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We present a technique for entropy optimization to calculate a distribution from its moments. The technique
is based upon maximizing a discretized form of the Shannon entropy functional by mapping the problem onto
a dual space where an optimal solution can be constructed iteratively. We demonstrate the performance and
stability of our algorithm with several tests on numerically difficult functions. We then consider an electronic
structure application, the electronic density of states of amorphous silica, and study the convergence of the
Fermi level with increasing number of moments.
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One of the fixed themes of physics is the solution of in-
verse problems. A ubiquitous example in theoretical physics
is the “classical moment problem”sCMPd, in which only a
finite set of power moments of a non-negative distribution
functionp is known, and the full distribution is neededf1g. It
is obvious that the solution forp is not uniquefor a finite set
of moments. This nonuniqueness suggests the need for a
“best guess” forp, based upon the available information.
With its ultimate roots in 19th century statistical mechanics
and a subsequent strong justification based upon probability
theory, the “maximum entropy”smaxentd method has pro-
vided an extremely successful variational principle to ad-
dress this type of inverse problemf2g. Collins and Wragg
used the maxent method to solve the CMP for a modest
number of momentsf3g. In a comprehensive paper with
seminal applications, Mead and Papanicolaouf4g solved the
CMP with maximum entropy techniques and proposed the
first practical numerical scheme to solve the moment prob-
lem for up to 15 moments. In a host of subsequent papers,
the utility of the method as an unbiased and surprisingly
efficient srapidly convergentd solution of the CMP has been
established. The principle has been used extensively in a
number of diverse applications ranging from image construc-
tion to spectral analysisf5g, large-scale electronic structure
problemsf6,7g, series extrapolation and analytic continuation
f8–10g, quantum electronic transportf11g, ligand-binding
distribution in polymersf12g, and transport planningf13g.

There exist a number of maximum entropy algorithms
f4,7,14–16g that have been developed over the last two de-
cades. Many of the algorithmssbut not alld are constrained
by the number of moments that they can deal with and be-
come unreliable when the number of constraints exceeds a
problem-dependent upper limit. As the number of moments
increases, the calculation of momentssparticularly the power
momentsd becomes more sensitive to machine precision and

the optimization problem becomes ill conditioned. It has
been observed that implementation of a maxent algorithm
with more than 20 power moments is notoriously difficult
even with extended precision arithmetic and it rarely gives
any further information on the nature of the distribution. The
use of orthogonal polynomials as basis set significantly im-
proves the accuracy and remedies most of the problems that
one encounters with power moments.

In this paper we present an iterative approach to construct
the maxent solution of CMP, which is based upon discretiza-
tion of the Shannon entropy functionalf17g. The essential
idea is to discretize Shannon entropy and map the problem
from the primal space onto the dual space where an optimal
solution can be constructed iteratively without the need of
matrix inversion. We discuss theoretical ideas and develop
algorithms that can be used with both power and Chebyshev
moments. The stability and the accuracy of the method are
discussed with reference to two numerically nontrivial
examples—a uniform distribution and a doubled function.
We illustrate the usefulness of our technique by computing
the electronic density of statessEDOSd of amorphous silica
with particular emphasis on convergence of the Fermi level
as a function of number of moments.

The starting point of our approach is to use a discretized
form of the Shannon entropy functionalf17g Sfpg using a
quadrature formula,

S= −E psxdln psxddx< − o
j=1

n

wjpjln pj . s1d

Herewj andxj are the weights and abscissas of any accurate
quadrature formula, say the Gauss-Legendre, and without
any loss of generality we restrict ourselves toxP f0,1g. We
want to maximizeS subject to the discretized moment con-
straints

o
j=1

n

wjxj
i pj = o

j=1

n

aij p̃j = mi, i = 1,2,…,m, s2d

where we definep̃j =wjpj andaij =xj
i . The entropy optimiza-

tion programsEOPd can now be stated so as to optimize the
Lagrangian function,
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Lsp̃,hd ; o
j=1

n

p̃jlnS p̃j

wj

D − o
i=1

m

h̃iSo
j=1

n

aij p̃j − miD , s3d

and the solution can be written as

p̃j = wjexpSo
i=1

m

aij h̃i − 1D, j = 1,2,…,n. s4d

Since wù0, Eq. s4d implies that p̃ù 0. Furthermore, the
conditions in Eqs.s2d and s4d can be lumped together,

hish̃d ; o
j=1

n

aijwjexpSo
k=1

m

akjh̃k − 1D − mi = 0, ∀ i . s5d

We now see from Eq.s5d that the original constrained
optimization program is now reduced to anunconstrained
convex optimization programinvolving the dual variables

min
h̃PRm

dsh̃d ; o
j=1

n

wjexpSo
i=1

m

aij h̃i − 1D − o
i=1

m

mih̃i . s6d

If the dual optimization program stated above has an optimal
solution h̃*, the solution p̃jsh* d can be obtained from Eq.
s4d. Bergman has proposed an iterative method to minimize
the dual objective functiondsh̃d taking only onedual vari-
able at a timef18g. The method starts with an arbitrarily
chosenh̃0PRm, and then cyclically updates all the dual vari-
ables as follows.

Step 1. Start with anyh̃0PRm and a sufficiently small
tolerance levele.0. Setk=0 and obtainp̃j

0.
Step 2. Let i =sk mod md+1. Solve the equation

fi
kslkd = o

j=1

n

aij p̃j
kexpsaijl

kd − mi = 0. s7d

Step 3. Update each component ofh̃,

h̃l
k+1 = Hh̃l

k + lk if l = i ,

h̃l
k if l Þ i .

J s8d

Step 4. If Eq. s5d is satisfied within the preset level of
tolerance, then stop withh* = h̃k, and obtain the primal so-
lution from Eq.s4d. Otherwise, calculate

p̃j
k+1 = wjexpSo

i=1

m

aij h̃i
k+1 − 1D, j = 1,2,…,n s9d

and go to step 2.
From a computational point of view, the most problematic

part of the above algorithm is the solution of the set of Eq.
s7d in step 2. In a variant of the above scheme known as the
multiplicative algebraic reconstruction techniquef19,20g,
one uses the following closed-form expression to approxi-
mate the correction termlk:

li
k = ln1 mi

o
j=1

n

aij p̃j
k2 . s10d

Step 3 of the algorithm is now modified by substituting
the expression above forli

k in Eq. s8d. A convergence theo-
rem for the modified algorithm can be found in Lentf21g. It
is, however, quite easy to see that the algorithm will fail
unless for everyi =1,2,… ,m, either

mi . 0 and 0ø aij ø 1, j = 1,2,…,n s11d

or

mi , 0 and 0ù aij ù − 1, j = 1,2,…,n. s12d

We note that in this case we are assured of convergence of
the solution of our discretized EOP because the condition
s11d holds.

The EOP algorithm above can only be used provided that
the condition stated by the inequalitys11d or s12d is satisfied.
This constrains us to apply the algorithm for power moments
but neither of these two is necessarily true for other polyno-
mial moments. In order to work with Chebyshev polynomi-
als, we first employ the averages of shifted Chebyshev poly-
nomialsf22g of the first kindTn

*sxd=Tns2x−1d to recast the
entropy optimization program given by statements5d. The
only change needed for this purpose is to redefineaij by
aij =Ti

*sxjd.
Our next step is to find a transformation that will convert

the EOP into an equivalent problem in which all the program
parameters are non-negative. For finding the necessary trans-
formation, we define fori =1,2,3,… ,m,

uj = fmax
j

s− aijdg + 1. s13d

Obviously, for i =1,2,3,… ,m and j =1,2,3,… ,n,

sui + aijd . 0. s14d

Let us now define fori =1,2,3,… ,m,

Mi ; max
j

suj + aijd, ti ;
1

msMi + 1d
. s15d

It is easy to see that the following relations hold fori
=1,2,3,… ,m:

Mi . 0, tj . 0,

sMi + 1dtj =
1

m
, tisui + aijd ø tiMi ,

1

m
.

For i =1,2,3,… ,m and j =1,2,3,… ,n, let us define

aij8 ; tisui + aijd. s16d

Apparently, fori =1,2,3,… ,m and j =1,2,3,… ,n, we have

1

m
. aij8 . 0, 0, o

i=1

m

aij8 = o
i=1

m

tisui + aijd , 1. s17d

It is interesting to note that ifp̃ is a feasible solution to the
EOP involving averages ofTn

*sxd, then for i =1,2,3,… ,m

o
j=1

n

aij8 p̃j = o
j=1

n

tisui + aijdp̃j = tisui + mid. s18d

Hence, if we define fori =1,2,3,… ,m,
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mi8 ; tisui + mid = o
j=1

n

aij8 p̃j . s19d

It is easy to verify that 1/m.mi8 for i =1,2,3,… ,m. The
transformed EOP has thus the same form as previously, ex-
cept for the fact that we use Eq.s19d in place of Eq.s2d.
Since bothaij8 andmi8 can take only positive values, a feasible
solution to the original program can now be obtained by
replacingaij andmi j in Eq. s5d by aij8 andmi j8 f23g.

We consider two numerically difficult examples, a uni-
form distribution and a doubled function, to study the sta-
bility and accuracy of the algorithm. The Chebyshev mo-
ments of these two functions can be exactly calculated.
Earlier efforts to reproduce these distributions have met with
limited success because of the difficulty in matching a suffi-
cient number of moments and because of the singular nature
of the functions. It would be interesting to see how the
algorithm performs in the case ofsad a uniform dis-
tribution fsxd=1, xP f0,1g and sbd a double d function
gsxd=dsx− 1/4d+dsx− 3/4d, xP f0,1g.

The algorithm produces the uniform distribution correctly
up to five decimal places. We found that the first 25 shifted
Chebyshev moments are sufficient for this purpose. The fact
that the end points have been produced so accurately without
any spurious oscillations is a definitive strength of this ap-
proach and reflects the stability and accuracy of our algo-
rithm. In Fig. 1, we have plotted the result for the doubled
function. The result is equally convincing and certainly es-
tablishes the usefulness of this method over the other exist-
ing ones in the literature. In addition to these examples, we
have also tested our algorithm to reconstruct a Tent map, a
semicircular distribution, a square-root distribution, and a
distribution with a gap in the spectrum. In all these cases, the
algorithm correctly produces all the features of the distribu-
tions without failing. Throughout the work we have used
double precision arithmetic to compute the moments and the
distribution functions. The results clearly demonstrate that
the algorithm is very stable and accurate and is capable of
reproducing some very uncommon distributionsssuch as the
doubled functiond without any difficulty.

We now consider a practical case where analytical expres-
sions for the moments are not available but can be computed
numerically. An archetypal example is the calculation of an
electronic density of states from its moments. In the context
of solid state physics, the maxent method has been used prof-
itably to calculate the density of electronicsvibrationald
states from a knowledge of the moments of the Hamiltonian
sdynamicald matrix. The computation of moments itself is an
interesting problem in this field, and there are methods avail-
able in the literature that specifically address this issue
f6,14g. Here one is interested in determining physical quan-
tities such as the Fermi level and band energy of large sys-
temsse.g., clusters, biological macromolecules, etc.d without
diagonalizing the Hamiltonian matrix. For disordered sys-
tems, this is particularly suitable because of disordered scat-
tering sof electronsd that washes out the van Hove singulari-

FIG. 2. Normalized electronic density of statessdotted lined of
amorphous silica using the first 60 shifted Chebyshev moments.
The distribution of energy eigenvaluesspointsd from direct diago-
nalization of the Hamiltonian matrix is also plotted in the figure.
Normalized Fermi level is at 0.595 eV, which corresponds to
−5.4655 eV in Fig. 3.

FIG. 3. Fermi level of amorphous silica as a function of number
of the shifted Chebyshev moments. The value obtained from direct
diagonalization of the Hamiltonian matrix is −5.465 eV and is plot-
ted as a horizontal line in the figure.

FIG. 1. Reconstruction of a doubled function gsxd=dsx−1/4d
+dsx−1/3d using the first 25 shifted Chebyshev moments.
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ties in the electronic spectrum. A stable and accurate maxent
algorithm, therefore, would be very useful in calculating
electronic properties of amorphous semiconductors. The two
examples discussed above suggest that we should be able to
produce a complex electronic spectrum with a gapsor gapsd
to a high degree of precision and hence the Fermi level and
band energy. As for metallic systems, the determination of
Fermi energy is a nontrivial problem forOsnd methods. A
primary requirement for a maxent algorithm in this case is
that s1d it must produce the distribution accurately ands2d it
must do so in a stable way using a sufficient number of
moments to correctly produce the singularities of the spec-
trum. It is very pleasing to note that our algorithm does sat-
isfy this requirement, and therefore may offer an alternative
approach to computing the Fermi energy of metallic systems.

In Fig. 2, we have plotted the EDOS of amorphous silica
using the first 60 moments and compared it to the result
obtained by direct diagonalization of the Hamiltonian matrix.
It is clear from the figure that all the features of the EDOS
are correctly produced by our maxent algorithm. Finally, in
Fig. 3 we have plotted the variation of Fermi energy with the
number of moments. The Fermi energy is computed by inte-

grating the normalized density of states to obtain the correct
number of total electrons. It is clear from Fig. 3 that the
Fermi energy starts to converge after the first 30 moments
and eventually converges after 40 moments. We emphasize
at this point that physical quantities that can be expressed as
an average over the distribution functionsssuch as band en-
ergy, susceptibility, and specific heatd converge more rapidly
than the distribution functions themselves. Since the distri-
bution functions converged excellently in the present work,
one is automatically assured of convergence of averaged
quantities.

In conclusion, we present an algorithm for maximum en-
tropy construction of a distribution from its moments. The
algorithm is very stable and accurate and can handle a large
number of momentssup to 500d. The usefulness of this al-
gorithm is demonstrated by constructing some numerically
difficult distributions and applying it to amorphous silica to
compute the electronic density of states and the Fermi level.
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0310933.
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