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Anomalous heat capacity above the isotropic—chiral-smecti€ phase transition
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A phenomenological model is developed to describe the isotropic—chiral-sn@epti@ase transition. The
anomalous part of the heat capacity of the chiral-smecftiicuid crystals above the isotropic—chiral-smectic-
C phase transition is calculated using Landau’s fluctuation theory. The temperature dependence of the heat
capacity above the transition point is calculated first for the Gaussian model and then taking the cubic and the
quartic terms as a perturbation. The theoretical results are found to be in good agreement with experiment.
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|. INTRODUCTION Il. THEORY
The pretransitional behavior in the isotropic phase of the A. Free energy

smectogenic mesophases is still an active and an unknown i

area in the field of liquid crystals research. In recent years the 1he construction of the Landau free energy for the

transitions from a smectic phase to an isotropic phase haeSMC  phase transition is rather complex. We start by de-

attracted much attention. This includes experimefitals]  Scribing the order parameters involved in the ISnphase

and theoretical[6—10 studies. The isotropic to chiral- transition. The layering in the Sth phase is described by

smecticC(I-SmC”) is one such phase transition which has athe order paramete#(r) = exp(—i®), whose modulugy, is

considerable current interest. The chiral-sme€i&mC’)  defined as the amplitude of a one dimensional density wave

phase represents a spatially modulated struciit¢ The  characterized by the phade The wave vectoV;d is par-

ferroelectric ordering in the S@1 phase is usually discussed allel to the directorn; in the smecticA phase. The layer

in terms of hindrances of rotation of the molecules aroundspacing is given byl=27/q, with go=|V®|. The tilt angle

their long axis. However, the microscopic origin of this or- in the SnC" phase is described by the tensor order parameter

dering remained obscure. A number of experim¢as-17

have been carried out on the I-8mphase transition. All the _Sr)

materials studied the |-SB phase transition appears to Qij(r)—7[3ni(r)nj(r)—1]. 1)

be first order. Emaet al. [5] measured the temper-

ature dependence of the heat capacity for{42- The quantityS(r) denotes the fraction of molecules at

[(R)-2-fluro-hexyloxylpheny}-5-{4-[(S)-2-fluro-2-methylde-  aligned parallel ton. The directorn;(r) in terms of the tilt

canoyloxylpheny}pyrimidine (RSFPPY both above and be-  angle g(r) and azimuthal angles can be expressed as

low the phases of the I-S@ phase transition. The analysis

of the temperature dependence of the heat capacity reveal ) = g sin 6(r) cos¢(2) + &,sin 6(r) sin ¢(2) + e,cosA(r),

an appreciable anomalous component, i.e., in the heat capac-

ity above and below the transition. This anomalous compo- (2)

nent showed quite different behawor_dependmg on Whethe\;vhere o(r) is the angle between the layer normal and the

the measurement was made on heating or cooling. They ot()j—. . o .
) irector n;(r). While the tilt is varying from layer to layer,

served the complicated structure of the heat anomaly accorrgﬁ | | o) is fixed. Th imuthal |

panying the I-Sri&" phase transition on cooling. However € layer normal(z axis) is fixed. The azimuthal angle

they did not succeed to reproduce the detailed behavior,oqescribing the average positior) of the malecules on the cone
the heat anomaly near the I-8mphase transition. which changes with th? coqrdmaxeas_ $=0z q being the
On the theoretical side there is only one attefi] to wave vector of the helix. This selection of the tensor order

study the I-Sr@ phase transition. In this recent work parameter is not unique, and different definitions of the order
Mukherjeeet al. [18] developed a Laﬁdau model to describe Parameter will result in different coefficients in the free en-
the direct I-Srﬁ:* phase transition. In this work they ex- ergy expansion, but the thermodynamic quantities calculated
plained the key features of the I-&hphase transition. The will not be affected by the definition of the order parameter.
purpose of the present paper is to explain the anomalous heat The in-plane spontaneous polarization is defined as
capacity in the isotropic region within the framework of Lan- P=P.(= sin &(2). cosd(2).0 3
dau’s fluctuation theory. We calculate directly the tempera- ol $(2),c054(2),0). @

ture dependence of the heat capacity in the isotropic phase efere P, is the magnitude of the spontaneous polarization in

the I-SnC” phase transition. the unwound ferroelectric state.
. _ _ _ Considering the above described order parameters, the to-
E-mail address: pkmukherje@yahoo.co.in tal free energy near the I-SBh transition can be written as
[18]
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1 4 1 1 1 1 1
F(r) =Fo+ 3aQ;(NQ;(r) - gbQy(NQ(rQu(r) + §C[Qij(r)Qij(r)]2 + §a| PP+ Z?’|</f|4+ 2_)(0P2 + 5(9Qij(f)Qij(If)|l/f|2
1 1 1 1 .
+ 7Q;; ()PP} + §d1|Vi¢|2+ Ed2|A¢|2 + ELlVink(r)Vink(r) + Lggij Qi () Vi Qy(r) + Eer(f)(Vi‘ﬂ)(leﬂ )

1 w1 P |
+ Ean(f)Qﬂ(r)(Vilﬂ)(le// )+ EhQu(r)le(r)(ViVj DV Vi) + 55k PViQ;(r), (4)

whereF, is the free energy of the isotropic phase. Hare have considered only the[VS(r)]? term and neglect the
=ay(T-T)), anda=ay(T-T,). T; andT, are the critical tem- terms like ~JVS(r)]2~ S VS(r)]?, etc. for simplicity of
perature for a hypothetical second order transitan «g, b, the calculation. The dependence of the Ginzburg-Landau pa-
¢, v, m, dy, andd, are positive constants? is a coupling rameters and the elastic constantbecomes more compli-
constant. A negative value d@f increases the smectic order- cated, when such terms are considered.

ing and favors the S@ phase over the isotropic phasg.is The tilt angled in the SnC" phase can be expressed as
the dielectric susceptibilityL, is the elastic constant. An- .k

other elastic term~ L,V;Qu(r)V;Qu(r) is neglected for Sinzgzw_ (6)
simplicity. Heree;, is the antisymmetric third rank tensor. 2nS

The chiral character of the SBh phase results in the pseu-
doscalar first order spatial derivative term in the free energy,.
Thus the coefficienk ; is analogous to the coefficient of the
Lifshitz-invariant term and induces the helical modulation of
the SnC” phase. The gradient termse, ~f and~h involv-

ing Q;(r) governs the relative direction of the layering with
respect to the director and lead to the tilt angle of theCSm
phase. In general a negative valuesdavors the stability of
the SnC" phase. There is no direct linear coupling term
~|z/;|2Qij(r) in the free energy4), since such a term cannot
exist in the isotropic phasgs]. Here gy, takes the form
Gij =9(8kdj + & Sj). The coefficientg is analogous to the

flexoelectric coefficient. This coupling term is of chiral char- . a? 9 [€a"\?
acter and induces a transverse polar ordering. A coupling Fo=Fo- 4_7 ~ 64n '
term ~P2?|¢{2 can also be added in the free energy. An
important feature of the model free enei@y is thaté is not

The behavior of the tilt angle in the SnC" phase is
mpletely determined by the behavior of the orientational
order paramete8. In this connection we point out that the
modulus of the orientational order parameter in theCSm
phase was measured experimentally by Dollase and Fung
[21] and described the smecie-SnC" transition by the
jump of the modulus of the orientational order parameter.
While deriving Eqgs.(5) and (6) we have done the series
expansion of 1+(gxo/2L,)]™* and consider the terms up to
(9xo/ 2L)%
The renormalized coefficients are

a separate order parameter but arises from the competition a =a(T-T),
betweenQ;;(r) and . The above free energy describes the ) .
direct first order I-Sr&" phase transition. b =bo(T-Ty),
Now we consider the phase in which the translational or-
der parameter is spatially homogeneous, ig=const. for ¢ :CO(T—TZ),
the simplicity of the calculation. The substitution @f;, and
¢ in Eqg. (4), and eliminating the equilibrium values ¢f, 6, . 3
Py, 0o, andq from Eq.(4), leads to the free energy density as L= ng’
a function ofS(r) alone can be written as
. e =ed/2d,,
H(r)=F(r) - Fy= (1—3—m)e—a8(r)+la*sz(r)
an/ 2y 2 f* = fdy/2d,,
s+ tesin + TUven 5
3 (r) 4C (r) > VS (5 h* = hd,/d,
Equation(5) considers both the spatial fluctuations %f) h™ = hd/d3
and 6(r). The tilt angle fluctuations in Eq5) appear as
~[VS(NT?, ~9VSr)P~SFVS[r)]?, etc. However, we ho=h" - (€?/d,)
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e2 * *%k
5*_5—4—d2—f +(h™/4)

. Sa
ag=ay— ——by,
Y

bo=[- 3e(f - h*)a0/4yd2],
Co = (ag/2yd))[dy(f - h")? = hé?],

2 o
b, = X_<1 _h>,
27 4d,

ydi) ]Xzao
= 1-23 |w|—"
b, [y+( 4d, Wiz

( 92y 3e? )

16L, 4y

3(f* —hy)
y= 4—1
YX

_ 95w 9e”
C16L; 16y’

_9(hg+ e?)
T 32yZ

* * ga()) * e*z (S*di:| *
T_|:aOT1 <b2+ y T2+b1+27 4yd, o,

reme[o- 28 +3e°ﬁ“‘“>}/bo,

27 16yd3
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. 0_5*_2_ee*(f—2h*)} .
472 Adyag Y 2yd, o

*D *oek 2
3e” . 3a (f" = hp) . 9L3u,
4y 8y 16L,

_9%? Oa(hg+e?) 9Liw
16y 32y 16l

u=1+ (92X0/2L1) + (92X0/2L1)2,

v =(g%xo/2Ly)u.

The above described renormalized coefficients are utmost
complicated although the calculations are straightforward.
We have done the series expansionn@i/2n in order to
obtain the renormalized coefficieat .

Equation(6) shows that the tilt angle is influenced by the
chirality of the system. Although in the Landau expansion of
free energy(4) no change of the values &f and c are al-
lowed as one approaches the transition temperature. The
renormalized coefficients” andc” are now temperature de-
pendent. This is justified since the renormalization group
analysis and the Monte Carlo simulation results indicates the
renormalization of the Landau coefficients as one approaches
the transition temperature. We assumie~T,~T,. The
renormalized temperatuf shows that the chirality slightly
changes the I-S@ transition temperature but does not in-
fluence the nature of the -8B transition(sinceb andc are
not influenced by the chiralily Thus the I-Sr&" phase tran-
sition temperature has been slightly shifted for theCSm
liquid crystal in comparison with the Stncompound. Since
the quartic coefficient” changes with temperature and can
be negative, then stabilizing fifth and sixth order terms
~DS(r) and ~ES(r) with E>0 should be added in the
free energy(5).

2.24 A

2.22

FIG. 1. The anomalous part of
the measured heat capaci@y(T)
of the liquid crystal RSFPPY in
the isotropic phase above the iso-
tropic to smectic€” transition.

R
C. (UK"g™)

2.12 4

2.10 A

2.08

The measured datdcircle) are
from Ref.[5], and the line is the
best fit of Eq.(13). The upper in-
set shows the measured heat ca-
pacity over the full temperature
range.
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The partition function, averages, and correlation functionis summed over all the modes of the system. HS())

are calculated with the weight =0 in the isotropic phase in the absence of external field.
Now =, — (1/873) [Im>dk, where gnay iS the cutoff wave
WS :exp<—,8f H(r)dr), (7)  vector.
Hence the excess entropy in terms of the correlation func-

with 8=1/ksT and kg is the Boltzmann constant. We now tion G can be expressed as
proceed to calculate the anomalous heat capacity. To calcu- . g
late the heat capacity we have followed the methods adopted (AS'(T)) = - 3 f G(k)dk. (12)

by Imuraet al.[19] and Fixman[20]. 1673,
B. Gaussian model The corresponding heat capacity at constant pressure per
Settingb =0 andc" =0 in Eq.(5), the free energy of the unit volume due to the fluctuations is then given, taking
system of volumeV can be written as Omax— %, &S
— & X
%o= JVH“)df- ® ACHT) = —=(TAS) =C,TAT-T) 2 (13)

The entropy density associated with the fluctuation is ob- _ £ 03
tained by differentiating Eq(5) with respect to the tempera- whereC, = (kg/16m)(ao/Ly)""
ture,

1
AS(T,9=-=

2

* C. Contributions of the cubic and the quartic terms
Ja \ ,
(—)S (r). (9)

The contributions of the cubic and the quartic terms in the

) free energy can be obtained using perturbation theory, with
The ensemble average of H) gives the entropy change the Gaussian model taken as the zeroth-order perturbation.

aT

due to the fluctuations, We divide the total free energy into two parg=gy+9;.
, 1 oa X Here go is the free energy in the Gaussian model gpds
(As (T)>=—52 — (S, (100 given by
K \oT
1. 1.
where 0= J {— 'S0+ eSO |ar. (14)
ke T v
k)|2) =~ *L* = G(k 11
(ISk)I% a + LI (k) (11)

Using the method of Feynman grapf22], the correlation
is the k-dependent order parameter fluctuation &i&) is  function can be written in thg,,,—  limit, to the second
the reciprocal-space correlation function. The wave vektor order inb™ and the first order irc’, as

G'(k) = o kT (15)

a + KL + s 30717 - ST EUC L) - o (b))

with &=(L}/ag)Y3(T-T")~2 Utilizing the same procedures employed above, the excess heat capacity at constant pressure per
unit volume due to the fluctuation is obtained as

ACp(T) = Csz{ [1+CT(T-T)AT-T) ¥ (T-T) - 4C,T(T-T)AT-T) 2= CaT(T - T(T-T)¥? 2
X {1 = 20, T[T =To)(T-T) 2= (T=-TAT-T)%?] - C3T( (T-THY2+ %(T -T)(T- T*)'1’2> } -3(C,/2)T

X[1+CoT(T =TT = T) S AT - T)(T-T) 2= 3T-TYAT-T)2[(T-T) - 4C,T

X(T =TT =T) Y2~ CyT(T- Ty (T - T*)l’?]W} , (16

whereC,=2C,b3/a;® and C;3=12C,co/as’.
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PPY in the isotropic phase above
the isotropic to smecti€” transi-
tion. The measured data are from

2.6 o

2.5 1

2.4 1
—~ FIG. 2. The heat capacity
o Cp(T) over the entire temperature
g) 2.3 range of the liquid crystal RSF-
s
(6]

2.2
Ref.[5]. The line is the best fit of
Eq. (16). The upper inset shows

S the fit of Eqg.(13) of the same data
211 Sl over the same temperature range.
2.0 T T T 1 1 1 1 1
3874 3876 3878 388.0 3882 3884 3886 3888 3890 389.2
T(K)
11l. COMPARISON WITH EXPERIMENT The fit shows that the contributions to the cubic and the

The temperature dependence of the heat capacity of R§Martic terms are indeed important and a perturbation theory
FPPY was reported by Emet al. [5]. The heat capacity IS justified in this case. The fit yieldS,=4.13x 10" K™
Cp(T) in the I-SnC" transition on heating measured by Ema and Cs=-1.06x 10 K™% Equation(16) is very sensitive
et al. [5] is shown in the upper inset of Fig. 1. As can be 0 the values of", T, andT,. From the fit we observe that
observed, the normal heat capacity is much higher than thé =~T;~T, which justifies our assumption.
anomalous contribution. The strong large magnitude of the Finally we also observe that the amplitude of the order
normal component relative to the anomalous contributiorparametettilt angle or orientational orderindluctuation in-
renders it progressively more difficult to separate out thecreases abnormally near the I-Sitransition temperature
anomalous part as one gets further away from the transitiofiT+,) and brings about the anomalous increment in heat ca-
temperature. We have therefore fitted Etp), plus a normal  pacity. This may be caused by a macroscopically inhomoge-
componentC, representing the normal component, to theneous distribution of bulk impurities. From EL3) it is
measured data, over a restricted temperature range above #gar that the heat capacity has a square root divergence in
I-SmC" transition, usingCy, T', andC, as a fit parameters. the jsotropic phase. Thus the critical exponeft0.5 which
Co=2.01 JK*g™* was selected for the good fit. Theffine) s same as in the case of isotropic-nematic and isotropic—

and the measured dafizircle) are shown in Fig. 1. As can be gmecticA transition and indicate the fluidlike analogy in the
observed, the agreement of the measured data with fun%’otropic phase of the I-S8i transition

tional form predicted by theory is reasonably good. The fit
yields C;=4.64x 107 J K™>2g™1, We also fitted the same
data by using Eq.16), which includes the contribution of the
cubic and quartic terms in the free energy. The line obtained
in the fit overlaps the line that shown in Fig. 1 on the scale of )
the figure with different fit parameters. What transpires from We have presented here a Landau fluctuation theory
Fig. 1 is that only the first order theory is sufficient to explain @nalysis to describe the anomalous behavior of the heat ca-
anomalous behavior of heat capacity above the EStran-  Pacity in the isotropic phase of the I-&m transition. The
sition. We further fitted the full heat capacity data above theanalysis presents theoretical support with the experimental
I-SmC" transition by Eq(13) where the fit(line) is shown in  observation. Although the agreement between experiment
the upper inset of Fig. 2. The fit yieldsC,=6.43 and theory is reasonable, Eq$3) and(16) are sensitive to

X 1077 JK™2g7L, As can be seen from the upper inset of the values ofC,, C,, and C; which depends om, andL;.

Fig. 2, the agreement is not reasonably good. We have therdhe value ofL; can be obtained in principle from the light
fore fitted the same data by E@.6) with C, andC; as a fit  scattering measurements. A reliable estimation of the phe-
parameters and taking the same value ©§=6.43 nomenological coefficients and the elastic constgns not

X 1077 J K=32g~1 obtained for the upper inset of Fig. 2. The possible due to the lack of experimental data, e.g., order
fit (line) and the measured dateircle) are shown in Fig. 2. parameters, light scattering, etc. The accurate measurements

IV. CONCLUSION
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of the thermodynamic quantities near the |<Sntransition  measurements near the |-Sin@ansition are called for to
will speak for reasonableness of the value€gfC,, andC;  determine the validity range of the present theory.

obtained from the fit. The present theory shows that a first
order theory is sufficient to explain only the anomalous be-

havior of the heat capacity above the I-Smtransition The author thanks Professor K. Ema for discussions, and
point. However, the cubic and the quartic contributions aré&or providing his heat capacity data in numerical form. The
found to be important to explain the nature of the heat caauthor is also thankful to Professor F. Giesselmann for dis-
pacity over the entire temperature range above the GSm cussions. Special thanks go to the Alexander von Humboldt
transition point. Accurate heat capacity and elastic constarffoundation for financial assistance.
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