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In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of
average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to
the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady
systems, fluctuations theoremssFTd additionally describe symmetry properties of the probability density func-
tions sPDFsd of the fluctuations of injected and dissipated energies. We experimentally probe a model system:
an electrical dipole driven out of equilibrium by a small constant currentI, and show that FT are experimen-

tally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated powerP̄
=RI2 in the system by just studying the PDFs’ symmetries.
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INTRODUCTION

In the last decade, fluctuation theoremssFTd f1,2g ap-
peared in nonequilibrium statistical physics. These theorems
relate the asymmetry of fluctuations of energiessor powersd
with the dissipated power required to maintain a nonequilib-
rium steady state of a system. Thus FT give a measure of the
distance from equilibrium. Indeed, FT can be extremely use-
ful to probe nonequilibrium states in nanophysics and bio-
physics where the energies involved are typically small and
thermal agitation cannot be neglected: in those systems, the
variance of fluctuations is of the order of the average values.
Moreover, standard fluctuation-dissipation theoremsFDTd
f3–5g is derived for equilibrium systems only and so it may
fail to describe states far from equilibrium. FT are a gener-
alization of FDT out of—possibly far from—equilibrium. In
order to safely apply FT in complex systems, e.g., in bio-
physics or nanotechnologies, it is important to test them in
all simple cases where theoretical predictions can be accu-
rately checked. In spite of the large theoretical effort, just a
few experiments have been conducted on this topicf6,7g. For
this reason, we test in this communication their use on a
simple electrical system.

Electrical systems are particuliarly interesting, because
they are one of the first where FDT was formalized: Johnson
f8g and Nyquistf9g related equilibrium fluctuations of volt-
ageU across a dipole with the resistive part of this dipole.
Moreover, all parameters in the setup can easily be con-
trolled. Thus, out of equilibrium, electrical circuits are a key
example to stress the differences between FT and FDT, and
to verify the validity of FT.

Our system is an electrical dipole constituted of a resis-
tanceR in parallel with a capacitorC sFig. 1d. We drive it out
of equilibrium by making a constant currentI flow in it.
Noting kB the Boltzmann constant andT the absolute tem-
perature, the injected power is typically of somekBT per
second, of the same order as in biophysics or nanoscale
physics experiments. This represents the fundamental case of

a system in contact with two differentselectronsd reservoirs,
one of the simplest and most fundamental problems of non-
equilibrium physicsf10g. Using a powerful analogy with a
forced Langevin equationf11g, a precise formulation of FT
was recently givenf12g in this case. Nyquist’s FDT as well
as FT are checked experimentally, by looking at the injected
power and the dissipated heat in the system.

EXPERIMENTAL SETUP

The circuit we use is composed of a resistor in parallel
with a capacitor, as depicted in Fig. 1. The resistance is a
standard metallic one of nominal valueR=9.52 MV. In par-
allel, we have an equivalent capacitor of valueC=280 pF.
This accounts for the capacitance of the set of coaxial con-
nectors and cables that we used. The time constant of the
circuit is t0;RC=2.67 ms. Using a 50-GV resistance, we
inject in the circuit a constant currentI ranging from
0 to 6310−13 A. This current corresponds to an injected
power I2R ranging from 0 to 1000kBT/s. Experiments are
conducted at room temperatureT=300 K. The typical values
of the injected energy for, e.g.,I =1.4310−13 A and t
=10t0 are of order of a few hundreds ofkBT, which is small
enough to ensure that the resistance is not heating; expected
changes of temperature are estimated to be less than 10−14 K
over a 1-h experiment. Moreover, the resistance is thermo-

*Electronic address: nicolas.garnier@ens-lyon.fr

FIG. 1. sColor onlined Model circuit: an electrical dipole is com-
posed of a resistive partR and a capacitive partC. Due to thermal
fluctuations of charges positions, a fluctuating voltageU is ob-
served. We drive the system away from equilibrium by imposing a
constant flux of electrons, via a constant currentI.
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stated: all the heat dissipated by the joule effect is absorbed
by the thermal bath.

The fluctuating voltageU across the dipole is measured
with a resolution of 10−11 V sampled at 819.2 Hz. This is
achieved by first amplifying the signal by 104, using a field-
effect transistorsFETd amplifier, with a 4-GV input imped-
ance, a voltage noise level of 5 nV/ÎHz, and a current noise
of 10−15 A/ ÎHz. The signal is then digitized with a 24-bit
data acquisition card at frequency 8192 Hz, and decimated
by averaging ten consecutive points.

FLUCTUATION-DISSIPATION THEOREM

The electrical dipole of Fig. 1 is a pure resistanceR in
parallel with a capacitorC; its complex impedance reads
Zsfd=1/s1/R+ i2pRCfd, where i2=−1 and f is the fre-

quency. The effective dissipative part is the real part ResZd of
Z. It was experimentally observed by Johnsonf8g, and then
demonstrated by Nyquistf9g, that the potential differenceU
across the dipole fluctuates with a stationary power spectral
densitySsfddf such that

Ssfddf = 4kBT ResZddf . s1d

At equilibrium I =0, in average no current is flowing in the
circuit, and meanU is zero. Integrating over all positive
frequencies, one gets the variance ofU,

kU2l =
kBTR

t0
=

kBT

C
. s2d

Equationss1d and s2d are the expressions of the FDT for
electrical circuits.

The exact value of our capacitance was determined by
fitting the power-density spectrum of equilibrium fluctua-
tions sat imposedI =0 Ad by a Lorentzian low-pass transfer
function fEq. s1dg, as illustrated in Fig. 2sbd. Application of
FDT leads with a very good accuracy to the determination of
R, in perfect accordance with the measured nominal value

FIG. 2. sColor onlined sad For I =0 A, Johnson-Nyquist noise
has a Gaussian distribution. Relations2d is verified.sbd The noise is
white up to the cutoff frequencyf0 of the RC dipole. We use FDT
to extract from the energy of the noise the value of the resistive,
dissipative part of the circuitR: for low frequency, the noise level
spectral density is constant, equal toÎ4kBTR in a bandff ; f +dfg. A
Lorentzian fit of the spectrumsthin lined additionally givest0

=RC.

FIG. 3. sColor onlined Histograms ofWt andQt when a current
I =1.4310−13 A is flowing in the dipole. This corresponds to

kWtl=kQtl=tP̄ with P̄=RI2=45 kBT/s.
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sFig. 2d. When I =1.4310−13 A, we found the same power
spectral density forU, and performing the same treatments
gave the same estimates ofR andC. We therefore conclude
that FDT is still holding in our system driven out of equilib-
rium.

FLUCTUATION THEOREMS

The power injected in the circuit isPin=UI, but only the
resistive part dissipates, so the dissipated power isPdiss
=UiR, whereiR is the current flowing in the resistorsFig. 1d.
As already notedf13g, in average, one expectskPinl
=kPdissl; P̄, where the brackets stand for time average over
sufficiently long times compared tot0. This is very well
checked in our experiment.Pin and Pdiss fluctuate in time
becauseU itself is fluctuating. If one assumes that fluctua-
tions of U have a Gaussian distribution, which is the case at
equilibrium whenI =0, thenPin has also a Gaussian distri-
bution, becauseI is constant. On the contrary,iR fluctuates,
as we see from Kirchoff’s laws,

I = iR + C
dU

dt
, so Pin = Pdiss+

1

2
C

dU2

dt
, s3d

and therefore, the probability distribution ofPdiss is not
Gaussianf12g. It is worth noting that for large currentI,
some orders of magnitude larger than the one we use,Pin and
Pdiss will be much larger than the conservative partsC/2d
3sdU2/dtd and therefore the probability distributions of both
the injected and dissipated power will be practically equal
and usually Gaussian, as it is expected in macroscopic sys-
tems.

We call kgltstd=1/tet
t+tgst8ddt8 the time-averaged value

of a functiong over a timet.
Reasoning with energies instead of powers, we define

Wtstd=tkPinltstd, the energy injected in the circuit during
time t, analogous to the work performed on the systemsposi-
tive when received by the systemd. In the same way, we write
Qtstd=tkPdissltstd, the energy dissipated by the joule effect
during timet, analogous to the heat dissipated by the system
spositive when given by the system to the thermostatd. We
used values oft spanning from fractions oft0 up to hundreds
of t0.

For a given value ofI, we measureUstd and computePin

andPdiss. We then build the probability density functions of
cumulated variablesWt andQt using samples of 106 points;
their typical distributions are plotted in Fig. 3. As expected,
fluctuations ofWt are Gaussian for anyt, whereas heat fluc-
tuations are not for small values oft. They are exponential

FIG. 4. sColor onlined Normalized symmetry functionsSW and
SQ for Wt and Qt when I =1.4310−13 A ssame conditions as Fig.
3d. sad For anyt, SW is a linear function ofa=Wt / kWtl. Straight
lines are theoretical predictions fromf12g. For t→`, SWsad tends
to have a slope 1.sbd On the contrary,SQsad tends to a limit func-
tion scontinuous black curved which is a straight line of slope 1 for
a,1 only.

FIG. 5. sColor onlined sad Dependence ont of the slope ofSW in
Fig. 4. Slope is converging from above.sbd Distance betweenSQstd
for finite t and theoretical prediction ofSQ for infinite t, for several
values ofa=Q/ kQl. Fora,3, convergence is from below, whereas
it is from above fora.3.
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for small t : large fluctuations of heatQt are more likely to
occur than large fluctuations of workWt.

Then we study the normalized symmetry function

SEst,ad ;
kBT

tP̄
ln

psEt = ad
psEt = − ad

, s4d

whereEt stands for eitherWt / kWtl or Qt / kQtl. If the fluc-
tuation theorem for the workWt holds, then one should have
f11,12g, for large enought, the relationship limt→` fWst ,ad
=a. In contrast, if the fluctuation theorem for the heatQt

holds, then fort→`, the asymptotic values ofSQst ,ad are
SQ

`sad=a for aø1, SQ
`sad=2 for aù3, and there is a continu-

ous parabolic connection for 1øaø3 that has a continuous
derivative f11,12g. From histograms of Fig. 3, we compute
the symmetry functionsSWst ,ad andSQst ,ad sFig. 4d.

sad Work fluctuations. First, for any givent we checked
that the symmetry functionSWst ,ad is linear ina fFig. 4sadg.
We measured the corresponding proportionality coefficient
sWstd such thatSWst ,ad=sWstda. This coefficientsWstd
tends to 1 whent is increasedssee Fig. 5d.

sbd Heat fluctuations. We found thatSQst ,ad is linear ina
only for a,1, as expectedf11,12g. Again, ast→`, the limit
slope of the symmetry function is 1, whereas fora.3,
SQst ,ad tends to 2.

scd Asymptotic symmetry functions and convergence. In
f11,12g, expressions for the convergence towards the
asymptotic limitsSW

` sad and SQ
`sad are given in terms oft.

We can check these predictions with our data. The conver-
gence for the workWt is very well reproduced by these
predictions, as can be seen in Fig. 4sad continuous straight
lines are theoretical predictions for small values oft, using
Eqs. s9d and s10d from f12g, with no adjustable parameters.
In Fig. 5sad the slopesWstd of the experimental symmetry
function is plotted. The continuous line is the prediction of
f12g, which perfectly agrees with our data.

For the heat, we distinguish two regimes for the conver-
gence towards the asymptotic symmetry function. Fora
=Qt / kQl,3, we find that whent is increased, symmetry

functions are converging to the asymptotic function from be-
low sFig. 4d, which is the opposite of what is observed for
the work. On the contrary, fora.3, convergence to the
asymptotic function is from above, thus enhancing the pecu-
liarity of the pointa=3. In Fig. 5, we have plotted the evo-
lution of SQst ,ad versust for several fixed values ofa. The
convergence from above foraù3 and from below fora
,3 is clear. For increasing values oft, only smaller and
smaller values ofa are accessible because of the averaging
process. Therefore, the accessible values ofa are quickly
lower than 1, and only the linear part ofSQst ,ad can be
experimentally tested. Nevertheless, for intermediate time
scalest we see in Fig. 4 that the data converge towards the
theoretical asymptotic nonlinear symmetry functionf11,12g
fsmooth curve in Fig. 4sbdg.

We observed that the convergence reproduced in Fig. 5
depends on the injected currentI, as pointed out inf12g.
Other experiments with a larger currentsP̄=186kBT/s give
a faster convergence; corresponding results will be reported
elsewhere.

CONCLUSIONS

We have shown experimentally that the asymmetry of the
probability distribution functions of work and heat in a
simple electrical circuit driven out of equilibrium by a fixed
current I, is linked to the averaged dissipated power in the
system. The recently proposed fluctuation theorems for first-
order Langevin systems are then experimentally confirmed.
Exploiting formula s4d, FT can be used to measure an un-

known averaged dissipated powerP̄=limt→` Qt /t by using
only the symmetries of the fluctuations, i.e., computingSW or
SQ and measuring their asymptotic slope.

We operated with energies of order ofkBT in order to have
strong fluctuations compared to the averaged values. It is
worth noting that as the driving current is increased up to
macroscopic values, the fluctuations become more and more
negligible, therefore fluctuation theorems become harder and
harder to use, and therefore less relevant.
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