing it.

VI. CALCULATION OF THE AVERAGED SECOND
MOMENT

At this point we are ready to compute the quantitiesNsEd
andDsEd of Eqs. s78d and s79d. We start withDsEd. Using
Eqs. s83d and s87d and the splittings84d of the propagator,
one has at the zeroth order inlsEd,

Ds0dsEd =E d2r0E d2r1G0sE;r 1,r 0d

=E d2r0E d2r1
c

p
K0sÎ2Ecur 1 − r 0ud. s105d

After a shift of variables, the above equation gives

Ds0dsEd = SE d2r1
c

p
K0sÎ2Ecur 1ud, s106d

whereS=ed2r0 is the total surface of the system in the two-
dimensional space, which is transverse to thet axis. Using
the identity

E d2r1
c

p
K0sÎ2Ecur 1ud =

1

E
, s107d

one finds

Ds0dsEd = S/E. s108d

This expression ofDs0dsEd has the following interpretation:
We are performing here an average of the second moment
with respect to all possible initial and final positions of the
endpoints of the polymers andDsEd countsthe number of
these configurations. The componentDs0dsEd of DsEd de-
pends only on the free propagatorG0sE;x ,yd, which is trans-
lational invariant in the sense discussed after Eq.s62d. This
invariance explains why the number of configurations grows

DIRECTED POLYMERS WITH CONSTRAINED WINDING... PHYSICAL REVIEW E71, 061802s2005d

061802-11



proportionally to the surfaceS. The reason is that, for each
configuration of the polymers, one can obtain other equiva-
lently probable configurations by the symmetric translation
of their ends on the surfaceS at the initial and final instants.
Let us now apply toDs0dsEd an inverse Laplace transform, in
order to go back to theL space. After a simple calculation we
obtain

Ds0dsLd = S, s109d

i.e., Ds0dsLd does not depend onL.
The next and last contribution toDsEd is given by

Ds1dsEd =E d2r0d
2r1G1sE;r 1,r 0d

=E d2r0d
2r1

c

p
lsEdK0sÎ2Ecur 1udK0sÎ2Ecur 0ud.

s110d

Exploiting Eq.s107d to integrate out the variablesr 0 andr 1,
we get

Ds1dsEd =
p

c
lsEdE−2. s111d

We remark that the above contribution toDsEd vanishes in
the limit v0=0. This could be expected due to the fact that
Ds1dsEd collects all contributions coming from the repulsive
interactions. These interactions break explicitly the transla-
tional invariance of the free part of the action and, as a con-
sequence,Ds1dsEd is no longer proportional to the surfaceS
as Ds0dsEd. Unfortunately, it is not easy to compute the in-
verse Laplace transform ofDs1dsEd without making some ap-
proximation. To this purpose, we assume that the repulsive
interactions are weak, i.e.,v0!1, and that the value ofL is
large. In this case, since we are in the domain of smallE’s, it
is possible to expandDs1dsEd up to the second order inv0 as
follows:

Ds1dsEd ,
p

c
F c

p
E −2v0 − S c

p
v0D2

E −2 logsÎ2EcadG .

s112d

In order to obtain the above equation we have used both Eqs.
s63d and s97d. The inverse Laplace transform of Eq.s112d
gives

Ds1dsLd , Fv0 −
c

p
v0

2SlogsÎ2cad +
C − 1

2
DGL +

c

2p
v0

2L log L,

s113d

whereC,0.577 215 664 is the Euler constant.
Setting Eqs.s108d and s111d together, we obtain

DsEd = Ds0dsEd + Ds1dsEd = SE−1 +
p

c
lsEdE −2. s114d

This is an exact result. An approximated expression ofDsLd
can be derived instead from Eqs.s109d and s113d.

Now we turn to the derivation ofNsEd. We start by com-
puting order by order inlsEd the contributions to the quan-

tities KsEd and IvsEd of Eqs.s88d and s89d, respectively. At
the zeroth order we have forKsEd,

Ks0dsEd =
c

2p2 E d2xA2sxd E d2r1K0sÎ2Ecur 1 − xud

3E d2r0K0sÎ2Ecur 0 − xud. s115d

After performing easy integrations over the coordinates
r 0, r 1, one obtains

Ks0dsEd =
1

2c
E−2E d2xA2sxd. s116d

The remaining integral with respect to thex coordinate is
both ultraviolet and infrared divergent and needs to be regu-
lated. We have already seen that the singularities in the ul-
traviolet domain may consistently be eliminated with the in-
troduction of the small distance cutoffa. A large distance
cutoff is instead motivated by the fact that the size of a real
system is necessarily finite. Implicitly, we have already used
this kind of infrared regularization in Eq.s106d, where we
have assumed that the total surfaceS of the system in the
directions which are transverse to thet axis is finite. Suppos-
ing that the shape ofS is approximately a disk of radiusR, so
that S,pR2, we may write

E d2xA2sxd =
1

2p
E

a

R dr

r
. s117d

Substituting Eq.s117d in Eq. s116d, one obtains the following
expression ofKs0dsEd:

Ks0dsEd =
1

8pc
E −2 logS S

a2p
D . s118d

The inverse Laplace transform ofKs0dsEd gives

Ks0dsLd =
L

8pc
logS S

a2p
D . s119d

We must now compute the quantitiesIv
s0dsEd, with

v=1,…, 4. The expressions of theIv
s0dsEd’s may be obtained

from Eqs.s45d–s48d ands81d, by substituting everywhere the
propagatorGsE;x ,yd with its free versionG0sE;x ,yd. It is
easy to show that

Iv
s0dsEd = 0 for v = 1,…,4. s120d

This vanishing, which is actually a double vanishing, is due
to the fact that each of theIv

s0dsEd’s contains an integral of a
total divergence together with an integral which is zero for
symmetry reasons. For some values ofv, like for instance
when v=3, to isolate such integrals it is necessary to per-
form some integrations by parts. This is allowed because the
Iv

s0dsEd’s are not affected by divergences, contrarily toKsEd.
As an example, we work out explicitly the case of

I1
s0dsEd. The first vanishing integral is the following:
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E d2r0¹y
j G0sE;r 0,yd =

c

p
E d2r0¹y

j K0sÎ2Ecur 0 − yud.

s121d

This is of course zero due to symmetry reasons. The second
vanishing integral inI1

s0dsEd is of the form

I =E d2xE d2r1AisxdG0sE;r 1,xd¹x
i G0sE;y,xd. s122d

After performing the integration overr 1 with the help of a
shift of variables and of Eq.s107d, we have, apart from a
proportionality factor,

I ~E d2xAisxd¹x
i G0sE;y,xd. s123d

Since Aisxd is a divergenceless vector potential, i.e.,
¹x

i Aisxd=0, I can be rewritten as the integral of a total di-
vergence,

I =
c

p
E d2x¹x

i fAisxdK0sÎ2Ecuy − xudg. s124d

Clearly, the left-hand side of the above equation is zero. This
fact can be also checked passing to the Fourier representa-
tion. Exploiting Eq.s65d and the formula

Aisxd =
1

s2pd2i
E d2pe i j pj

p2eip·x s125d

in Eq. s123d, one obtains

I = −
1

s2pd2 E d2p
ei j pipj

sp2 + 2Ecdp2 . s126d

ThusI =0 becauseei j pipj =0. In an analogous way one shows
that alsoI2

s0d, I3
s0d, andI4

s0d are identically equal to zero.
We are now ready to compute the contributions toNsEd,

which are linear inlsEd. First of all, we treat the term
Ks1dsEd, which is given by

Ks1dsEd =
1

2c
E d2xE d2r0E d2r1A

2sxd

3fG1sE;r 1,xdG0sE;x,r 0d

+ G0sE;r 1,xdG1sE;x,r 0dg. s127d

The integrations overr 0 and r 1 may be easily performed
using Eq.s107d and give as a result a factor which is propor-
tional to E−2. After that, only the following integral inx
remains to be done

E d2xA2sxdK0sÎ2Ecuxud ;
1

s2pd2E
uxuùa

d2x
1

uxu2
K0sÎ2Ecuxud.

s128d

Here the ultraviolet divergence, which is present on the left-
hand side, has been regulated in the usual way with the in-
troduction of the short distances cutoffa. Infrared diver-
gences are absent. Going to polar coordinates, the right-hand
side of the above equation becomes

1

s2pd2E
uxuùa

d2x
1

uxu2
K0sÎ2Ecuxud =

1

2p
E

a

+`

dr
K0sÎ2Ecrd

r
.

s129d

Setting everything together, one arrives at the final result,

Ks1dsEd =
1

2pc
E −2lsEdE

a

+`

dr
K0sÎ2Ecrd

r
. s130d

If the quantityÎ2Eca is small, it is possible to derive the
following asymptotic expression ofKs1dsEd:

Ks1dsEd ,
1

4pc
E −2lsEdlog2sÎ2Ecad. s131d

To go from Eq. s130d to Eq. s131d, we have used the
asymptotic formula

E
a

+`

dr
K0sÎ2Ecrd

r
,

1

2
log2sÎ2Ecad s132d

which is valid for small values ofÎ2Eca. We see from Eqs.
s130d and s132d that the presence of ultraviolet divergences,
together with the needed regularization, has modified the na-
ive form of Ks1dsEd as a function of the pseudoenergyE
given in Eq.s90d. The modification consists in the appear-
ance of the factorea

+`sdr /rdK0sÎ2Ecrd, which exhibits a
square logarithmic singularity in the limitÎ2Eca=0.

The inverse Laplace transformed ofKs1dsEd can be de-
rived only making some approximation. As in the case of
Ds1dsEd, we will work in the double limit, in whichv0 is very
small andL is very large. After a few calculations we obtain

Ks1dsLd ,
v0

4p2S1

4
E

0

L

dsflogsL − sd + Cgslog s+ Cd

+
1

4
L log2s2ca2d +

1

2
logs2ca2d

3fsC − 1dL − L log LgD . s133d

At this point we must compute the expressions of the
Iv

s1dsEd’s, v=1, …, 4. It is possible to show that these contri-
butions vanish identically, i.e.,

Iv
s1dsEd = 0 for v = 1,…,4. s134d

The motivations of this vanishing are similar to the motiva-
tions for which there are no contributions at the zeroth order.
All terms which appear in the quantitiesIv

s1dsEd contain at
least one integral of a total divergence or one integral, which
is zero for dimensional reasons. As in the case of the
Iv

s0dsEd’s, there are some values ofv for which it is necessary
to perform an integration by parts in order to isolate these
vanishing integrals. Once again, this is allowed because the
Iv

s1dsEd’s do not contain divergences.
At the next order inlsEd, we have the last contribution to

KsEd,
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Ks2dsEd =
1

2c
E d2xE d2r1

3E d2r0A
2sxdG1sE;r 1,xdG1sE;x,r 0d.

s135d

After performing the integrations inr 1 and r 0 with the help
of Eq. s107d, Eq. s135d becomes

Ks2dsEd =
p

c
l2sEdE −2E d2xA2sxdfK0sÎ2Ecuxudg2.

s136d

The integral inx is divergent and needs a regularization.
Going to polar coordinates, we obtain the result

Ks2dsEd ;
p

c
l2sEdE −2E

a

+` dr

r
fK0sÎ2Ecrdg2. s137d

Also in this case, we note that the presence of the regular-
ization modifies the dependence ofKs2dsEd on the pseudoen-
ergy E with respect to the naive formula of Eq.s90d. The
correction consists in the factorea

+`sdr /rdfK0sÎ2Ecrdg2. In
the limit Î2Eca=0, this factor diverges as powers of
logsÎ2Ecad.

To conclude the analysis of the contribution toNsEd at the
second order inlsEd, we show that theIv

s2dsEd’s are identi-
cally equal to zero. As a matter of fact; it is easy to verify
that for v=1, 2, 4 eachIv

s2dsEd contains terms of the follow-
ing kind:

Bsxd = Aisxd¹x
i K0sÎ2Ecuxud. s138d

These terms vanish identically because of the following
identity:

¹x
i K0sÎ2Ecuxud =

1
Î2Ec

xi

uxu2
]K0sÎ2Ecuxud

] uxu
. s139d

Substituting Eq.s139d in Eq. s138d and using the explicit
expression of the vector potentialAisxd of Eq. s7d, we get

Bsxd =
1

2pÎ2Ec

e jix
ixj

uxu4
]K0sÎ2Ecuxud

] uxu
. s140d

Clearly, the right-hand side of the above equation is zero
becausee jix

ixj =0. If v=3, instead, the vanishing function
Bsxd of Eq. s138d may be isolated in the expression of
I3

s2dsEd=0 only after an integration by parts.
Finally, at the third order inlsEd we have only the quan-

tities Iv
s3dsEd’s, sinceKsEd has at most quadratic powers of

lsEd. It is easy to realize that

o
v=1

4

Iv
s3dsEd = 0, s141d

because the following relations holdf46g:

I1
s3dsEd = − I2

s3dsEd = I3
s3dsEd = − I4

s3dsEd. s142d

As a consequence of Eq.s141d, it is clear that there are no
contributions toNsEd at this order.

Using Eqs.s118d, s130d, ands137d, we arrive at the final
result forNsEd,

NsEd =
1

4pc
E −2 logS S

a2p
D +

1

pc
lsEdE −2E

a

+` dr

r
K0sÎ2Ecrd

+
2p

c
l2sEdE −2E

a

+` dr

r
fK0sÎ2Ecrdg2. s143d

We can now insert in the formula of the second moment
of Eq. s77d the functionsDsEd andNsEd given in Eqs.s114d
and s143d, respectively. The outcome is

km2lsEd =

E−13 1

4pc
logS S

a2p
D + lsEd

E
a

+` dr

r
K0sÎ2Ecrd

pc
+ l2sEd

2p

c
E

a

+` dr

r
fK0sÎ2Ecrdg24

S+
p

c
lsEdE−1

. s144d

In the L space, the already mentioned difficulties with the
computation of the inverse Laplace transform ofDsEd and
NsEd allow an analytical result only in the double limit of
weak coupling constantv0 and of large values ofL. At the
first order inv0, the expression ofkm2l reads as follows:

km2l =

L

8pc
logS S

a2p
D + Ks1dsLd

S+ v0L
, s145d

whereKs1dsLd has been given in Eq.s133d.
So far, we have considered the averaged second moment

of Eq. s26d, corresponding to the case in which the polymer
ends are not fixed. In the energy representation, we have seen
that this version of the second moment can be exactly com-
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puted. To conclude this section, we would like to show that it
is possible to provide also an exact expression of the second
momentkm2lr 1,r 0

in theL space and with fixed polymer ends
up to an inverse Laplace transform of the propagator given in
Eq. s64d. The starting point is the exact formula of the sec-
ond momentkm2lr 1,r 0

sEd of Eq. s49d. All the ingredients of
this formula are defined in Eqs.s26d, s38d, s39d, and s41d–
s48d. Looking at Eq.s49d, it is clear that

NsE;r 1,r 0d = 2Ksr 1,r 0d − o
v=1

4

Ivsr 1,r 0d s146d

and

DsE;r 1,r 0d = GsE;r 1,r 0d. s147d

Let us note that the functionsIvsr 1,r 0d are all equal up to
integrations by parts, which can shift the differential opera-
tors =x and =y in Eqs. s44d–s48d. This fact will be used in
order to simplify the expression of the inverse Laplace trans-
formed ofNsE; r 1,r 0d in theL space. To compute the inverse
Laplace transforms of bothNsE; r 1,r 0d andDsE; r 1,r 0d, we
use the following property of the inverse Laplace transform
of the product of two functionsfsEd andgsEd:

L−1ffsEdgsEdg =E
0

L

dsfsL − sdgssd. s148d

Applying Eq. s148d to evaluate the inverse Laplace trans-
forms of KsEd and of theIvsr 1,r 0d in Eqs.s146d and s147d,
we obtain after some calculations,

NsL;r 1,r 0d =
2

c
E d2xA2sxdE

0

L

dsGsL − s;r 1,xdGss;x,r 0d

−
2

c2 E d2xE d2yE
0

L

GsL − s;x,r 1d

3 E
0

s

ds8]x
i ]y

j Gss

− s8;y,xdGss8;r 0,ydAisxdAjsyd, s149d

DsL;r 1,r 0d = GsL;r 1,r 0d. s150d

The second term on the right-hand side of Eq.s149d is the
contribution given by the functionsIvsr 1,r 0d , v=1,…,4,
while the first term comes fromKsr 1,r 0d. Remembering the
definition s21d of the second moment in terms ofNsL ; r 1,r 0d
andDsL ; r 1,r 0d, we get

km2lr 1,r 0
= fGsL;r 1,r 0dg−1F2

c
E d2xA2sxdE

0

L

dsGsL

− s;r 1,xdGss;x,r 0d −
2

c2 E d2xE d2y

3E
0

L

dsGsL − s;x,r 1dE
0

s

ds8]x
i ]y

j Gss− s8;y,xd

3Gss8;r 0,ydAisxdAjsydG . s151d

If we knew how to compute the propagatorGsL ;x ,yd start-
ing from its Laplace transformeds64d, we could evaluate
explicitly the expression of the second moment in theL
space. Unfortunately, it is too complicated to perform the
inverse Laplace transform of the propagatorGsE;x ,yd. Due
to this technical difficulty, Eq.s151d is only formal. Progress
can be made however in the limitv0=0, in which the propa-
gator is given by the Green functionG0sE;x ,yd of Eq. s62d.
This will be done in the next section.

VII. THE CASE OF IDEAL POLYMERS

In order to allow the comparison with previous results,
this section is dedicated to the case of ideal chains in which
v0=0. First of all, we discuss the formula of the averaged
second moment derived in the previous section, Eq.s145d. In
the limit v0=0, Eq.s145d becomes

km2l0 =
L

8pcS
logS S

a2p
D . s152d

The presence of a geometrical factor like the surfaceSof the
system in the expression ofkm2l0 has been already related to
the translational symmetry of Eqs.s75d and s76d. Assuming
that this surface has approximately the shape of a disc of
radiusR, we can setS=pR2 as in Eq.s117d. Equations152d
predicts that the average degree of entanglement scales as
follows with respect to the distanceR:

km2l0 ~
log R

R2 . s153d

The meaning of Eq.s153d is the following. We remember
that the averaged second momentkm2l0 describes the en-
tanglement of two closed polymers whose ends on the sur-
faces att=0 andt=L are not fixed. In this way, the polymers
are allowed to move freely and it is natural to suppose that,
the bigger will be the volumeSL in which the polymers
fluctuate, the bigger will be also the average distance be-
tween them. Thus, if the surfaceS increases its area, the
probability of entanglement must decrease. The exact law of
this decreasing is given by Eq.s153d.

On the other side, one would expect that the probability of
getting entangled is higher for long polymers than for short
polymers. Equations152d gives a result which is in agree-
ment with the above expectation, because the second mo-
mentkm2l0 scales as follows with respect to the parametersL
andc, which determine the polymer length,

km2l0 ~
L

c
. s154d

In particular, one can show that the total length of a polymer
increases proportionally toL and it is inversely proportional
to the square root ofc f36g. Accordingly, we see from Eq.
s154d that km2l0 increases proportionally toL and inversely
proportional toc.

At this point we wish to study the second moment
km2l0,r 1,r 0

of polymers with fixed endpoints. The subscript 0
has been added to the symbol of the second moment to re-
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member that we are working in the limitv0=0. Since we are
dealing with ideal polymers, we must substitute everywhere
in Eq. s151d the full propagatorGsL ;x ,yd with the free one.
The result of this operation is

km2l0,r 1,r 0
= fG0sL;r 1,r 0dg−1F2

c
E d2xA2sxdE

0

L

dsG0sL

− s;r 1,xdG0ss;x,r 0d

−
2

c2 E d2xE d2yE
0

L

dsG0sL

− s;x,r 1dE
0

s

ds8]x
i ]y

j G0ss

− s8;y,xdG0ss8;r 0,ydAisxdAjsydG . s155d

We notice that, as it could be expected, Eq.s155d coincides
with the expression obtained in Ref.f8g for the second mo-
ment of one polymer winding up around an infinitely long
straight wire lying along thez axis. Luckily, the propagator
G0sL ; r 1,r 0d can be explicitly constructed upon computing
the inverse Laplace transform of the propagatorG0sE; r 1; r 0d
of Eq. s62d,

G0sL;x,yd =
c

2pL
esc/2Ldux − yu2. s156d

It is easy to check that the second term on the right-hand
side of Eq.s155d, which is associated with the contributions
coming from theIvsr 1,r 0d’s, does not grow with increasing
values ofL. As a matter of fact, after a rescaling of variables,
the numerator of this term gives

2

c2 E d2xE d2yE
0

L

dsG0sL − s;x,r 1dE
0

s

ds8]x
i ]y

j G0ss− s8;y,xdG0ss8;r 0,ydAisxdAjsyd

=
c

4p3L
E d2x8E d2y8E

0

1

dt
1

1 − t
e−fc/2s1−tdgux8 − sr 1/Ldu2E

0

t

dt8
1

t − t8S ]2

]xi8
]yj8

e−fc/2st−t8dgux8 − y8u2D 3
1

t8
e−fc/2st8dguy8 − sr 0/Ldu2.

s157d

In the limit L→`, the quantity on the right-hand side of the
above equation scales asAL−1, whereA is a constant. More-
over, the propagators156d, which is in the denominator,
scales asL−1. Thus, the ratio between the right-hand side of
Eq. s157d and the propagators156d does not depend onL.
This completes the proof of our statement.

As a consequence of this statement, as far as the scaling
of km2l0,r 1,r 0

for large values ofL is concerned, it is possible
to make the following approximation:

km2l0,r 1,r 0
,

2

c
fG0sL;r 1,r 0dg−1E d2xA2sxdE

0

L

dsG0sL

− s;r 1,xdG0ss;x,r 0d. s158d

Unfortunately, despite of the fact that we are treating ideal
polymers, the integral ind2x appearing in the above equation
is still complicated and requires some approximation to be
evaluated analytically. We will apply to this purpose the
strategy used in Ref.f8g to compute the second moment of
three-dimensional polymers, adapting it to our two-
dimensional case. First of all, let us note that the integral in
s158d is ultraviolet divergent. However, the infrared diver-
gences which appeared in the energy representation are ab-
sent. This is due to the behavior of the propagator
G0sL ;x ,yd, which is much milder at infinity than the behav-
ior of the Green functionG0sE;x ,yd. To regulate the singu-
larities at small distances, we proceed as usual by introduc-

ing the cutoffa. After a rescaling of all variables similar to
that of Eq.s157d, we get

km2l0,r 1,r 0
,

2

c
fG0sL;r 1,r 0dg−1E

ux8uùsaÎc/ÎLd

d2x8

L

1

x82

3E
0

1 ds8

s8s1 − s8d
S c

2p
D2

3e−f1/2s1−s8dgux8 − r 1Îc/Lu2e−s1/2s8dux8 − r 0Îc/Lu2.

s159d

To go further, following Ref.f8g, we assume that the relevant
contribution to the integral ind2x8 comes from a narrow
region around the singularity inx8=0. Thus, we may set

E
ux8uùsaÎc/ÎLd

d2x8

x82 e−f1/2s1−s8dgux8 − r 1Îc/Lu2e−f1/2s1−s8dgux8 − r 0Îc/Lu2

, 2p logSÎL

c
aDe−f1/2s1−s8dgur 1Îc/Lu2e−f1/2s1−s8dgur 0Îc/Lu2.

s160d

After making the above crude approximation, we obtain
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km2l0,r 1,r 0
,

c

pL
fG0sL;r 1,r 0dg−1logSÎL

c
aD

3E
0

1

ds8S 1

1 − s8
e−f1/2s1−s8dgr 1

2sc/Lde−s1/2s8dr 0
2sc/Ld

+
1

s8
e−f1/2s1−s8dgr 1

2sc/Lde−s1/2s8dr 0
2sc/LdD . s161d

In deriving the above equation we have used the simple re-
lation

1

s8s1 − s8d
=

1

s1 − s8d
+

1

s8
.

Let us now study the integral

Ĩ =E
0

1 ds8

s8
e−f1/2s1−s8dgr 1

2sc/Lde−s1/2s8dr 0
2sc/Ld, s162d

The other integral inds8 appearing ins161d can be treated in
the same way after the change of variables 1−s8= t. It is not
to allowed to take on the right-hand side of Eq.s162d the
limit L→` because in this way the integral will not be con-
vergent due to the singularity ins8=0. For this reason, we
split the domain of integration as follows:

Ĩ =E
0

u ds8

s8
e−f1/2s1−s8dgr 1

2sc/Lde−s1/2s8dr 0
2sc/Ld

+E
u

1 ds8

s8
e−f1/2s1−s8dgr 1

2sc/Lde−s1/2s8dr 0
2sc/Ld, s163d

where 0,u,1. Clearly, the second integral converges after
performing the limitL→` in the integrand and gives

E
u

1 ds8

s8
= log

1

u
. s164d

The first integral instead diverges logarithmically with grow-
ing values ofL. However, now it is possible to expand the

exponentiale−f1/2s1−s8dgr 1
2sc/Ld in powers of its argument, be-

cause the singularity ins8=1 lies outside the intervalf0,ug.
Keeping only the leading order term with respect toL, we
get

Ĩ , − EiS−
r 0

2c

2Lu
D − log u s165d

where Eiszd is the exponential-integral function. WhenL is
large, this function may be approximated as follows: Eiszd
, logs−zd and, as a consequence,

Ĩ , − logS r 0
2c

2L
D . s166d

The second integral which we have left in Eq.s161d gives
the same result. Setting everything together in the expression
of the second moment of Eq.s161d, we obtain the final re-
sult,

km2l0,r 1,r 0
, − 2 logSÎL

c
aDlogS r 1

2r 0
2c2

4L2 D , 2slog Ld2.

s167d

This is exactly the behavior of the second moment derived in
Ref. f8g.

VIII. CONCLUSIONS

In this paper we have studied the entanglement of two
directed polymers from a nonperturbative point of view. Our
formulas of the second moment, a quantity which measures
the degree of entanglement of the two polymers, take into
account the repulsive forces acting on the segments of the
polymers and are exact. The averaged second moment de-
fined in Eq. s18d, a version of the second moment corre-
sponding to the situation in which the end points of the poly-
mers are free to move, has been computed in Eq.s144d as a
function of the chemical potentialE conjugated to the dis-
tanceL between the endpoints in thet direction. The case of
free ends is relevant in the treatment of nematic polymers
and polymers in a nematic solventf21g. Let us note that also
the expression of the second moment without any averaging
and in theL space can be computed. This has been done in
Eq. s151d. However, this equation is explicit only up to the
inverse Laplace transform of the propagators64d, which is
too hard to be obtained in closed form.

Equations144d shows that the averaged second moment is
of the form km2lsEd=E−1fsEd. The overall factorE−1 coin-
cides with the scaling power law of two ideal polymers. The
correction fsEd to this fundamental behavior due to the re-
pulsive interactions is a complicated function ofE, whose
analysis would require numerical methods. Nevertheless, it is
possible to identify a dominance of the repulsive interactions
in the domain of parameters in which the conditionÎ2Eca
,0 is satisfied. This corresponds roughly speaking to the
situation in which polymers are very long. In this region, the
scaling laws with respect to the energyE of the numerator
and denominator appearing on the right-hand side of Eq.
s144d are corrected by factors which are logarithmic powers
of logsÎ2Ecad, see for instance, Eq.s132d.

One advantage of our approach is that it is easy to sepa-
rate within the expression of the second moment the contri-
butions of purely entropic origin which are typical of free
polymers from the contributions coming from the presence
of the d-function potential in the polymer action. This is
essentially due to the splittings95d of the propagator
GsE;u ,vd appearing in the amplitudess44d–s48d. The com-
ponent G0sE;u ,vd of the propagator coincides with the
propagator of ideal polymers, while the component
G1sE;u ,vd takes into account the effects of the interactions.
Thanks to the splittings95d, it has been possible to study the
way in which the repulsive forces affect the average degree
of entanglement of the two polymers. This has been done in
Sec. V. Our results are in agreement with the intuition. The
precise law with which the effects of the repulsive forces on
the entanglement decrease when the distance between the
trajectories increases is given by Eq.s95d. Sec. V also dis-
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cusses the strong coupling limit, which should be taken to
recover the limit of excluded volume interactions. In our
exact approach, it is not difficult to consider the case in
which the coupling constantv0 is large. For instance, the
componentG1sE;u ,vd of the propagator, which is respon-
sible of the effects due to the repulsive interactions, has been
given in the strong coupling limit in Eq.s99d. Studying the
form of this component assuming that polymers are very
long, it has been argued that, at strong coupling, the major
contributions to the winding angle coming from the repulsive
interactions occur when the trajectories are very near to each
other. Many other qualitative and quantitative characteristics
of the behavior of the two polymer system under consider-
ation have been presented in Sec. V.

The case of ideal polymers, in whichv0=0, has been dis-
cussed at the end of Sec. VII in order to make comparison
with previous works. The scaling of the averaged second
moment for large values ofL obtained in Eq.s154d is in
agreement with the results of Ref.f7g, if one takes into ac-
count the fact that, after the averaging procedure of Eq.s18d
and the infrared regularization of Eqs.s106d ands117d, one is
effectively treating a system of polymers confined in a cyl-
inder of finite volumeSL. In Sec. VII we have evaluated the
second moment, always of two ideal polymers, using the
approach of Ref.f8g. The outcome of this calculation,
namely the scaling behavior ofkm2l0,r 1,r 0

at the leading order
in L, is reported in Eq.s167d. This result is in agreement with
the square logarithmic behavior obtained in Ref.f8g, but not
with the logarithmic behavior predicted in Ref.f7g. However,
this discrepancy can be expected due to the fact that, in Sec.
VII, we have assumed, following Ref.f8g, that the most rel-
evant contribution to the second moment coming from the
integral in Eq.s159d is concentrated in a narrow region near
the singularity inx8=0. This clashes with the assumptions of
Ref. f7g, in which instead it is argued that the main increase
in the winding angle does not occur when the polymer tra-
jectories are near, but rather when they are far one from the
other. Finally, there is also an apparent discrepancy between
the linear scaling with respect toL of the averaged second
momentkm2l0 and the square logarithmic scaling of the sec-
ond momentkm2l0,r 1,r 0

. This disagreement is explained by
the fact that, in the first case, the ends of the polymers are
free to fluctuate, while in the second case they are fixed. It is
therefore licit to expect that two polymers with free ends are
more likely to entangle than two polymers whose ends are
constrained.

Concluding, we would like to discuss possible further de-
velopments of this work, together with some problems which
are still left open. First of all, the number of entangling poly-
mers has been limited to two. To go beyond this restriction,
one should explore the possibility of replacing the external
vector potentialAisxd of Eq. s7d with Chern-Simons fields.
Abelian Chern-Simons field theories have been already suc-
cessfully applied in order to impose topological constraints
to the trajectories of an arbitrary number of closed polymer
rings in Ref.f37g. We hope to extend those results also to the
case of directed polymers in a forthcoming paper. Of course,
if the polymer trajectories are open, the constraints among
them are no longer of topological nature as in Ref.f37g, so

that the application of Chern-Simons field theory to directed
polymers should be considered with some care.

We have also not made any attempt to introduce in the
treatment of polymer entanglement more sophisticated con-
straints than those which can be imposed with the help of the
winding angle. This is in effect still an unsolved problem,
despite the fact that two powerful strategies have been pro-
posed for its solutionf38–40g. In the first approach, pio-
neered independently by Kleinert, Kholodenko, and Vilgis
f11,38,39g, the constraints are expressed via the Wilson loop
amplitudes of non-Abelian Chern-Simons field theories.
Some progresses toward a concrete realization of this pro-
gram in polymer physics have been made in Refs.f41,42g. In
the second approach, developed by Nechaev and co-workers,
see Ref.f40g and references therein, polymer trajectories are
mapped on a complex plane with punctures. The link invari-
ants necessary to impose the constraints are then constructed
using the properties of conformal maps.

Another possible development is the treatment of attrac-
tive interactions, in which the strengthv0 in Eq. s2d takes
negative values. In this case, thed-function potential admits
a bound statef32g and the propagator of Eq.s64d develops a
singularity, in whichlsEd=`, at the energy corresponding to
this bound state. It would be extremely interesting to inves-
tigate how these facts affect the polymers’ entanglement. An-
other issue which deserves attention is that of hairpin turns.
Hairpins are important in nematic solventsf21g and can be
included with the help of field theoriesf43g. We note also
that in our formalism it is also possible to study the entangle-
ment of polymers in confined geometries. For example, val-
ues ofE which are near toa−1sEøa−1d correspond roughly
speaking to the situation in which polymers fluctuate in a
quasi-two-dimensional environment, in which the height in
the t direction is of the order of a few molecular sizes.

Finally, an open problem, which has not been discussed
here because we were mainly interested in the second mo-
ment, is the derivation of the full partition function
GlsE; r 1,r 0d of Eq. s19d. As anticipated in the Introduction, it
is not an easy task to computeGlsE; r 1,r 0d because the re-
pulsive potential of Eq.s2d is not central. We note however
that the expression ofGlsE; r 1,r 0d coincides with the Green
function of a spin-1/2 Aharonov-Bohm problem in the
imaginary time formulation of quantum mechanics. This
Green function has been already derived in Ref.f29g using
sophisticated techniques developed in Refs.f27,32g, which
bypass all the difficulties of dealing with a noncentral poten-
tial. Thus, in principle, the expression of the partition func-
tion GlsE; r 1,r 0d is known. Unfortunately, some of the con-
sistency conditions imposed on the parameters in Ref.f29g
seem to be incompatible with the requirements of our physi-
cal problem, as noted in Sec. III. For these reasons, the com-
putation of the full partition functionGlsE; r 1,r 0d is still a
problem which needs further investigations. Luckily, the
knowledge of the partition function is not necessary if one is
interested to study the excluded volume interactions, which
arise in the strong coupling limit. In fact, in this case it is
possible to apply a powerful method due to Kleinertf33–35g.
This method turns the weak coupling expansion into a strong
coupling expansion which is convergent for large values of
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v0 and is able to accommodate also the anomalous dimen-
sions of quantum field theories. The convergence of this
strong coupling expansion is mostly very fast, so that only a
few coefficients of the weak coupling expansion must be
known, see Refs.f19,35g for more details. These coefficients
can be easily computed starting from the well-known parti-

tion function of the Aharonov-Bohm problem without the
insertion of thed-function potentialf19g and treating this
potential as a small perturbation assuming that the value of
v0 is small. The application of Kleinert’s method in order to
complete the brief analysis of the strong coupling limit made
in this paper is work in progress.
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