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Maximum entropy and the problem of moments: A stable algorithm
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We present a technique for entropy optimization to calculate a distribution from its moments. The technique
is based upon maximizing a discretized form of the Shannon entropy functional by mapping the problem onto
a dual space where an optimal solution can be constructed iteratively. We demonstrate the performance and
stability of our algorithm with several tests on numerically difficult functions. We then consider an electronic
structure application, the electronic density of states of amorphous silica, and study the convergence of the
Fermi level with increasing number of moments.
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One of the fixed themes of physics is the solution of in-the optimization problem becomes ill conditioned. It has
verse problems. A ubiquitous example in theoretical physicbeen observed that implementation of a maxent algorithm
is the “classical moment problem{CMP), in which only a  with more than 20 power moments is notoriously difficult
finite set of power moments of a non-negative distributioneven with extended precision arithmetic and it rarely gives
function p is known, and the full distribution is needgd]. It any further information on the nature of the distribution. The
is obvious that the solution fq is not uniquefor a finite set ~ use of orthogonal polynomials as basis set significantly im-
of moments. This nonuniqueness suggests the need for Roves the accuracy and remedies most of the problems that
“best guess” forp, based upon the available information. ONe encounters with power moments.

With its ultimate roots in 19th century statistical mechanics N this paper we present an iterative approach to construct
and a subsequent strong justification based upon probabilit??e maxent solution of CMP, which is based upon discretiza-

theory, the “maximum entropyfmaxeni method has pro- ton of the Shannon entropy functiongd7]. The essential
vided an extremely successful variational principle to adJdé@ iS to discretize Shannon entropy and map the problem

; : : from the primal space onto the dual space where an optimal
dress this type of inverse problefd]. Collins and Wragg olution can be constructed iteratively without the need of

used the maxent method to solve the CMP for a mOdeSiwatrix inversion. We discuss theoretical ideas and develop

num_berl of Tome”tiﬂ- Ir:j a golgnpreh_enfive piap%r ;’]Vith algorithms that can be used with both power and Chebyshev
seminal applications, Mead and Papanicol@blsolved the 5 ments The stability and the accuracy of the method are

CMP with maximum entropy techniques and proposed thejiscyssed with reference to two numerically nontrivial
first practical numerical scheme to solve the moment probgyamples—a uniform distribution and a douldeunction.
lem for up to 15 moments. In a host of subsequent papersye jllustrate the usefulness of our technique by computing
the utility of the method as an unbiased and surprisinglythe electronic density of statéEDOS of amorphous silica
efficient (rapidly convergentsolution of the CMP has been with particular emphasis on convergence of the Fermi level
established. The principle has been used extensively in &s a function of number of moments.
number of diverse applications ranging from image construc- The starting point of our approach is to use a discretized
tion to spectral analysig5], large-scale electronic structure form of the Shannon entropy functiongl7] §p] using a
problemd6,7], series extrapolation and analytic continuationquadrature formula,
[8-10], quantum electronic transpoftll], ligand-binding n
distribution in polymerg12], and transport planningL3]. - _ ~— nlnn.

There exist a number of maximum entropy algorithms s fp(x)ln P(x)dx ngwjpjln i @)
[4,7,14-16 that have been developed over the last two de- ) )
cades. Many of the algorithmidut not al) are constrained Herew; andx; are the weights and abscissas of any accurate
by the number of moments that they can deal with and beduadrature formula, say the Gauss-Legendre, and without
come unreliable when the number of constraints exceeds Y loss of Qef_‘efa"ty we restrict ogrselv_esxte [0, 1]. We
problem-dependent upper limit. As the number of momentdvant to maximizeS subject to the discretized moment con-

increases, the calculation of momefparticularly the power straints

moment$ becomes more sensitive to machine precision and " _ oo _
ijx}pj:Zajpj:Mi, i=1,2,...,m, 2)
=1 =1
*Electronic address: physakb@yahoo.com where we defing; =w;p; and a;; :X}. The entropy optimiza-
"Electronic address: biswas@phy.ohiou.edu tion program(EOP) can now be stated so as to optimize the
*Electronic address: drabold@ohio.edu Lagrangian function,
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n [ m n Step 3 of the algorithm is now modified by substituting
L(P,n = EEJ-In = 1->%l> aPj—mi |, (3)  the expression above fm‘f in Eqg. (8). A convergence theo-
=1 W i=1 \j=1 rem for the modified algorithm can be found in L¢&1]. It
and the solution can be written as is, however, quite easy to see that the algorithm will fail
unless for every=1,2,...,m, either
m
~ ~ . >0 and O<a;<1, j=1,2,...,n 11
pj = w;ex Eaijni—l), j=1,2,....n (4) Hi & J (11)
i=1 or
Sincew=0, Eq. (4) implies thatp= 0. Furthermore, the <0 and O=a;=-1, j=1,2,...,n. (12

conditions in Eqs(2) and(4) can be lumped together, ) .
as(2) @ P g We note that in this case we are assured of convergence of

n m the solution of our discretized EOP because the condition
hi(7) = X a;wexp| > a7—1]-wi=0, Oi. (5  (12) holds.
=1 k=1 The EOP algorithm above can only be used provided that
We now see from Eq(5) that the original constrained thg condltlon stated by the mequal(tyl) or (12) is satisfied.
optimization program is now reduced to amconstrained This constrains us to apply the algorithm for power moments

convex optimization prograimvolving the dual variables bgt neither of these two is necessf_arily true for other polyn_o-
mial moments. In order to work with Chebyshev polynomi-

n m m als, we first employ the averages of shifted Chebyshev poly-
mind(7) = X wiexp| X a7 - 1) -2 w7 (6)  nomials[22] of the first kind T, (x)=T.(2x—1) to recast the
7eR" =1 i=1 =1 entropy optimization program given by statemé®t. The
If the dual optimization program stated above has an optima?"ly_change needed for this purpose is to redefipeby
solution 7%, the solution;(*) can be obtained from Eq. ay =T, (%) _ _ _ _

(4). Bergman has proposed an iterative method to minimize Our ngxt step is tp find a transformatm_n that will convert
the dual objective functioml(7) taking only onedual vari- the EOP into an equalem problem |n_wh|ch all the program
able at a time[18]. The method starts with an arbitrarily parameters are nqn-negatlve. For finding the necessary trans-
choseri® e R™ and then cyclically updates all the dual vari- formation, we define for=1,2,3...,m,
ables as follows. u; =[max(— ;)] +1. (13

Step 1 Start with any7’e R™ and a sufficiently small i
tolerance levek>0. Setk=0 and obtairp’.

- . Obviously, fori=1,2,3,..,mandj=1,2,3,..,n,
Step 2 Leti=(k modm)+1. Solve the equation

. (Ui +a;) > 0. (14
P = a{jT)?eXp(aijkk) -u;i=0. (7) Let us now define for=1,2,3,..,m,
j=1 B B 1
Step 3 Update each component &f M; = mjax(uj tay) 4= m(M; + 1) (15)
k1 77l‘+ A =i, It is easy to see that the following relations hold for
Mmoo )~k : (8) =1,2,3,..,m:
7 0L #i.
Step 4 If Eq. (5) is satisfied within the preset level of M;=0, >0,
tolerance, then stop witly* = 7%, and obtain the primal so- 1 1
lution from Eg.(4). Otherwise, calculate M+ Dt ==, t(u+a;)<tM <—.
i | mv WY au iV m
m
TJEMZWjeX Ea”;}:«l_l), j=1,2,..n (9) Fori=1,2,3,...,mandj=1,2,3...,n, let us define
= a; = ti(u +&). (16)

and go to step 2.

From a computational point of view, the most problematic
part of the above algorithm is the solution of the set of Eq. 1 , a , a
(7) in step 2. In a variant of the above scheme known as the o &~ 0, 0< Z & = 2_: ti(u+a;) <1. (17)
multiplicative algebraic reconstruction techniqi#9,20, =t =t
one uses the following closed-form expression to approxi- It is interesting to note that {i is a feasible solution to the

Apparently, fori=1,2,3...,mandj=1,2,3...,n, we have

mate the correction termk: EOP involving averages dlf;(x), then fori=1,2,3,...,m
n n
Mi . ~
N=Inf —=—1. (10 2 &Py = 2 Ui +ay)P; = (U + ). (18
~k j=1 j=1
> &, , -
j=1 Hence, if we define for=1,2,3...,m,
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FIG. 1. Reconstruction of a doubl@function g(x)=48(x-1/4) FIG. 2. Normalized electronic density of stat@®otted ling of
+8(x—1/3) using the first 25 shifted Chebyshev moments. amorphous silica using the first 60 shifted Chebyshev moments.

The distribution of energy eigenvalu@soints from direct diago-
) " i nalization of the Hamiltonian matrix is also plotted in the figure.
Mi Eti(ui"',ui)zz & P;- (19 Normalized Fermi level is at 0.595 eV, which corresponds to
=1 -5.4655 eV in Fig. 3.

It is easy to verify that Ith> | fori=1,2,3,..,m. The ) , ,
transformed EOP has thus the same form as previously, ex- /e Now consider a practical case where analytical expres-
cept for the fact that we use E€L9) in place of Eq.(2) sions for the moments are not available but can be computed
Since bothe; andu! can take only positive values, a feasible numerlc_ally. An. archetypal example is the calculation of an
solution to ]the orilginal program can now be obtained byelectronlc density of states from its moments. In the context
replacingay; and ; in Eq. (5) by & and u!, [23] of solid state physics, the maxent method has been used prof-

We coanider tvl\]/o nurﬁerically (]jifficultljexarﬁples, a uni- 'tably to calculate the density of eIectron(@/ibration_ah .
form distribution and a doublé function, to study the sta- states ffom a kn_owledge of the moments of the Hamllyonlan
bility and accuracy of the algorithm. The Chebyshev mo-(dynamica) matrix. The computation of moments itself is an
ments of these two functions can be exactly calculatedimeresung problem in this field, and there are methods avail-

Earlier efforts to reproduce these distributions have met wit ble in the I|ter§1tu_re that spemflcally.a}ddress .th's ISsue
limited success because of the difficulty in matching a suffi .6.’14]' Here one is mter_ested in determining physical quan-
cient number of moments and because of the singular natufd'es such as the Fer_ml 'E:‘Ve' and band energy of_Iarge Sys-
of the functions. It would be interesting to see how thete_ms(e.g_.,_clusters, b|ol_og|c_al macro_molecule_s,)emthout
algorithm performs in the case ofa) a uniform dis- dlagonalllz[ng thg Hamlltonlan matrix. For d|§ordered sys-
tribution f(x)=1, x<[0,1] and (b) a double & function tems, th]ls |Is paruculharly sunhable bec;\use of d|sord¢red| scat-
g(x):é(x— 1/4)+5(x— 3/4), xe[0.1]. tering (of electron$ that washes out the van Hove singulari-
The algorithm produces the uniform distribution correctly -4.6 . . . . YR
up to five decimal places. We found that the first 25 shifted Diagonalization -
Chebyshev moments are sufficient for this purpose. The fac 48| _
that the end points have been produced so accurately withot !
any spurious oscillations is a definitive strength of this ap- 5L % ** i
proach and reflects the stability and accuracy of our algo— *
rithm. In Fig. 1, we have plotted the result for the double ‘
function. The result is equally convincing and certainly es-
tablishes the usefulness of this method over the other exist T
ing ones in the literature. In addition to these examples, we >4
have also tested our algorithm to reconstruct a Tent map, ¢
semicircular distribution, a square-root distribution, and a 36| ]
distribution with a gap in the spectrum. In all these cases, the
algorithm correctly produces all the features of the distribu- 5.8 . ' ' . . :
tions without failing. Throughout the work we have used 20 % %0 % 40 4 %0
.. - . Number of moments
double precision arithmetic to compute the moments and the
distribution functions. The results clearly demonstrate that FIG. 3. Fermi level of amorphous silica as a function of number
the algorithm is very stable and accurate and is capable aff the shifted Chebyshev moments. The value obtained from direct
reproducing some very uncommon distributideach as the diagonalization of the Hamiltonian matrix is —5.465 eV and is plot-
double é function) without any difficulty. ted as a horizontal line in the figure.

52t 1
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ties in the electronic spectrum. A stable and accurate maxemrating the normalized density of states to obtain the correct
algorithm, therefore, would be very useful in calculating number of total electrons. It is clear from Fig. 3 that the
electronic properties of amorphous semiconductors. The twgermi energy starts to converge after the first 30 moments
examples discussed above suggest that we should be abledad eventually converges after 40 moments. We emphasize
produce a complex electronic spectrum with a gapgap$  at this point that physical quantities that can be expressed as
to a high degree of precision and hence the Fermi level angn average over the distribution functiofssich as band en-
band.energy. As for meFa_IIic systems, the determination ogrgy, susceptibility, and specific heabnverge more rapidly
Fermi energy is a nontrivial problem f@d(n) methods. A han the distribution functions themselves. Since the distri-
primary requirement for a maxent algorithm in this case ispytion functions converged excellently in the present work,
that (1) it must produce the distribution accurately a@lit  one js automatically assured of convergence of averaged
must do so in a stable way using a sufficient number quuantities.
moments to correctly produce the singularities of the spec- | conclusion, we present an algorithm for maximum en-
trum. Itis very pleasing to note that our algorithm does satopy construction of a distribution from its moments. The
isfy this requirement, and therefore may offer an alternativey|gorithm is very stable and accurate and can handle a large
approach to computing the Fermi energy of metallic systemsyymber of momentgup to 500. The usefulness of this al-

In Fig. 2, we have plotted the EDOS of amorphous SiliC"“gorithm is demonstrated by constructing some numerically
using the first 60 moments and compared it to the resuljfficylt distributions and applying it to amorphous silica to

It is clear from the figure that all the features of the EDOS

are correctly produced by our maxent algorithm. Finally, in We acknowledge the support of the National Science
Fig. 3 we have plotted the variation of Fermi energy with theFoundation under Grants No. DMR-0205858 and No. DMR-

number of moments. The Fermi energy is computed by inte0310933.
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