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Fractional transport of particles on a comb structure in the presence of an inhomogeneous convection flow
is studiedfBaskin and Iomin, Phys. Rev. Lett.93, 120603s2004dg. The large scale asymptotics is considered.
It is shown that a contaminant spreads superdiffusively in the direction opposite to the convection flow.
Conditions for the realization of this effect are discussed in detail.
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I. INTRODUCTION

Superdiffusion on a subdiffusive medium is an example
of fractional transport due to inhomogeneous convectionf1g.
Investigation of a space-time evolution of an initial profile of
particles in specific media due to the inhomogeneous con-
vection flow has arisen in a variety of applications such as
transport of external speciesspollutiond in water flows
through porous geological formationsf2,3g, problems of dif-
fusion and reactions in porous catalystsf4g, and fractal
physiologyf5–7g. In this paper we consider fractional trans-
port on a comb structure. The comb modelsor structured
shown in Fig. 1 is an analog of subdiffusive one-dimensional
s1Dd media where subdiffusion has been already observed
f8g. It is a particular example of a so-called continuous time
random walksCTRWd mediumf8–10g. This model is known
as a toy model for a porous medium used for exploration of
low dimensional percolation clustersf11g and electrophoresis
processesf12g. A special behavior of the diffusion on the
comb structure is that displacement in thex direction is pos-
sible only along the structure axissx axis aty=0d. Therefore,
diffusion in thex direction is highly inhomogeneous; namely,

the diffusion coefficient isDxx=D̃dsyd, while the diffusion
coefficient in they direction salong teethd is a constantDyy
=D. The diffusion process in such mediasmodeled by the
comb structured is anomalously slow with a subdiffusive
mean squared displacement of the order ofkx2stdl, tm, m
,1. There are external forces leading to convection. In the
general case, the velocity of the convection flow is space
dependent, i.e., convection is inhomogeneous. For instance,
anomalous diffusion takes place in the presence of external
potentials of special formsf13,14g, where contrary to our
consideration a convection flow takes place in superdiffusion
media. The question under investigation is how the observ-
able shape of the initial packet changes, when the space-time
evolution of the packet is affected by the convection flow.
Conditions on or changes in the Liouville equation that are
necessary in order to observe superdiffusion in the comb
model are important for understanding the nature of the frac-
tional transport from the general point of view.

II. SUPERDIFFUSION ON A COMB

We study superdiffusion on the comb structure due to the
inhomogeneous convection described by the 2D distribution
function G=Gst ,x,yd and the current

j = Svsx,ydG − D̃dsyd
]G

]x
,− D

]G

]y
D , s1d

where D̃dsyd and D are the diffusion coefficients for thex
andy directions, respectively, while the inhomogeneous con-
vection velocity is vsx,yd=vsxddsyd=vuxussgnsxddsyd. The
function sgnsxd equals 1 forx.0 and −1 in the opposite
case, whilev is a dimension velocity constant such thatvuxus
has the dimension of the diffusion coefficientD. The Liou-
ville equation

]G

]t
+ div j = 0 s2d

corresponds to the following Fokker-Planck equation:

]G

]t
+ L̂FPsxdGdsyd − D

]2G

]y2 = 0, s3d

where the Fokker-Planck operator in thex direction is

L̂FPsxdG = − D̃
]2G

]x2 + vuxus sgnsxd
]G

]x
+ svuxus−1G.

It is convenient to work with dimensionless variables. The
dimensionless time and coordinates are obtained by rescaling

with relevant combinations of the comb parametersD andD̃.

One obtains the following new variables for timeD3t / D̃2

→ t and coordinatesDx/ D̃→x, Dy/ D̃→y, while the dimen-

sionless velocity parameter issD̃ /DdsvD−1→v. Hence, we
study the following dimensionless equation:

FIG. 1. The comb structure
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]G

]t
−

]2G

]x2 dsyd −
]vsxdG

]x
dsyd −

]2G

]y2 = 0, s4d

wherevsxd is dimensionless as well. The initial condition is
Gs0,x,yd=dsxddsyd, and the boundary conditions on the in-
finities have the formGst , ±` , ±`d=0 and the same for the
first derivatives with respect tox and y Gx8st , ±` , ±`d
=Gy8st , ±` , ±`d=0. The transport of particles along the
structurex axis is described by the functionGst ,x,y=0d
=gsx,td. It is worth stressing that the tails of the distributions
are the most interesting for applications. Therefore, we are
studying here the large scale asymptotics whenuxu@1. In the
Laplace-FouriersLFd spacesp,kd Eq. s4d is transformed to
the following fractional equation for the functiong̃= g̃sp,kd
=LFfgst ,xdg:

k2g̃sp,kd + ikv
]s

]ksF̂fg̃sp,kdg + 2Îpg̃sp,kd = 1. s5d

Here the fractional Reisz derivative is the result of the Fou-
rier integrationf10,15–17g

E
0

`

sixdsg̃sp,xdeikxdx=
]s

]ksE
0

`

g̃sp,xdeikxdx.

The functionF̂fg̃sp,kdg is a formal notation of the following
integral:

F̂fg̃sp,kdg =E
0

`

sinskx+ sp/2dg̃sp,xddx.

As one sees, Eq.s5d has unclosed form. Nevertheless, as will
be seen from the following analysis, it does not lead to any
deficiency, since we are looking for a solution in thesp,xd
space. It should be stressed that the explicit form of Eq.s5d
in the sp,xd space is important in order to justify the large
scale asymptotics foruxu@1.

The large scale asymptoticsuxu@1 corresponds touku!1
in the Fourier space. Therefore, the first term in Eq.s5d can
be omitted at the condition

lim
k→0
p→0

k2

p1/2 = 0. s6d

This approximation depends on the form of singularity of the
the convection velocity in the limitx→`. It means that the
asymptotic solution of the homogeneous part of Eq.s5d for
uku!1 depends on the exponents in the power lawuxus in Eq.
s4d for uxu@1 f18–20g. After performing the inverse Fourier
transform, one obtains the asymptotic solution forx@1 that
corresponds to the homogeneous part of Eq.s5d. It reads

g̃sp,xd =
C

vuxus
expF2Îpuxu1−s

ss− 1dv
G , s7d

whereC is a constant. Since Eq.s7d is an asymptotic solu-
tion, one putsC=1 without losing generality. This solution
describes asymptotic transport of any initial profile. To ob-
tain the time-dependent solution one carries out the inverse
Laplace transformgst ,xd=L−1fg̃sp,xdg. The necessary con-

dition for the Laplace inversion needs the function in the
exponential in Eq.s7d to be negativef21g. It depends only on
s and the sign ofv. Whens,1, the initial profile of particles
moves in the directions of the convection flow, namely, in the
direction of v= uvu.0. It is enhanced superdiffusion due to
the inhomogeneous convection. This case, together withs
=1 and 0, has been considered in detail inf1g. The last two
cases are specific. Whens=1, Eq. s7d changes and corre-
sponds to the log-normal distribution. Conversely,s=0 is the
limit case of Eq.s7d. The interplay between the homoge-
neous convection and traps leads to normal diffusion with
the second momentkx2stdl=sv2/Ddt, where the effective dif-
fusion coefficientv2/D is determined by the external forcing
v.

III. NEGATIVE SUPERDIFFUSION

Whens.1 the situation is more interesting and leads to
different effect. Indeed, fors.1, the necessary condition to
perform the inverse Laplace transform is negativev,0.
Hence, the solution is

gst,xd =
uxu1−2s

v2ss− 1dÎpt3
expF−

x2−2s

v2ss− 1d2t
G . s8d

When uxu@1 andt is large enough, the exponential is equal
to unity. It results in a power law form for the distribution
which corresponds to superdiffusion of particles,

gst,xd ~
1

uxu2s−1Îpt3
. s9d

All moments ofx higher than 2s−2 are equal to infinity. It
means that on large scale asymptotics, whenx2ss−1dt@1,
there is superdiffusion, which is analogous to Lévy flights. It
should be outlined that the flux on the infinities is vanishing.
The important feature of this superdiffusion is that it occurs
in the direction opposite to the inhomogeneous convection
current.

This phenomenon is related to the relaxation process with
diffusion, where the Kolmogorov conditionssseef15gd are
necessary for the inferring of the Fokker-Plank equation
sFPEd. It means that in the absence of convection the solu-
tion of the FPE gives that at any momentt.0 the particles
are spread over the wholex axis from minus infinity to plus
infinity with exponentially small tails. Therefore, there is a
finite concentration of the contaminant at any moment and in
any point. It is correct not only for normal diffusion but also
for subdiffusive relaxation on the comb structure with corre-
sponding solutionf11g

gst,xd =
1

2pÎt3
E

0

`

expF−
x2

4u
−

u2

t
Gu1/2du. s10d

This behavior described by Eq.s10d dominates for smallx
even in the presence of inhomogeneous convection. But for
asymptotically largex the inhomogeneous convection in the
direction opposite to the spreading of particles changes the
shape of the tail of the packet from exponential to a power
law according to Eq.s9d. We call this solution the negative
superdiffusionsNSd solution.
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IV. FRACTIONAL FOKKER-PLANCK EQUATION

The total number of transporting particles on the structure
axis decreases with time due to the comb structuref1,11g

kGl =E
−`

`

gst,xddx= 1/2Îpt. s11d

Therefore, the distribution functions8d describes the NS
when the number of particleskGl is not conserved. The for-
mulation of the NS problem with conservation of the total
number of particles is equivalent to the case with a continu-
ous distribution of the delay timesf9g, where the total num-
ber of particles is described by the functionG1st ,xd
=e−`

` Gst ,x,yddy. It is the CTRW approach. It is straightfor-
ward to see from Eq.s4d that

Gst,x,yd = L−1fg̃sp,xde−Îpuyug. s12d

Taking this into account, one obtains the equation forG1 by
integrating Eq.s4d with respect to the variabley. It reads in

the Laplace space forG̃1sp,xd=LfG1st ,xdg

pG̃1sp,xd + L̂FPsxdg̃sp,xd = dsxd, s13d

whereL̂FPsxd is the same operator as in Eq.s3d. It is straight-
forward to see by carrying out either the Laplace transform
of Eq. s4d or the Fourier transform of Eq.s5d that

L̂FPg̃sp,xd = dsxd − 2Îpg̃sp,xd.

Substitution of this expression in Eq.s13d yields

g̃sp,xd =
1

2
ÎpG̃1sp,xd. s14d

Again, after substitution of this relation in Eq.s13d, the
CTRW equation in the Laplace space is

pG̃1 +
1

2
p1/2L̂FPsxdG̃1 = dsxd. s15d

We introduced here the Riemann-Liouville fractional deriva-
tives ssee, for example,f10,22gd s]a /]tadfstd by means of the
Laplace transforms0,a,1d

LF ]a

]ta fstdG = pa f̃spd, s16d

whereLffstdg= f̃spd, and it also implies]af1g /]ta= t−a /Gs1
−ad, Gszd is a gamma functionf22g. Using this definition, we
write the CTRW equation, which corresponds to the comb
model described by Eq.s4d, in the following form:

]G1

]t
+

1

2

]1/2

]t1/2L̂FPsxdG1 = 0. s17d

Here the initial condition isG1s0,xd=dsxd. For the asymp-
totically large scalex@1 sor x!−1d, we neglect the inho-
mogeneous term together with the second derivatives with
respect tox in Eq. s15d and obtain a solution determined by
Eqs.s7d ands14d. This is the NS related to the CTRW by the
following result:

G̃1sp,xd =
2

vxsp1/2 expF2p1/2x1−s

vss− 1d G . s18d

V. LIOUVILLE-GREEN APPROXIMATION

We infer here the NS in the framework of the Liouville-
GreensLGd asymptotic solution for linear differential equa-
tions f19g. We show that the approximation performed above
due to the conditions6d is sufficiently good and corresponds
to the Liouville-Green approximation, also called the WKB
approximationf23g. The CTRW equations17d in the gener-
alized form reads

]G1

]t
+ a

]1−a

]t1−a L̂FPsxdG1 = 0, s19d

where 0,a,1. Hence, forx@1, we obtain the homoge-
neous part left-hand side of Eq.s15d, where the itemp1/2 is
substituted byp1−a. It reads

pG̃1 + ap1−af− G̃19 + vxsG̃18 + svxs−1G̃1g = 0. s20d

The term in the first derivative is removed from the equation
by the substitution

G̃1 = pa−1 expfvxs+1/2ss+ 1dgw. s21d

Thus we havew9=Rsxdw, where

Rsxd =
v2x2s

4
S1 +

2s

v
x−s−1 +

4

av2pax−2sD .

The LG approximation forw, which satisfies the accepted
boundary conditionsfsee Eq.s4dg, is

w = BR−1/4 expF−E R1/2dxG
= BÎv

2

1

xs expF−
vxs+1

2ss+ 1d
+

pax1−s

avss− 1dG , s22d

whereB is a constant. Analogously, we obtain the LG solu-
tion for the negativex!−1. Therefore, takingB=s2/vd3/2

and a=1/2, weobtain that Eq.s21d coincides exactly with
the solutions18d. This means that removing the second de-

rivatives fromL̂FP or the termk2 in Fourier space in the limit
k→0 corresponds to the Liouville-Green approximation for
the Fokker-Planck equation with inhomogeneousssuperdif-
fusived convection. This asymptotic solution is superdiffu-
sive transport of particles in the direction opposite to the
convection current, namely, the NS.

VI. COUNTERINTUITIVE EXAMPLE

There are many possible values for the parameterss andv
of the convection flowvsxd in Eq. s1d. But the Laplace trans-
form chooses only that necessary range of parametersv.0,
s,1 andv,0, s.1 which satisfies the physically meaning-
ful realization. This is seen from the consideration of the
dynamical flow of a tracer. By analogy with Sec. V we con-
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siderx.0 sfor x.0 the consideration is the samed. Hence,
the equation of motion for the tracer reads

ẋ = vxs s23d

with the initial conditionxst=0d=x0. The solution is

xstd = x0/f1 − ss− 1dx0
s−1vtg1/ss−1d. s24d

When s.1 andv.0 this solution is singular, since during
the finitet= t0;1/ss−1dvx0

s−1 the tracer reaches infinity with
infinite velocity. Therefore, the only physical solution is
when v,0. When x0=0, the tracer does not move at all.
Therefore, only particles with nonzero initial conditions
move with the convection flow. A question is, how does a
particle appear in the pointx0Þ0 if the initial distribution is
dsxd? The Kolmogorov mechanism, which is discussed in

Sec. III and related to the second partial derivativeD̃]2/]x2,
distributes the initial packet of the contaminant over the en-
tire x axis. The convection flow withv,0 brings these par-
ticles back tox=0. This process changes the distribution
from a Gaussian one to the power law form, as shown in Fig.
2. It should be stressed again, in this connection, that there
are many possibilities forv and s to realize the inhomoge-

neous convection flow, but the contaminant can be captured
by convection only at physical conditions whens.1, v,0
or s,1, v.0. It is quite remarkable that the Laplace trans-
form chooses just these physical solutionsf24g. The solu-
tions s7d and s18d describe other possibilities as well. For
instance, whenvsxd=vuxus the NS solution exists for the con-
ditions s.1, v.0, but x,0. In this case the convection
flow is opposite to the natural spreading of the initial packet
for x,0, while for x.0 there is no solution at all. Whens
,1 the solution withv.0 takes place forx.0 f1g. The case
with s=1 stays separate, since the solutions are possible for
both v.0 andv,0. This boundary case corresponds to the
log-normal distribution and it was considered inf1g in detail.
It also describes the fractional version of the Ornstein-
Uhlenbeck processssee, e.g.,f10gd.

VII. CONCLUSION

We obtained superdiffusion due to inhomogeneous con-
vection on a subdiffusive medium described by the comb
model. A specific feature of this superdiffusion is the exis-
tence of Lévy flights in the direction opposite to the convec-
tion current. This effect is called here negative superdiffu-
sion. This effect depends unambiguously on the system
parameterss.1 and a=1/2. These values are important
both for the continuity condition of the contaminant and, at
the same time, for the negative superdiffusion. Indeed, since
we study the continuity equations2d, solutionss7d and s18d
determine the continuity condition of the contaminant.
Therefore, whens.1 this continuity ensures such a scenario
when the inhomogeneous convection flows in the direction
opposite to the natural spreading of the contaminant. This
effect is sketched in Fig. 2, where the natural spreading is a
process with increase of the width of the initial packet. Con-
versely, whens,1 the continuity condition ensures that the
inhomogeneous convection moves in the same direction as
the contaminantf1g. It should be stressed that this effect can
be realized in a subdiffusive or CTRW medium only. In our
case this is the comb structure, wherea=1/2. In this con-
nection, the relation betweens anda could be an important
condition on continuity for a possible realization of negative
superdiffusion in a CTRW medium, in the general case.
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