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Negative superdiffusion due to inhomogeneous convection
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Fractional transport of particles on a comb structure in the presence of an inhomogeneous convection flow
is studied Baskin and lomin, Phys. Rev. Let®3, 120603(2004]. The large scale asymptotics is considered.
It is shown that a contaminant spreads superdiffusively in the direction opposite to the convection flow.
Conditions for the realization of this effect are discussed in detail.
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I. INTRODUCTION _ ~ JG G
e e o J=(v(x,y)G—D5(y)—,—D— : (1)
Superdiffusion on a subdiffusive medium is an example X ay

of fractional transport due to inhomogeneous convedtign ~ T -
Investigation of a space-time evolution of an initial profile of WnereDa(y) and D are the diffusion coefficients for the

particles in specific media due to the inhomogeneous cor@Ndy directions, respectively, while the inhomogeneous con-
vection flow has arisen in a variety of applications such ay/ection velocity is v(x,y):v(x)é(y):v|x|Ssgr(x)6(y). The
transport of external speciegollution) in water flows function sgitx) equals 1 forx>0 and -1 in the opposite
through porous geological formatiof,3], problems of dif-  case, whilev is a dimension velocity constant such that*
fusion and reactions in porous Cata|y§'&£|’ and fractal has the dimension of the diffusion coefficidnt The Liou-
physiology[5-7]. In this paper we consider fractional trans- Ville equation

port on a comb structure. The comb model structuré 9G

shown in Fig. 1 is an analog of subdiffusive one-dimensional —+divj=0 (2
(1D) media where subdiffusion has been already observed a

[8]. It is a particular example of a so-called continuous timecorresponds to the following Fokker-Planck equation:
random walk(CTRW) medium[8-10]. This model is known

as a toy model for a porous medium used for exploration of
low dimensional percolation clustdrl] and electrophoresis
processe$12]. A special behavior of the diffusion on the
comb structure is that displacement in thdirection is pos-
sible only along the structure axis axis aty=0). Therefore, . - PG oG 3

diffusion in thex direction is highly inhomogeneous; namely, Lep()G = - Dﬁ + v|X|SSQF(X)5 +s0[X*G.

the diffusion coefficient iD,=Dd(y), while the diffusion _ _ o . .

coefficient in they direction (along teethis a constanD,, It is convenient to work with 'd|men5|onless.vanables. Thg
=D. The diffusion process in such medimodeled by the dimensionless time and coordinates are obtained by rescaling

comb structurg is anomalously slow with a subdiffusive with relevant combinations of the comb parame@randf).

mean squared displacement of the 0rder<x?(t))~.tﬂ, X One obtains the following new variables for tin@t/D?
< 1. There are external forces leading to convection. In the { ang coordinate®x/D — x, Dy/BHy, while the dimen-
general case, the velocity of the convection flow is space. . ~ 1

dependent, i.e., convection is inhomogeneous. For instancﬁ'Onless velocny par_amete_r (®/D)%D U Hence, we
anomalous diffusion takes place in the presence of externatudy the following dimensionless equation:

potentials of special form§13,14], where contrary to our
consideration a convection flow takes place in superdiffusion y
media. The question under investigation is how the observ-
able shape of the initial packet changes, when the space-time
evolution of the packet is affected by the convection flow.
Conditions on or changes in the Liouville equation that are
necessary in order to observe superdiffusion in the comb
model are important for understanding the nature of the frac-
tional transport from the general point of view.

G - PG
P Lep(X)Gély) - DW =0, 3

where the Fokker-Planck operator in thelirection is

Il. SUPERDIFFUSION ON A COMB

We study superdiffusion on the comb structure due to the
inhomogeneous convection described by the 2D distribution
function G=G(t,x,y) and the current FIG. 1. The comb structure
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wherev(x) is dimensionless as well. The initial condition is
G(0,x,y)=48(x)&(y), and the boundary conditions on the in-
finities have the fornG(t, +o, +»)=0 and the same for the
first derivatives with respect tx and y Gi(t, +%, +x)
=Gy(t, 0, +0)=0. The transport of particles along the
structurex axis is described by the functioG(t,x,y=0)
=g(x,t). It is worth stressing that the tails of the distributions

aly) -
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dition for the Laplace inversion needs the function in the
exponential in Eq(7) to be negativ¢21]. It depends only on

s and the sign of. Whens<1, the initial profile of particles
moves in the directions of the convection flow, namely, in the
direction ofv=|v|>0. It is enhanced superdiffusion due to
the inhomogeneous convection. This case, together svith
=1 and 0, has been considered in detailih The last two
cases are specific. Whes¥ 1, Eq. (7) changes and corre-
sponds to the log-normal distribution. ConversskyQ is the
limit case of Eq.(7). The interplay between the homoge-

are the most interesting for applications. Therefore, we ar@€0US convection and traps leads to normal diffusion with

studying here the large scale asymptotics wixgr 1. In the
Laplace-Fourie(LF) space(p,k) Eqg. (4) is transformed to
the following fractional equation for the functi@=g(p,k)

=LFg(t,x)]:

&
KG(p.k) +iko~ FIOPR]+ 2050 =1.  (5)

Here the fractional Reisz derivative is the result of the Fou
rier integration[10,15-17

G(p, )" dx.
ke,

Jm (iX)9(p, x) €**dx =
0

The functionﬁ[@(p,k)] is a formal notation of the following
integral:

IE[”g'(p,k)] = fx sin(kx + sm/2)g(p,x)dx.
0

As one sees, E@5) has unclosed form. Nevertheless, as will

the second momerix?(t))=(v?/D)t, where the effective dif-
fusion coefficienty?/D is determined by the external forcing
U.

Ill. NEGATIVE SUPERDIFFUSION

Whens> 1 the situation is more interesting and leads to
different effect. Indeed, fos> 1, the necessary condition to
perform the inverse Laplace transform is negative 0.

Hence, the solution is
— exp| — . (8)
v2(s— 1)\t p{ ]
When|x|>1 andt is large enough, the exponential is equal
to unity. It results in a power law form for the distribution
which corresponds to superdiffusion of particles,

XZ—E

vi(s—1)%

Xl-25
g(t,x) = L

g(t,x) = 9

X2t

All moments ofx higher than 8-2 are equal to infinity. It

be seen from the following analysis, it does not lead to anyneans that on large scale asymptotics, whéfDt>1,

deficiency, since we are looking for a solution in te x)
space. It should be stressed that the explicit form of (By.
in the (p,x) space is important in order to justify the large
scale asymptotics fax|> 1.
The large scale asymptoti¢g>1 corresponds t¢k| <1
in the Fourier space. Therefore, the first term in Eg).can
be omitted at the condition
S
o p O ©

p—0

there is superdiffusion, which is analogous to Lévy flights. It
should be outlined that the flux on the infinities is vanishing.
The important feature of this superdiffusion is that it occurs
in the direction opposite to the inhomogeneous convection
current.

This phenomenon is related to the relaxation process with
diffusion, where the Kolmogorov conditiornisee[15]) are
necessary for the inferring of the Fokker-Plank equation
(FPB. It means that in the absence of convection the solu-
tion of the FPE gives that at any moment 0 the particles
are spread over the wholeaxis from minus infinity to plus

This approximation depends on the form of singularity of theinfinity with exponentially small tails. Therefore, there is a

the convection velocity in the limik—cc. It means that the
asymptotic solution of the homogeneous part of Ej.for
|kl <1 depends on the exponesin the power lawix|® in Eq.
(4) for |x|>1 [18-20. After performing the inverse Fourier
transform, one obtains the asymptotic solutionxer 1 that
corresponds to the homogeneous part of &j. It reads

e )

9(p,x) = ex

a(p.x) NE
whereC is a constant. Since Eq7) is an asymptotic solu-
tion, one putsC=1 without losing generality. This solution

2\pjx**
(s—= 1o

)

describes asymptotic transport of any initial profile. To ob-

finite concentration of the contaminant at any moment and in
any point. It is correct not only for normal diffusion but also
for subdiffusive relaxation on the comb structure with corre-

sponding solutiof11]
% 2 2
f exp{— x u—}ul’zdu. (10)
0 4u t

This behavior described by E¢LO) dominates for smalk
even in the presence of inhomogeneous convection. But for
asymptotically largex the inhomogeneous convection in the
direction opposite to the spreading of particles changes the
shape of the tail of the packet from exponential to a power

1

277\3'?’

g(t,x) =

tain the time-dependent solution one carries out the inverskaw according to Eq(9). We call this solution the negative

Laplace transforng(t,x)=£"g(p,x)]. The necessary con-

superdiffusion(NS) solution.
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IV. FRACTIONAL FOKKER-PLANCK EQUATION - 2pl/2X1—S
. . Gl(prx) = S.-1/2 ex . (18)
The total number of transporting particles on the structure vxp v(s-1)
axis decreases with time due to the comb strucklir&l]
(G) :J g(t,x)dx= 1/2\mt. (11) V. LIOUVILLE-GREEN APPROXIMATION

We infer here the NS in the framework of the Liouville-
Therefore, the distribution functiori8) describes the NS Green(LG) asymptotic solution for linear differential equa-
when the number of particlg$s) is not conserved. The for- tions[19]. We show that the approximation performed above
mulation of the NS problem with conservation of the total due to the conditiori6) is sufficiently good and corresponds
number of particles is equivalent to the case with a continuto the Liouville-Green approximation, also called the WKB
ous distribution of the delay timd®], where the total num- approximation[23]. The CTRW equatiori17) in the gener-
ber of particles is described by the functioB(t,x) alized form reads
=[7 G(t,x,y)dy. It is the CTRW approach. It is straightfor- 9G e
ward to see from Eq4) that L a——Lep(X)G, =0, (19)

B ot &tl—a
G(t,x,y) = L7 G(p,x)e™ P, 12
(tx.y) [9(px) ] (12 where 0<a<1. Hence, forx>1, we obtain the homoge-
Taking this into account, one obtains the equationGerby ~ neous part left-hand side of EL5), where the itenp®? is
integrating Eq.(4) with respect to the variablg. It reads in  substituted byp*™. It reads
the Laplace space fdB,(p,x)=L[Gy(t,X ~ ~ ~ ~
P P 1P =L[Gy(tx)] PG, + ap! ™[~ G +vx°G| + X 1G,]=0. (20
PG1(PX) + Lep(x)8(p,X) = (), (13 The term in the first derivative is removed from the equation

whereﬂFp(x) is the same operator as in ). It is straight- by the substitution

forward to see by carrying out either the Laplace transform & = el s+l

of Eq. (4) or the Fourier transform of Ed5) that Gy =T exux2(s + 1) Jw. 29)
- — Thus we havev’=R(x)w, where
Lepd(p.x) = 6(X) = 2Vpg(p,X).

T . . . . ’x% 2s -s-1 4 ay,—2S
Substitution of this expression in E(L3) yields R(x) = 4 1 +;X + a_vzp X
9(p,x) = }V'Bal(p,x)- (14) The LG approximation fow, which satisfies the accepted
2 boundary conditiongsee Eq.4)], is
Again, after substitution of this relation in Eq13), the
CTRW equation in the Laplace space is w=BRY4ex —f RY2dx

~ 1 ~ ~

G - 1/2L - . 1 s+l ayl-s

PGy + 2P Lep(0Gy = X (15 :B\ﬁ_sex{_ ot ptx ] 22
X 2(s+1) av(s-1)

We introduced here the Riemann-Liouville fractional deriva-

tives (see, for exampld10,22)) (3%/ 3t*)f(t) by means of the vyhereB is a constant. Analogously, we obtain the LG solu-
Laplagce transformj0p<6[o’zl< 1)2)( () by tion for the negativex<-1. Therefore, takingd=(2/v)%?

and @=1/2, weobtain that Eq(21) coincides exactly with
the solution(18). This means that removing the second de-

rivatives fromLgp or the termk? in Fourier space in the limit
~ k— 0 corresponds to the Liouville-Green approximation for
where L[f()]=f(p), and it also implies?[1]/at*=t"*/T'(1  the Fokker-Planck equation with inhomogenedsisperdif-
-a), I'(2) is a gamma functiof22]. Using this definition, we  fusive) convection. This asymptotic solution is superdiffu-
write the CTRW equation, which corresponds to the combsive transport of particles in the direction opposite to the

7" ~
E{ﬁf(t)] =p*f(p), (16)

model described by Ed4), in the following form: convection current, namely, the NS.
9Gy 12 _
a + o guetrrGL=0. (7 VI. COUNTERINTUITIVE EXAMPLE

Here the initial condition i55,(0,x)=4&(x). For the asymp- There are many possible values for the parametarsiv
totically large scalex>1 (or x<-1), we neglect the inho- of the convection flow(x) in Eq. (1). But the Laplace trans-
mogeneous term together with the second derivatives witfiorm chooses only that necessary range of parameter8,
respect tax in Eq. (15) and obtain a solution determined by s<1 andv <0, s> 1 which satisfies the physically meaning-
Egs.(7) and(14). This is the NS related to the CTRW by the ful realization. This is seen from the consideration of the
following result: dynamical flow of a tracer. By analogy with Sec. V we con-
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\ neous convection flow, but the contaminant can be captured
roo by convection only at physical conditions whekr 1, v <0
! \ or s<1,v>0. It is quite remarkable that the Laplace trans-
i ! form chooses just these physical solutid@4]. The solu-

\ tions (7) and (18) describe other possibilities as well. For
] ! instance, whem(x) =v|x|® the NS solution exists for the con-
; ' ditions s>1, v >0, but x<0. In this case the convection
! flow is opposite to the natural spreading of the initial packet
; ! for x<0, while for x>0 there is no solution at all. Whes
/ \ <1 the solution withy > 0 takes place fox>0[1]. The case
) ' with s=1 stays separate, since the solutions are possible for
! \ bothv >0 andv <0. This boundary case corresponds to the

\ log-normal distribution and it was considered i in detail.
_— \ — It also describes the fractional version of the Ornstein-
Uhlenbeck procestsee, e.g.[10]).

VIlI. CONCLUSION

FIG. 2. A sketch of the NS, wherg(x) is the inhomogeneous We obtained superdiffusion due to inhomogeneous con-
convection in the direction opposite to the natural spreading of thezection on a subdiffusive medium described by the comb
contaminant. The dashed curve corresponds to the spreading duerwodel. A specific feature of this superdiffusion is the exis-
the relaxation process, while the solid lines are the tails of theence of Lévy flights in the direction opposite to the convec-
power law due to superdiffusion. The distributions are shown at theion current. This effect is called here negative superdiffu-
same moment. sion. This effect depends unambiguously on the system

parameterss>1 and a=1/2. These values are important
siderx>0 (for x>0 the consideration is the samélence, both for the continuity condition of the contaminant and, at

the equation of motion for the tracer reads the same time, for the negative superdiffusion. Indeed, since
. s we study the continuity equatiof2), solutions(7) and (18)
X=vX (23) determine the continuity condition of the contaminant.
with the initial conditionx(t=0)=x,. The solution is Therefore, whers> 1 this continuity ensures such a scenario
when the inhomogeneous convection flows in the direction
X(t) = Xo/[1 = (s= D)x§ Wt (24)  opposite to the natural spreading of the contaminant. This

effect is sketched in Fig. 2, where the natural spreading is a
process with increase of the width of the initial packet. Con-
versely, whers<1 the continuity condition ensures that the
inhomogeneous convection moves in the same direction as
the contaminanftl]. It should be stressed that this effect can
be realized in a subdiffusive or CTRW medium only. In our
case this is the comb structure, where1/2. In this con-

Whens>1 andv >0 this solution is singular, since during
the finitet=ty=1/(s— 1)vx?,‘1 the tracer reaches infinity with
infinite velocity. Therefore, the only physical solution is
when v <0. Whenx,=0, the tracer does not move at all.
Therefore, only particles with nonzero initial conditions
move with the convection flow. A question is, how does a

g?xr;',f I?ﬁfpﬁ}:g tgfoeom;gr:;ge I\/r\]/Ir:IiEélhdiI:tr(Ijti)suc?L?sns:asd innection, the relation betweenand o could be an important
’ 9 ' condition on continuity for a possible realization of negative

Sec. lIl and related to the second partial derivafd/ ix?, superdiffusion in a CTRW medium, in the general case.
distributes the initial packet of the contaminant over the en-

t@re X axis. The convec.tion flow witls <O brings thgse_ par- ACKNOWLEDGMENTS

ticles back tox=0. This process changes the distribution
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