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Geometrical structure of disordered sphere packings
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The three-dimensional structure of large packings of monosized spheres with volume fractions ranging
between 0.58 and 0.64 has been studied with x-ray computed tomography. We search for signatures of orga-
nization, classifying local arrangements and exploring the effects of local geometrical constrains on the global
packing. This study is the largest and the most accurate empirical analysis of disordered packings at the
grain-scale to date, mapping over 380 000 sphere coordinates with precision within 0.1% of the sphere diam-
eters. We discuss topological and geometrical methods to characterize and classify these systems emphasizing
the implications that local geometry can have on the mechanisms of formation of these amorphous structures.
Some of the main results af) the observation that the average number of contacts increases with the volume
fraction; (2) the discovery that these systems have a very compact contact neti8prikie finding that
disordered packing can be locally more efficient than crystalline packifgtie observation that the peaks of
the radial distribution function follow power law divergencéS) the discovery that geometrical frustration
plays no role in the formation of such amorphous packings.
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I. INTRODUCTION Richardet al. [6] followed, respectively in 2001 and 2003.

When balls are poured into a container they arrange thenfzonfocal microscopy techniques have been also used to re-
selves in a disorderly fashion with no obvious symmetries o€onstruct three-dimensione8D) images of a dense packing
extended patterns. However, disorder does not mean randofmu!Sion of oil droplet§7] and to count contacts in glass
ness. Indeed such systems are locally highly structured in eads[8]. However, all these works concern rather small

. ) o . X ) ample sizes and focus on the analysis of a few specific
hierarchical organization which tries to achieve the goal Oftsopics. In this paper we present an empirical investigation by

maximal compaction under the unavoidable geometrical con:

. ) . o i means of x-ray computed tomography on very large disor-
straints of noninterpenetration, satisfying simultaneously theyereq packings of monosized spheres with packing densities
condition of force and torque balance on each ball. Thi

\ : Sanging from 0.58 to 0.64The packing density is the frac-
leads to very complex structures which show signs of 0rgasion of volume occupied by the balls divided by the total

nization but nevertheless have so far eluded all efforts for gojume, and it is often called volume fractioiThis study is
simple and clear classification. In order to fully classify thethe largest and the most accurate empirical analysis of disor-
state of a disordered system, such as a granular packing @éred packings at the grain scale ever performed. A packing
rest, the exhaustive details about the exact position, orientgealization is shown in Fig. 1. Preliminary results were pre-
tion, and shape of each grain is, in principle, needed. Howsented in Ref[9]. Here we perform a more extensive and
ever, part of such information is at best redundant, or evegomplete investigation using an improved algorithm to cal-
irrelevant, and several degenerate states with different micrazulate the positions of the spheres. Additional material in-
scopic realizations can share the same macroscopic properttuding the complete set of sphere coordinates can be found
ties. To determine which are the accessible configurations am Ref.[10].
the local level, and to understand which are the possible This paper is organized in several sections each address-
combinations which generate the global packing is of fundaing different aspects. Each section has been designed to be as
mental importance. Indeed, finding measures for local angelf-containing as possible. Cross references among sections
global, organization is the essential starting point towards thguide the reader who may wish to focus on specific topics.
understanding of the basic mechanisms which form these In Sec. Il, the experimental apparatus and the relevant
structures and determine their properties. It is also an essemethodology to extract geometrical information from the to-
tial step in the development of technologies which enable usnography data are described.
to control and tune the structure of amorphous materials. In Sec. Ill, the number of neighbors for each sphere in the
Until now the empirical investigation of the geometrical packing is studied and a tool to deconvolute the contribution
structure of these systems have been limited by the very littlef touching neighbors from the contribution of near neigh-
availability of accurate experimental data. Indeed, after théors is introduced. Implications on mechanical equilibrium
seminal works of Bernal, Mason, and Sddtt3], it has been are also discussed.
only very recently that the use of tomography has allowed In Sec. IV, the hierarchical structure of the contact net-
the investigation of three-dimensional structure from thework is analyzed in terms of a shell mapl].

grain level up to the whole packing. The local symmetries are explored in Sec. V by means of
The first work which uses tomographic technigues despherical harmonics decompositifi2].
voted to the investigation of granular packing is by Seiéler In Sec. VI, the compactness of the average local packing

al. in 2000[4]. Other two works by Sedermaat al.[5] and is discussed and compared with crystalline packings.
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(i) Two large samples containing 150 000 beads with
diametersd=1.000 mm and polydispersity within 0.05 mm.

(iil) Four smaller samples containinrg35 000 beads with
diametersd=1.59 mm and polydispersity within 0.05 mm.

An independent estimation of the polydispersity for the
small spheres was performed by weighing 200 beads and
computing their standard deviation. The estimated value for
the relative statistical error on the sphere diameters is 1.5%.

The use of two different kinds of spheres is primarily
motivated by the need to verify the robustness of the results
e A in respect to grain-size dependent effects. Moreover, the use

_-.:_3".:;.:.‘3;'}:.' S T e of smaller grains allows us to obtain packings with a larger
"“e.‘hi_t.&';l‘fvr . 473 number of grains quantifying in this way the effect of the

e boundary and the statistical precision.

.:‘
-

A. Sample preparation

The six sampleglabelled A-B have been prepared at
different packing densitiegs ranging between 0.58&ample
A) to 0.640(sample F. Table | reports in the second column
all the sample densities. The two packings at lower densities
(A, B, respectively, withp~0.586—0.59Fwere obtained by
placing a stick in the middle of the container before pouring
the beads into it and then slowly removing the stjdig].
FIG. 1. Areconstruction of a packing ef150 000 spheres in a Sample C(p=0.619 .Was obtalneq by gently and slowly
cylindrical containersample G. pouring the spheres into the container, whereas the sample D
(p=0.626 was obtained by a faster pouring. An higher den-
We analyze and discuss the results for the radial distribu§Ity (p.~0'63' sample Ewas achieved by gfntly tapping the
. S container walls. The densest samfi#¢ at p=0.64 was ob-
tion function in Sec. VII. . . X .
. . . ained by a combined action of gently tapping and compres-
The density fluctuations at sample level and at grain Ieve}. f b ith th » left fined
are investigated in Sec. VIII. The implications that sampleSlon rom above(with t © upper surface left unconfined at
eometry can have for .the d. namic formation of these s st-he end of the preparatianTo reduce boundary effects, the
9 ety ; y YSinside of the cylinder has been roughened by randomly glu-
tems is discussed in Sec. IX.

. . . ing spheres to the internal surfaces.
A conclusion summarizes the main results and perspec-

tives.

B. XCT imaging

Il. EXPERIMENTAL APPARATUS AND METHODOLOGY .
A x-ray computed tomography apparatsee Sakellariou

The empirical studies reported in this paper concern thet al. [14]) is used to measure the density maps of the
analysis of six samples made of monosized acrylic beadsamples. The two large samplés, C) were analyzed by
packed in a cylindrical container with an inner diameter ofacquiring data sets of 200@oxels with a spatial resolution
55 mm and filled to a height of75 mm. In particular we of 0.03 mm; whereas the four smaller sampiBs D, E, P
have the following: were analyzed by acquiring data sets of 1D06xels with a

TABLE |. Sample density and their interval of variatiofis) within each sample; number of spheres in
the sample(N); number of spheres in the central regit¥g); estimated average number of neighbors in
contact(n;), average number of neighbors at given radial distange) with r=1,1.02,1.05,1.1 diametdrs
Standard deviatiof¢] calculated from the probability distribution for radial distances smaller thagtween
a pair of sphere centers.

Density N Ng Ne n(1) n(1.02 n(1.05 n(1.2) I3
A 0.586+0.005 102897 54719 5.81 3.0 5.5 6.7 7.5 0.014
B 0.596+0.006 34016 15013 5.91 2.9 5.9 6.8 7.7 0.011
C 0.619+0.005 142919 91984 6.77 35 6.4 7.5 8.4 0.013
D 0.626+0.008 35511 15725 6.78 3.3 6.0 7.5 8.4 0.017
E 0.630+0.01 35881 15852 6.95 3.4 6.3 7.6 8.6 0.016
F 0.640+0.005 36461 16247 6.97 3.3 6.9 7.9 8.9 0.011
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spatial resolution of 0.06 mm. After segmentatisee Shep-
pardet al. [15]) the sample data sets are reduced to three-
dimensional binary images, representing two distinct phases,
one associated with the spheres and the other with air space.
The effective spatial resolution of this technique is limited by
the finite size of the x-ray source, surface scattering of the
low energy x ray and intrinsic blurring from reconstruction.
From a careful analysis of the reconstructed samples we ob-
served that the combination of all these factors generates
some fuzziness in a region between one and two voxels
around the sphere surfaces.

Number of Spheres

C. Sphere centers

In order to proceed with the analysis of the geometrical
and statistical properties, the position of all sphere centers
are calculated from three-dimensional binary images. Our
approach is to find the sphere centers by moving a reference
sphere(9) throughout the packingP) and measuring the
local overlap betwee® and P. This corresponds to a three-
dimensional convolutiorR*S. The regions with larger over-
laps are the ones around the centers of the spheres in the
packing. In order to isolate these regions we apply a thresh- 0.9
old on the intensity map resulting from the convolution. The Thresholq 08 075 ¢
centers of mass of such regions are good estimates for the
positions of the packed spheres. This method is made with FIG. 2. (Color onling Number of detected spheres in an internal
high numerical efficiency by applying the convolution theo- region of samples Atop) and D (bottom reported as function of
rem which allows the transformation of the convolution into the reference sphere radius and the threshold. The threshold is ex-
a product in Fourier spacer P S|=F[P]FS|, where F pressed in relative units with respect to the value of the highest
represents théfast Fourier transform. The algorithm pro- intensity peak in that region.
ceeds in four stepg,l) fast Fourier transform of the binary
image (F[P]); (2) transform the digitised map of the refer- mass is computed. Therefore the best choice of parameters is
ence spheréZ[S]); (3) perform the direct product between the one which leads to the largest clusters. This requires the
these two; (4) inverse transform of the product, smallest possible threshold and a reference sphere-size com-
FUFAP]FS]]=P*S. The result is an intensity map of the patible with the correct detection of each sphere in the sys-
overlap between the reference sphere and the bead padRm. We chose the threshold at 0@amples A, C, B and at
where the voxels closer to the sphere centers have the highds®3 (samples B, D, F and we fixed the reference sphere
intensity. A threshold on the intensity map locates the groupsadius at 13(sample A, G, 11 (sample &, and 10(samples
of voxels surrounding the sphere centers which become isd3, D, F). Obtaining typical cluster sizes of80 voxels
lated clusters. The sphere centers are calculated as the cenfgamples B, D, E, Fand~400 (samples A, ¢ This implies
of mass(intensity of these clusters. precisions on the sphere centers, respectively, within 3% and

The precision on the estimation of the sphere-center posR.5% of the voxel sizef10].
tions can be evaluated considering that the spatial resolution
is within one and two voxels. Therefore the precision on the D. Central region
center of mass of a cluster ofvoxels must be within 24 In .
the procedure to locate the sphere centers one has two ad- In order to reduce boundary effects, all the analysis re-
justable parameters, the reference sphere size and the thre%’g—rwd hereafter hav_e been performed over a central region
old. We have searched for the optimal choice of the param _) at four sphere d|ameter§ away from the sample bound-
eters by varying these two quantities and computing thé'i€S- Note that spheres ogtsﬁaare considered _when com-
resulting number of spheres detected in a given portion oputing the neighboring environment (_)f sph_ere§5|.rin Table
the sample. In Fig. 2 the number of detected spheres is ré-tN€ number of spheres in this regiéNc) is reported for
ported in function of the reference sphere size and the thres/®ach sample.
old. When the reference sphere is too small only one cluster
is detected independently on the threshold. Similarly when I1l. NUMBER OF NEIGHBORS IN CONTACT
the threshold is too small, peaks cannot be isolated and one
spanning cluster is also observed. On the other hand, there is
a rather large region of the two parameters where the same Let us start the analysis of the local packing configura-
amount of spheres is detected. We know that precision intions by exploring local neighborhoods. The average number
creases with the size of the clusters on which the center aéf spheres in contact with any given sphere is the primary

Number of Spheres

A. Near neighbors
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and most investigated parameter in the literature on granula 10 : . F
packings[1-5,8,12,13,16—19 Indeed, this is a very simple ! ! Total {/ E
topological quantity which gives information about several ! e §<D
important properties of the system. Unfortunately, although l AT %\\g
simple in its definition, such a number is an ill-defined quan- ' A

tity from a experimental point of view. The reason is that, 6}
from a geometrical perspective, the information about the -
positions, and eventually the sizes of all spheres is not suffi-
cient to determine such a number, two spheres can be infini
tesimally close but not in touch. In the literature several
physical methods have been uddg8,16, but they all en- 2t
counter problems essentially associated with the uncertainty
in the threshold distance used to define the maximum al- ey s
lowed gap between apparently touching spheres. 0 [ , . .

An exact computation of the number of touching spheres 0.95 1 1.05 1.1
from a geometry alone is, in general, an impossible task rid

since the result is unavoidably affegted by the precision on g5 3 (Color onling (Symbol$ Behavior for the average num-
the sphere centers and the polydispersity of the sphergg, o sphere centers within a radial distanceLines Comple-
themselves. With the data from x-ray tomography, we Cafnentary error functiomy(r)™ [Eq. 1] normalized by best fitting the
calculate the location of the sphere centers with a precisioggreement with the data in the regiorrd. The average¢d) and
which is within 0.1% of their diameters. On the other hand,the standard deviatiori) are calculated from the probability dis-
the beads utilized have a polydisperse bead-diameter distriribution for radial distances smaller tharbetween pair of sphere
bution with a standard deviation aroureD.0. Therefore, centers. The renormalized complementary error function fits well
statistically, the large majority of neighbors in contact mustthe data forr <d. After this value, near neighbors not in contact
stay within a radial distance of 1.82Table | reports the start to contribute significantly toy(r), and the two behaviors split.
values of the average number of neighborg computed in  The deconvoluted plots show the difference betwegn and the

G at the four different radial distancessd, 1.0, 1.05,  fit with n(r)"™.

and 1.d for the six samples A—F. We observe values for the

average number of neighbors betwesfr) ~2.9 and 8.9, growth law describing the cumulative number of nontouch-
and an increasing trend with the packing density. ing neighbors within the distanae Indeed, we verify that

Deconvoluted |

B. Touching neighbors 0457

A more precise estimate for the actual number of spheres 04}
in contact can be inferred from the behaviorngr) (shown 0.35}
in Fig. 3 as function of the radial distance up rtg1.1d).
From Fig. 3 one can note that above0.981 the number of 0.31
neighbors grows very steeply up to a knee at aboutdl.02 */ 0.25}
where a slower growth takes place. Such a steep growth ir <
the number of neighbors can only be an effect of the uncer- 0.2}
tainty on the positions of the sphere centers and of the sprea
in the statistical distribution of the distances between sphere:
in contact(which is a consequence of the polydispersity 0.1}
Indeed, in the ideal case, when all the exact positions of

Normal Distribution 2

0.15¢

closely packed, identical, spheres are known, one would ex: 0.05¢

pects thain,(r) has a discontinuity at=d (from zero to the 0 :

number of neighbors in contary) followed by some kind of -5 0 5
growth forr>d. For real, polydisperse, nonperfect, spheroi- rid—1

dal grains, the distance between elements in contact is not « S

fixed value but instead it is distributed around an average
value. In Fig. 4 it is clearly shown that such a distribution of
re_ldla! distances is well mimicked for<d by a normal dis- a normal distribution[An(r) being the average number of
tribution. As a cons_equence, ij expe(;t that the steep gro heres at radial distance between\r andr+Ar]. All data for all

of n(r) aroundr =d is well described with a complementary e six samples collapse into a single behavior whew(r)é is
error function(for r <d). To such an error function we must piotted versugr/d-1)/& The line is the(collapsed fit of the data
add the contribution from the nearly touching spheres whichn the regionr <d (left-hand side with the normal distribution.

is expected to become sizable framd. We therefore ex-  This is the same fit used in the deconvolution shown in Fig. 3,
pect to find an error-function behavior uprte-d and then a  which allows the estimation of the average number of spheres in
combined contribution from the error function and somecontact.

FIG. 4. (Color onling In the regionr <d the distribution of
radial distances among neighboring spheres are very well mimicked
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8 - latter data has been recalculated from that reported by apply-
75 Scott 1962 ing the deconvolution method described above.
' In Fig. 5 the values of, vs density for the samples A—F
7t are reported together with those from Bernal and Scott. Such
agreement between these different data is remarkable consid-
6.5 ering the different experimental protocols, the different
< 6l preparations of the samples, the different criteria for identi-
fying and counting spheres in contact and the different poly-
5.5 T dispersity of the spheres. As one can see from Fig. 5, they all
—— Bernal 1960 . . . . .
5| s_how a (_:Ie_ar a_nd consistent increasing behawor_ Wlth the den-
sity. A similar increasing trend was also found in simulated
45¢ 4 1 packings[20,21]. This dependence on the packing density
has important theoretical implications which are discussed
055 06 0.65 below.
. - .
FIG. 5. (Color onling Number of neighbors in contact vs C. Mechanical equilibrium
sample density. The filled symbols correspond to the samples inves- . . _
tigated in the present work. The two symbeisare the values from In a stack of grains at mechanical equilibrium, Newton's
Ref.[1] whereas the< is from Refs[2,3]. The line best fits the data €duations for the balance of force and torque acting on each
A—F under the constraint to pass throug4 atp=0.55. grain must be satisfied. Lagrange and Maxy22,23 have

been among the first to note that in these kinds of systems, to
achieve stability, the number of degrees of freedom must
balance the number of constraints. It is straightforward to
calculate that the balance between freedom and constraints
fit _ 1 ' (x—d)? requiresn,=6 in the case of perfectly spherical frictionless
ni(r) ‘ch,?gz exp - 28 dx, 1) spheres, and,=4 for more realistic graingnonspherical
- with friction) [24,25. These values oh. are encouraging.
where the value of the medd) is the average sphere diam- Indeed, they are rather close to the ones observed experimen-
eter which was estimated=25.00 voxelgsamples B, D, E, tally. However, it must be noted that this condition from the
F) and d=30.81 voxels(samples A, ¢ [9]. On the other Maxwell counting is neither sufficient nor necessary
hand, the variancé can be directly estimated from the data [26—28. Indeed, there can be local configurations which
by computing the second momen(is —d)?) for the radial ~ contribute ton. but do not contribute to the rigidity of the
distances between spheres calculated over half the distribiithole system(These are, for instance, the rattling grains

the behavior ofn(r) for r=d is very well described by a
complementary error function normalizedng

tion in the regionr <d, which can be removed from the system without affecting its
stability) On the other hand, there are local arrangements
Ei ((rij = d)?H(d - r)) which satisfy the counting rule am, but nevertheless are not
£=2 : (2 rigid [26,27).
Ei,j H(d-r;)) In recent years there have been scores of theoretical ap-

L _ proaches which consider real, disordered, granular packings
with i, indices denoting the sphere centers; the symbol 14 pe jsostatic(free of self-induced stressef24,29. The
indicates the distances between the centers of spl@Tej;  ,qyvantage is that in a system at isostatic equilibrium, the
andH(d-r;;) the step function which returns 1if;<dand  jntergranular forces are uniquely determined by the balance
0 if rj;=d. From Eq.(2) we retrieve varianceg in the  f force and torque alone. On the contrary, an overcon-
interval between 0.@land 0.0 (all the values are reported girained structure can generate self-stress and the deforma-
in Table ). These values are consistent with the beadyion of individual grains becomes relevant. In real granular
polydispersity and are significantly larger than the eSt'mate(i‘naterials(or in bead pacKsfriction and rotational degrees of
uncertainty on the sphere centers. The only free parametgfeedom are unavoidable, therefore the Maxwell counting
left in Eq. (1) is the value of; which can be now computed jnplies that isostatic configurations must have average con-
by best fitting the agreement between the datanfon and  npectivity of n.=4. Unfortunately, such a value is rather small
the functionn(!(r) in the regionr <d. In Fig. 3 itis shown in comparison with all available empirical estimations.
that the functionn('(r) fits well the data for <d by using  Moreover, all the experimental observations concludethat
the values o given in Table I. At larger distances > d) increases with the packing density excluding therefore the
near neighbors not in contact start to contributenfo) and  possibility to fixn. at 4 for all stable packing$See Fig. 6.
the two behaviors separate. We estimate that in the six However, in related studies for the rigidity in network
samples A—F there are on average between 5.81 and 6.gjfasse§28,3( it has been observed that there can exist two
spheres in contadsee Table | and Fig.)5These numbers phase transitions associated with the increase of connectivity
fall in the range of reported values, Bernal measungs in a network, arigidity percolationand astress percolation
=5.5 atp=0.6 andn,=6.4 atp=0.62[1]; whereas from the and between these two thresholds iatermediate phase
data by Scott we have.=7 at p=0.63[2]. Note that this which is rigid but unstressed. Thigidity percolationoccurs
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all atoms which are neighbors to the atoms in the first shell,
excluding the central one. Moving outward, the atoms at
shellj+1 are all the ones which are bonded to atoms in shell
j and which have not been counted previously. In infinite,
periodic, crystalline structures with no boundaries, the num-
ber of atoms per shell should increase with the topological
distance and it has been shown that in several three-
dimensional crystalline structures the law of growth for the
number of atomgK;) at shellj can be described witk;
:ajj2+bjj +¢; (with a;, by andc; coefficients that might vary
with j but only within a bounded finite interve]33-38,41.
Following the definition of O’Keeffd 36], for these crystal-
line systems, the asymptotic behaviorkgfcan be character-
ized in terms of an exact topological densifyp=(a,)/3
[41]. It has been noted that such a topological density is
related to the geometrical density of the corresponding crys-
talline structure, and it is a powerful instrument to character-
ize such systems. For instance, it is easy to compute that the
cubic lattice hask;=4j2+2. Whereas, spheres packed in a
bce (body centered cubjccrystalline arrangement have;
=6j2+2 (j>0). On the other hand, it has been sho{@8]

that for Barlow packings of spherds; is always in a narrow
range within

21j?

FIG. 6. (Color onling Same as Fig. 1 with a portion removed 10j2 +2=< Kj ES
and the topological distances from a given central sphere high-
lighted in colors.

+2 (j>0), 3

where the brackets: -] indicate the floor function. In Eq3)
. ] the lower limit is associated with the fdtace centered cu-
at the threshold predicted by the Maxwell countifrg=4) bic) packing and the upper limit corresponds to the thex-
and appears to be a second order of transfBil Thestress  agonal closed packgdpacking. It has been observed by
percolationtransition occurs at a higher value of and it O’Keeffe and Hyde42] that for lattice sphere packingthe
could be a first-order transitioh30]. This suggests that general rule hOldSKj=(nc—2)J'2+2, implying thereforea
granular packings might be inmmarginal statebetween the =n.-2.
rigidity and the stress percolation thresholds. In suqh an iso- Beyond perfect crystalline order very few results are
static unstressed state, the system has zero elastic moduldsown either from theoretical, empirical or numerical point
(in the thermodynamic limjt[28,30, it is therefore margin-  of view. One can argue that; must grow with a law com-
ally rigid and it can be seen as in a intermediate state beparable with the law for a spherical shem,-~aj2~47-rj2.
tween fluid and solid31]. An extrapolation from the experi- However, it is also clear that the shape of the growing shell
mental data fon, reported in Fig. 5, suggests that a grainanq its roughness can drastically change the coefficiéas
connectivity equal to 4 could be reached by the system at thgpserved in two-dimensional cad@9,43). Moreover, it can
density p=0.55. This would place the rigidity percolation pe shown44] that in some topological networks the law of
threshold at the loose packing liniB2]. growth can follow an intrinsic dimension which is different
from the dimension of the embedding spatieree in our
cas@. This mechanism can produce power law growth with
IV. CONTACT NETWORK: BEYOND FIRST NEIGHBORS exponents different from two, or different behaviors such as

Any force path or any infinitesimal local grain displace- €XPonential—or even faster—laws of growd].
ment must mechanically propagate from grain to grain V& observe that the number of spheres at a given topo-
through the network of touching grains. The unders:tandindOglcal distancej from a central one foJIows a power law
of the hierarchical organization of such contact network begrowth(see Fig. 7 until a critical distance,jabove which the
yond first neighbors is therefore of great importance. Heré&hells hit the sample boundaries agdstarts to decrease. We
we apply to granular matter an approach which was origiverify that a quadratic lawK;=aj?+cyj+c fits quite accu-
nally developed for the study of crystalline systef88-39 rately the observed behaviors Kf for j <j. This fixes the
and disordered foamfsl1,39,40. The topological structure intrinsic dimension for these systems equal toaBich co-
of crystalline frameworks has been intensely studied in term#éncides with the geometrical dimension of the embedding
of the number of atoms that ajebonds away from a given space. The coefficienta depends on the thresholtion the
atom[33-38. If we start from a given central atom, the first radial distances within which we consider spheres to be con-
shell (distancej=1) is made by all the atoms in contact with nected in the contact network. Indeed, changes in the thresh-
the central one. The second sh@listancej=2) consists of old distances are unavoidably associated with changes in the
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4

10
10°
k"\
10° :
FIG. 7. (Color online Shell
occupation numbers vs topologi-
10" cal distance. The symbols indicate
% the different sample&s in Fig. 3
10° and the lines are the best fitsf
the growing part only using the
polynomial  form, Kj=aj?+cyj
10* 10* +Cp. The fits are betweej=2 and
110 f:10(for samples B, D, E, Fand
, ' \ j=15 (for samples A, . The data
10 10 refer to threshold distances 1d)2
& : & 1.0, 1.1d, and 1.4l as indicated
g o in the figures.
10° g 10°
\v4 *
10133 g o, 101:1 g
10° 10' 10° 10'
J J

contact network and an enlargement of the threshold distandee coefficienta at §=0, Tp=a,/3. Table Il reports the topo-
must correspond to a thickening of the shell. In Fig. 8 welogical densities for all the samples A—F. As one can see the
show that the dependence of the coefficiamn the thresh- quantity 3Tp=ay stays in a narrow range around 8.5 and
old distances is rather complex and not reducible to a simpleslightly increases with the sample density. Interestingly we
law. However, we verify that in the interval of threshold observe in Fig. 9 that disordered sphere packings have coef-
distances between 1.0%nd 1.4, a simple linear increment ficient a consistently aboven.—2 implying therefore that

is observed,a=hd+a, [typically with b~O(1)]. This is  such packings have larger topological densities than lattice
shown in the inset in Fig. 8. Such a law suggests that aphere packings with the same coordination number. This
unique value for the topological density, independent fromobservation might be relevant when the structural stability
the threshold distance, can be associated with the value @fnd rigidity of such system is concerned. A view of the to-
pological shell structure constructed from a given central

20 sphere in one of the samples, is shown in Fig. 6.

V. LOCAL ORIENTATION

Revealing and quantifying orientational order is a key is-
sue in establishing the nature of internal organization, and in
particular in determining whether there exists a typical dis-
ordered state or identifying possible tendencies towards hid-
den symmetries. Indeed, if such a typical state exists or/and
if there is a tendency towards a specific local organization,
then it will be possible to associate to a given granular pack
an order parameter which could measure how close the pack-
ing is to the ideal structure. On the other hand, if one can
prove that the system is a collection of uncorrelated local
configurations then this will make it possible to calculate the
configurational entropy and—consequently—the probability
to find the system in a given state at a given density. It has
FIG. 8. (Color onling The coefficienta increases with the Deen often argued that the competition between the tendency
thresholds on the radial distances is expressed in sphere-diameter t0 form a locally compact configuration and the geometrical
unit). The inset shows that, for all the samples, the coefficient frustration could be the key to understand the mechanism of
follows the linear lawa~ b(r—d)+a, in the region between 1.05 formation of disordered packings and glassy structures. If

and 1.1. this is the case we will expect to see at local level, configu-
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TABLE Il. Topological densitie$3Tp=ay). Most recurrent val- 20
ues for the local orientation ordé@,éﬁ). Fraction of local con-
figurations with (Q,,Qg) in the range(Q,+0.05,Q+0.05 (dis).

Fraction of local configurations close to special form of ordfec) 151
with (Q4,Qg) in the range(0.191+0.05,0.574+0.05 (hcp with
(Q4,Qg) in the rangeg(0.097+0.05,0.485+0.05

I 10}
3T, rthreshold (Q,,Qq) (dis) (%) (fcc) (%) (hcp (%)
A7.2+0.3 1.1 (0.27,0.47 23 3 1 a =(n-2)
5 -
1.2 (0.22,0.42 32 3
1.3 (0.18,0.40 38 1 5
1.4 (0.15,0.36 42 2 4 0 . . . . .
2 4 6 8 10 12 14
B 7.2x0.4 1.1 (0.30,0.45 24 3 1 ne
1.2 (023,044 32 2 3 FIG. 9. (Color onling The coefficienta plotted against the av-
13 (0.16,0.38 37 1 5 _eragehnumtl)er of neighlbo_rs ilné:ont@gshc_)w that dis_order\:z;mpack-
INgs have larger topo ogical ensities in comparison Ice
14  (0.14,0.35 43 2 5 sphere packings.
Cc8.7+04 1.1 (0.23,0.46 28 5 2
and it takes characteristic values which can be used to quan-
12 (021,043 35 3 7 tify the kind and the degree of rotational symmetry in the
13 (0.15,040 41 1 11 system. However, it must be noted that the quantity
1.4 (012,037 45 3 8 Y, m(6(F}), ¢(r})) depends on the orientation, therefore in the
case of a polycrystalline aggregate, with finite correlation
D84£03 11 (025044 28 4 d length, its averag€Y, (4(f;), ¢(f;))) will decrease and tend
1.2 (0.19,0.44 35 2 7 to zero with the sample size. To avoid this inconvenience,
13 (015,040 42 1 11 which makes the comparison betwgen valuean differ-
14 (011,036 46 1 3 ently sized samples meanl'ng_less, it is convenient to adopt a
' B local measure 06, by restricting the average only over the
E 8.6+0.4 1.1 (022,044 27 5 2 local bonds between a sphere and its neighbors. In this way,
each sphere in the system can be associated wigh and
1.2 (0.20,0.43 37 3 7 local order can be singled out by counting the number of
1.3 (0.15,0.39 42 1 12 configurations withQ, corresponding to special symmetries.
1.4 (0.12,0.36 47 2 10 In particular the two casds=4 andl=6 have special signifi-
cance. For instance, the simple cubic lattice t@g, Qg)3°
F 8.9+0.4 11 (023044 31 6 4 =(0.764,0.354, the body centered cubic lattice has
12 (016,045 38 4 12 (Q4,Q0)°=(0.036,0.511, the fcc has (Q,,Qg®
1.3 (0.13,0.42 43 1 17 =(0.191,0.57% the hcp hagQ,,Qg)"°P=(0.097,0.485 and
14 (0.10,0.38 47 3 13 the icosahedral rotational symmetry give®,,Qg)'®

=(0,0.663. Since the lowest nonzer@, common to the

rations with rotational symmetries characteristic of icosaheicosahedral, hexagonal, and the cubic symmetries isl for
dral and other closed packed structures. The study of the6, it has been argued by several authors that the val@g of
local rotational symmetry can therefore give insights also oris a good indicator of the degree of order in the system and it
the mechanism of formation of these structures. might be used as an order paramg#5—49. Indeed,Qg is

The challenge is to find a measure of rotational symmetryery sensitive to any kind of crystallization and it increases
which is invariant with respect to rotations in the system ofsignificantly when order appeaf45].
coordinates. A powerful solution was introduced by Stein- Similarly to that discussed in the preceding sections, the
hardt, Nelson, and Ronchetfil2] by assigning a set of measure depends on the adopted geometrical criteria to iden-
spherical harmonic¥, (6(F), ¢(r)) to the vectors” between tify neighbors. In the literature, several different criteria are
couples of spherepwith 6(F) and ¢(F) the polar and azi- Uused, in Ref[12] all neighbors within 1.& are considered; in

muthal angles of] and introducing the quantities Ref.[47] the neighbors up to the radial distance which cor-
responds to the first minimum in the radial distribution func-

|
4 R R tion (r~1.4d, see Sec. Vlis considered; in Refd45,49
Q- \/ZI +1m§| NECORAOE ) the Voronoi (or Delaunay[13,50) neighbors are used in-
B stead. This last definition has the appealing advantage to
with average((---)) over the bonds in the sample. Such a avoid the use of a threshold, but it can associate bonds to
guantity is invariant under rotations in the coordinate systensometime distant neighboid2,51. For instance, an fcc
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0.67
0.5f
o 041
0.3r
0.2
0
FIG. 10. Values ofQ,,Qg) for
all the local configurations in
0.6t samples A-F given a threshold
distance of 1.d. Each dot corre-
05! spond to a given sphere {&. The
color ranges from light red to dark
S 04l red depending on the number of
neighbors (within the threshold
0al distance of each local configura-
' tion. The lines are contour plots of
o2l the frequencies. The positions of
’ : specific symmetriesico, sc, bcc,
0 01 02 03 04 05 0 01 02 03 04 05 fce, hep in the (Qg4,Qe) plane are
0, Q, also indicated with+ and pro-
jected on the axes with dotted
lines.
0.6¢
0.5¢
o 041
0.3f
0.2
0 0.1 02 03 04 05 0 0.1 02 03 04 05
Q, 9,

crystalline arrangementwith infinitesimal perturbation measured the fraction of local configurations wiy, Qg) in
takes two extra neighbof$rom 12 to 14 on averageaising a region within a range +0.05 from the values in the ideal
the Voronoi criterion. However, it has been shown that thestructuredfcc, hcp, ico, sc, and bgcWe find that there are
combination of the number of Voronoi faces with the valueno significant fractiongbelow 1% of local configurations
of Qg can give valuable information about the system strucwith symmetry compatible with icosahedral, simple cubic or
ture [46]. In this paper the influence of the neighboring cri- bcc; there is a small fractiofbetween 1% to 6%wof configu-
teria is analyzed by using four different threshold distancestations with local symmetry compatible with fcc, and there is

1.1d, 1., 1., and 1.4l. a fraction of configurations with hcp kind of local order
Examples of the distribution of loc&R,,Qs) are shown which becomes quite significant at large densitiesching
in Figs. 10 and 11. 17% atp=0.64 and5=1.3d). The occurrence of a large frac-

We observe values ofQ,,Qg) narrowly distributed tion of local symmetry with an hcp-like character might sug-
around their most recurrent valuéd,,Qg) with very large ~ 9€St the beginning of a crystallization process. However, we
fractions of local configurationgbetween 23% and 4796 vgrn‘y t.hat there are no correlat|on_s between neighboring
which have local symmetries characterized b9,,Qp) sites with symmetry close to hcp. This excludes the presence

o < A of any long range hcp order, recurrent or symmetrical orga-
within the range (Q40.05,Q¢%0.05. The values of i ation beyond first neighbors.

(Q4,Qg) range between 0.¥9Q,=<0.30 and 0.35Qq These findings cast considerable doubts over the existence
<0.45 across all samples and all threshdsise Table . of any crystalline order and also question the idea that a
Such values are far from any special symmetry. In order taendency toward local—frustrated—icosahedral order can be
search for signatures of known local symmetries we haveesponsible for the resilience to crystallize for such packings.
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0.5
FIG. 11. Same plot as in Fig.
10 but with threshold distance
1.4d.
0.5
0.5

These results will be confirmed and reinforced in Sec. Vlliwithin a given radial distance is, in general, unknown. Figure
where the local densities are studied. On the other hand,2 shows the average, the maximum and the minimum num-
these findings cannot be considered conclusive because thers of neighbors within a given radial distance from any
origin and nature of the most abundant configurations wittsphere inG. Clearly, there are no neighbors up to distances
(Q4,Q¢) ~(0.25,0.45 is still elusive. Further studies to close tor ~d, when suddenly the number of neighbors in-

clarify the nature and the origin of such local configurationscréases very steeply and then, after this jump, it increases
are needed. with distance following a less steep trend with very compa-

rable behaviors between all six samples A-F. It is of some
VI. PACKING EFFICIENCY interest to compare the values mfr) empirically obtained
for these disordered samples with the known ones associated
In this section we investigate how the global sample denwith crystalline structures. We observe that in a large range
sity is perceived by a sphere at the local level and how thef radial distances betweerd and i there are some local
global packing affects the local environment. To this purposeconfigurations with packing efficiencies which are above the
we compute the number of spheres within a certain radiatrystalline ones. Moreover, in the region arouns 1.6d,
distance from a given sphere. This quantity(r)) can be disordered packings show bettaveragepacking efficien-
viewed as a measure of how efficiently locally dense ageies than the crystalline onéec, hcp, bec, st This is rather
glomerates of spheres are formed. We call this measure thsurprising if we consider that the fcc and hcp packings are
packing efficiency9]. It is well known that no more than 12 more than 15% denser than the disordered ones. However,
spheres can be found in contact with one spligre Kissing  one can note that increasing the distance, the disordered
number[13]), but the upper limit for the number of spheres packings become less and less efficient in comparison with
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max{ fecc, hep, bee, sc } averages 1o} (a)_
/FE
40t D
C L 1.35
% 10
30} most efficient gl . 13 oy
= ,§° g 1.25
£
L 6 1.2
20 R
al 1'165455 0.6 0.65 0.7
10 e
least efficient 2 H
o] 1.2 1.4 16 18 2 - ———
rid [ L '
1 2 3 4 5
FIG. 12. (Color onling Total number of sphere centers within a rid
given radial distance, average, maximum and minimum for all the 18 . : . :
samples. The filled area is bounded at the top by the most efficien (b)
packings among the fcc, hcp, bcc, sc. 16
' F\
the close packed crystalline arrangements, and abdwal2 E
the configurations have a smaller cumulate number of neigh- _ 147 )
bors than the close crystalline packings. Interestingly, in the,\:fo
same region around Md6vhere the disordered packings are 12}
very efficient we also observe the minimum spread for the c
values of the efficiencies across the samples at different den il \ B
sities. We discuss in further detail the behavior of the number A
of neighbors with the radial distance in the next section
where the radial distribution function is analyzed. 0.8f
VII. RADIAL DISTRIBUTION FUNCTION 0.6 . . . .
) S ) _ N 1.5 1.6 1.7 1.8 1.9 2 2.1
The radial distribution functiorig(r)] is the probability rld

distribution of finding thecenter of a particle in a given

position at distance from a reference sphere. This measure- FIG. 13. (Color onling (a) Normalized radial distribution func-
ment is widely used in geometrical characterization of packtion. (b) The detail of the two peaks, respectively, \&@d and 2i
ing structures and contains information about long range intvertical lines. (c) The ratio between the value of the peak dt 2
terparticle correlations and their organizatiéh3,54. and the one af3d.

In order to calculate this quantity one must count theyq o jecreases withreaching a minimum around HASub-
number of sphere centers within a radial distandeom &  gequently, at larger radial distances, the probability increases
given sphere center. The average of this number is the QuaBgain forming two peaks, respectively,raty3d andr = 2d

tity ni(r) studied in the preceding section and it is related tognq then after these peaks it continues to fluctuate with de-

the radial distribution function by creasing amplitudes. The details of the second and third
0 peaks, plotted in Fig. 18), show that the two peaks at
ng(ry) —nyro) :f g(r)4mr2dr, (5)  =vV3d andr=2d both increase in height with the packing
o density with the peak at=2d growing faster than the one at

. . r=\3d [see Fig. 1&)]. This might indicate an increasing

Therefore, given the position of the sphere centers, these tWgganization in the packing structure but, on the other hand,
quantitiesn(r) andg(r) can be readily computed. Here, we ng signs of crystallization were detectéske, Sec. V, Sec.
calculate the normalized radial distribution functi@r) VIIl).
which is the average number of sphere centers, within a ra- For all the samples investigated, we found that the behav-
dial distancer—A/2 andr+A/2, divided bycr? with the ior of G(r) at radial distances betweer=1d andr=1.4d
constant fixed by imposing that asymptoticallyr) —1 for  (between the first peak and the first minimuoan be quite
r —o. (We have verified that different choices Afwithin a  accurately described in terms of a power law singularity,
broad range of 10d to 10d lead to almost indistinguish-
able results. a(r) ~

In Fig. 13 the behavior ofj(r) vsr/d is shown. We ob-
serve a very pronounced peakratd which corresponds to with good fits forr,=1.03 anda which increase with the
the neighbors in contact. Then the probability to find neigh-sample density from 0.27 to 0.4Fig. 14a)]. A similar be-

Co
Ir=rol®’

(6)
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Interestingly, the behavior G(r) around the other two
peaks(atr ~3d and ~2d) can be described by using simi-
lar power law kind of divergences. In particular the region
1.4<r<1.73 is well fitted by Eq.6) with r;=1.8 anda
between 0.37 and 0.62, whereas the regienr2:2.15 is
well fitted by usingr,=2 anda between 0.11 and 0.1(Fig.

14). We must stress that these are qualitative behaviors, a
reliable fit with a power law trend must be performed over
several orders of magnitude in theandy scales. These
linear interpolations in log-log scales must therefore be con-
sidered more as indicative behavior of qualitative laws more
than fits.

The origin and the nature of this power-law-like behavior
around these peaks is rather puzzling. Indeed, although the
presence of such peaks clearly indicate some kind of organi-
zation in the system, on the other hand other analyses, such
as the orientational symmetry discussed in Sec. V, exclude
the presence of any crystalline or polycrystalline pattern in
the samples. To better understand this issue one must single
out the specific organization of the local configurations
which contribute to each peak. This will be the topic of a
future paper.

VIll. GLOBAL AND LOCAL DENSITIES

We have already referred previously to $emple density
which is the fraction between the volume occupied by the
spheres divided by the total volume. Although this definition
is very straightfoward, on the other hand, it is well defined
only for an infinite sample. In all the other practical cases,
where boundaries are present, the density is unavoidably as-
sociated to the way of partitioning space. A convenient way
to study the density is by partitioning the space in local por-
tions and introducing bocal densityassociated with the frac-
tion of volume occupied within each local portion of space.
Surprisingly, in the literature of granular matter, very few
investigations have been devoted to the study of local densi-
ties either in experiments or in simulations. On the contrary
the understanding of how the space is shared among the
packed spheres and finding how efficiently the spheres can
pack locally is essential information which can contribute to
the understanding of both the structure and the formation of
these systems.

We calculate thdocal densitiesvhich are defined as the
fractions between the sphere volumes and the volumes of the
Voronoi cells[50] constructed around the center of each
sphere in the samplgRecall that the Voronoi cell is the
portion of space closest to a given center in respect of any
other center The sample densities are fractions between the
sum over the volumes of the spheresdrand the sum over

FIG. 14. (Color onling The three peaks of the radial distribution the volumes of the Voronoi cells associated with these
function, respectivelyfrom top to bottom, atr=1, V3, and 2 can  Spheres. We observe that typically the density is not homo-
be described with power law singularitiegir) ~colr—ro|™®. The  geneously distributed in different parts of the samples. This
coefficienta depends on the sample densities and their behaviorgs also discussed by several other wotkee, for instance,
are reported in the insets. Refs.[54,55). In the samples A—F the densities are relatively

small compared with the average in a region close to the
havior, but witha=0.5 andry=d, was reported in Ref19]  cylinder central axis; the density increases moving outwards
for numerical simulations. A more recent numerical investi-from the center, then it saturates to rather homogeneous val-
gation proposes an exponeat-0.4 [53]. In Fig. 14, it is  ues up to a distance of a fei@—3) sphere diameters from the
also highlighted the growing trend of with the densityp. boundary. Rather inhomogeneous densities are also observed

8(r)
3

-0.03|

10

10

2

10 rld

061302-12



GEOMETRICAL STRUCTURE OF DISORDERED SPHERE PHYSICAL REVIEW E 71, 061302(2005

0.8 ; ' ; ; . on the vertices of an icosahedron 12 spheres in touch with a
central sphere. But, icosahedral symmetry is incompatible

0.7r with translational symmetry and this generates frustration,
some gaps must be formed and the symmetry must be bro-
0.6 ken. Indeed, it is known13] that, although there exist lo-
0.5 cally denser configurations, at global scale the densest
’ achievable packings have< 7/118=0.740 48... which is
0.4¢ the one of fcc and hcp crystalline packings.
Here we test whether such a frustration mechanism is re-
0.3r ally relevant in our granular packs. To this end we search for
local configurations which are locally close packed at densi-
0.2r ties larger than the crystalline ones. If a sizable number of
0.1t such configurations are found then it will imply that indeed
geometrical frustration plays an important role in amorphous
systems. The result is unexpected, only 14 local configura-

tions with densities above 0.7405 were found over a set of
more than 209 000 local configurations in the six different
samples. Moreover, very few local configurations have den-
sity between 0.7 and 0.7405. Respectively, we find less than
1.7% in the densest samplE at p=0.640; less than 1% in

the three samples C, D, @&ith p=0.617, 0.630, and 0.626
and less than 0.07% for A and ®=0.586 and 0.593 This

is a very strong indication that local sphere arrangements
with high local densities—such as the icosahedral packing—
play no rolein these disordered sphere packings.

IX. GEOMETRY AND STRUCTURAL ARREST

We calculate the gaps between neighboring spheres and
b : evaluate the size of the largest gap for each local configura-
1%2 5 01 4% 005 0‘ Y tion surrounding a given sphere. This gives the probability
p—<p> for each sphere to move outward from a given local configu-
ration without displacing the positions of its neighbors. Such
FIG. 15. (Color online (Top) Distribution of the local densities an escape probability is computed by constructing circles
in G for the six samples(Bottom) The cumulants show tails that through the centers of the Delaunay simplexes incident on
decrease exponentialfpr fastey with slightly asymmetric distribu- ~ the central sphere. The central sphere can escape from this
tions in the left and right parts. configuration only if its diametetd) is smaller or equal to
the largest radius of such circles. Clearly, when such a move
in the vertical direction, but in this case we find different is possible, the system can change its geometrical configura-
behaviors depending on the sample preparation. Howevetion by means of local moves only. From a thermodynamical
we verify that in all the sample subregions the densities stapoint of view this implies that it can dynamically explore the
in a rather narrow rang@vithin £0.01, see Table) lfrom the ~ phase space with low energy moves and reach equilibrium in
average. More importantly we verify that all the computedshort relaxation times. On the contrary, when the escape
structural properties do not change significantly in their be{frobability is zero, a structural rearrangement requires the
haviors and their characteristics over the part of sample andisplacement of a larger number of spheres and the system is
lyzed. In the second column of Table I, the average densitynore likely to be trapped for long times in metastable states.
values for samples A-F and their interval of variation are The relative number of local configurations with gaps
reported. larger or equal to a threshold sigés reported in Fig. 16 for
Local density distributions and geometrical frustration: the six samples A-F. We find that all the samples with
Figure 15 shows the distribution of the local densitiesin  >0.6 (C—F) do not have any configuration which allows the
for the six samples. We observe that these local densitiegentral sphere to escape, whereas samples A and B have few
have slightly asymmetric distributions with exponentiat  local configurations with gaps larger thanbut they have
faste) decays from the average densiti@ghich are in the little statistical relevanc&<0.1%). This strongly suggests
range 0.586:p<0.640 and have standard deviations that aroundp~0.58—-0.6 an important phase in the system
within 1.5%. dynamics reaches an end, above this density, local readjust-
It has been often argued that the driving mechanismments involving only the displacement of a single sphere are
which generates amorphous structures couldyd@metrical ~ forbidden. The particle mobility is constrained mostly within
frustration This derives from the fact that the densest localthe Voronoi cell and the system compaction can proceed only
configuration in equal sphere packing is achieved by placindy involving the collective and correlated readjustment of a
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10° o : : Surprisingly, we find that the topological density in disor-
dered sphere packings is always larger than the topological
density in the corresponding lattice sphere packings. The
larger topological density is an indication that the contact
network is more compact in disordered systems despite the
fact that thegeometricaldensity is lower. This fact might
have important implication on the system stability and resil-
ience to perturbations and shocks.

A nonintuitive property has been found by computing the
packing efficencySec. V). It results that disordered pack-
ings can have a larger number of neighbors within a given
radial distance than the crystalline packingee Fig. 12
- This fact is surprising if one considers that fcc and hcp pack-

-
o
S
T

Escape Probability
=

-
o
b
T

ings are more than 15% denser than the disordered packings.
In Sec. V, we have searched for local symmetries and the
existence of significant repetitive local configurations. The
result is that most of the spheres are arranged locally in con-
figurations which are significantly different from any crystal-
line arrangement excluding therefore the presence of any
partial crystallization in these samples. We have also estab-

lished that there are no statistically significant configurations

larger set of spheres. At this stage the system can no 10ngGG, jcosahedral symmetry. Moreover in Sec. ViIl we ana-
sample the whole phase space and it is trapped within thg ¢ yhe |ocal densities of more than 200 000 configurations

basin of attraction of some inherent configuratig] and it ¢,¢jyding that there are no statistically significant local ar-
will eventually reach a structural arrest before the thermOdy'rangements with density equal to or above 0.74. This ex-

namical equilibrium is achieved. cludes that geometrical frustration can play any significant
role in the formation of such amorphous packings.

X. CONCLUSIONS The structural organization emerging from the radial dis-

cdibution function has been discussed in Sec. VII where we

has been investigated by means of x-ray computed tomogr&2int out a peculiar power law kind of behavior around the
phy. We have performed an extensive study over six larg@e2ks ofg(r) atr=d, r=y2d andr=2d [see Eq(6) and Fig.
samples at packing densities ranging between 0.586 antf- ) _ _

0.640, investigating several geometrical and topological 'Nsights on the dynamical formation of these systems
properties. Hereafter we summarize the main results and wave been given in Sec. IX where we point out that the
point out the most relevant conclusions. distribution of gaps between neighboring spheres suggests

The number of neighbors surrounding each sphere in ththat a dynamical glass transition might take place at densities
packing has been studied with unprecedented statistical aground 0.58-0.60.
curacy(Sec. Il). The average number of spheres in contact [N conclusion in this paper we have presented a large-
has been extracted by means of an innovative method whicsrale three-dimensional reconstructlon of sphere packs and
deconvolutes the contribution of touching neighbors from theVe have performed a complete analysis of the packing struc-
contribution from near neighbors. The results show that thduré. From this study, several results emerge showing that,
average number of spheres in contact increases with thwith the largely increased §tat|st|cal confidence, more fruitful
sample density and is between 5.5 and 7.5 in the range daths to the understanding of granular materials can be
densities examine¢see Fig. 5. Such a dependence on the ©Peéned and explored.
packing density has important theoretical implications put-
ting in serious dngt that granular packmgs are isostatic in ACKNOWLEDGMENTS
all range of densities. An extrapolation to the random loose
packing density(p=0.55 suggests that at this density the = The authors gratefully thank Ajay Limaye for the prepa-
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The structure of disordered packing of monosized spher

061302-14



GEOMETRICAL STRUCTURE OF DISORDERED SPHERE PHYSICAL REVIEW E 71, 061302(2005

[1] J. D. Bernal and J. Mason, Natufieondon 188 910(1960. [29] C. F. Moukarzel, Phys. Rev. LetB1, 1634(1998.

[2] G. D. Scott, NaturéLondon 194 956 (1962. [30] M. V. Chubynsky and M. F. Thorpe, Curr. Opin. Solid State

[3] G. Mason, NaturéLondon 217, 733(1968. Mater. Sci. 5, 525 (2001.

[4] G. T. Seidler, G. Martinez, L. H. Seeley, K. H. Kim, E. A. [31] R C. Ball and R. Blumenfeld, Phys. Rev. Le88, 115505
Behne, S. Zaranek, B. D. Chapman, S. M. Heald, and D. L. (2002.

Brewe, Phys. Rev. 862, 8175(2000. -
32] G. Y. Onoda and E. G. Liniger, Phys. Rev. Le@4, 2727
[5] A. Sederman, P. Alexander, and L. Gladden, Powder Technol[. | (1990 g Y

117, 255(2001). . .
[6] P. Richard, P. Philippe, F. Barbe, S. Bourles, X. Thibault, and[ss] 20 ossszligg]e; and F. Laves, Wiss. Z. Techn. Univ. Dresden
D. Bideau, Phys. Rev. 68, 020301(2003. ' ' .
y (2003 [34] G. O. Brunner, J. Solid State Cher9, 41 (1979.

[7] J. Brujie, S. F. Edwards, I. Hopkingson, and H. A. Makse,
Physica A 327, 201 (2003. [35] M. O’'Keeffe, Acta Crystallogr., Sect. A: Found. Crystallogr.

[8] M. M. Kohonen, D. Geromichalos, M. Scheel, C. Schier, and 47, 748 (199D

S. Herminghaus, Physica B39 7 (2004). [36] M. O’Keeffe, Z. Kristallogr. 196 21 (199]).
[9] T. Aste, M. Saadatfar, A. Sakellariou, and T. Senden, Physic&37] M. O'Keeffe, Z. Kristallogr. 210, 905 (1995.
A 339 16 (2004. [38] J. Conway and N. Sloane, Proc. R. Soc. London, Se458
[10] Additional material at http:/Awwwrsphysse.anu.edu.au/ 2369 (1997).
granularmatter/ [39] T. Aste, K. Y. Szeto, and W. Y. Tam, Phys. Rev.5, 5482
[11] T. Aste, D. Boosé, and N. Rivier, Phys. Rev. 53, 6181 (1996.
(1996. [40] T. Aste, inFoams and Emulsiongdited by J. F. Sadoc and N.
[12] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B Rivier (Kluwer Academic, Amsterdam, 198%p. 497-510.
28, 784(1983. [41] R. W. Grosse-Kunstleve, G. O. Brunner, and N. J. A. Sloane,
[13] T. Aste and D. WeaireThe Pursuit of Perfect Packin@nsti- Acta Crystallogr., Sect. A: Found. Crystallodi2, 879(1996.
tute of Physics, Bristol, 2000 [42] M. O’Keeffe and B. G. HydeCrystal Structures, Patterns and
[14] A. Sakellariou, T. J. Sawkins, T. J. Senden, and A. Limaye, Symmetry(Mineralogical Society of America, Washington,
Physica A 339 152 (2004). DC, 199¢, \ol. 1.
[15] A. Sheppard, R. Sok, and H. Averdunk, Physica389 145 [43] H. Ohlenbusch, T. Aste, B. Dubertret, and N. Rivier, Eur.
(2004. Phys. J. B29, 211(1998.
[16] W. O. Smith, P. D. Foote, and P. F. Busang, Phys. R&y.  [44] T. Aste, T. O Matteo, and S. T. Hyde, Physica 846, 20
1271(1929. (2005.
[17] G. Mason and W. Clark, Naturg.ondon 211, 957 (1966. [45] P. Richard, L. Oger, J.-P. Troadec, and A. Gervois, Phys. Rev.
[18] S. Torquato and F. Stillinger, J. Phys. Chem.2B, 11849 E 60, 4551(1999.
(2002. [46] P. Richard, L. Oger, J.-P. Troadec, and A. Gervois, Europhys.
[19] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, and D. Le- Lett. 48, 415(1999.
vine, Phys. Rev. B65, 031304(2002. [47] T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev.
[20] A. S. Clarke and H. Jénsson, Phys. Rev4E 3975(1993. E 62, 993(2000.
[21] R. Y. Yang, R. P. Zou, and A. B. Yu, Phys. Rev. @, 3900 [48] S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev.
(2000. Lett. 84, 2064 (2000.
[22] J. LagrangeMécanique AnalytiquéChez la Veuve Desaint, [49] A. R. Kansal, S. Torquato, and F. H. Stillinger, Phys. Rev. E
Paris, 1788 66, 041109(2002.
[23] J. C. Maxwell, Philos. Mag27, 294 (1864). [50] G. Voronoi, J. Reine Angew. MatHL34, 198 (1908.
[24] S. F. Edwards and D. V. Grinev, Phys. Rev. Le#2, 5397  [51] J. P. Troadec, A. Gervois, and L. Oger, Europhys. Lé®,
(1999. 167 (1998.
[25] M. Micoulaut, Europhys. Lett58, 330(2002. [52] Disordered and Granular Medjeedited by D. Bideau and A.
[26] C. Moukarzel, J. Phys. A9, 8079(1996. Hansen(North-Holland, Amsterdam, 1993
[27] J. E. Graver,Counting on FrameworkgThe Mathematical [53] A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev7E
Association of America, Dolciani Mathematical Expositions, 011105(2005.
Washington, D.C., 2001 \Vol. 25. [54] E. R. Nowak, J. B. Knight, E. BenNaim, H. M. Jeager, and S.
[28] M. F. Thorpe and M. V. ChubynskyRigidity and Self- R. Nagel, Phys. Rev. 57, 1971(1998.
Organization of Network Glasses and the Intermediate Phas¢55] P. Philippe and D. Bideau, Europhys. Le@0, 677 (2002.
(Kluwer Academic, Dordrecht, 2001 [56] T. Aste and A. Coniglio, Europhys. Let67, 165 (2004).

061302-15



