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Dangerous bifurcation at border collision: When does it occur?
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It has been shown recently that border collision bifurcation in a piecewise smooth map can lead to a situation
where a fixed point remains stable at both sides of the bifurcation point, and yet the orbit becomes unbounded
at the point of bifurcation because the basin of attraction of the stable fixed point shrinks to zero size. Such
bifurcations have been named “dangerous bifurcations.” In this paper we provide explanation of this phenom-
enon, and develop the analytical conditions on the parameters under which such dangerous bifurcations will
occur.
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The bifurcations occurring in piecewise smooth maps‘dangerous bifurcations” and to obtain explicit conditions on
have attracted significant research attention in recent yeathe system parameters which lead to such behavior.
because of their applicability in a wide class of systems of It has been showf6] that dynamical phenomena related
practical interesf1] including switching circuit§2], impact  to border collision bifurcation$BCB) can be probed using
oscillators[3] walking robots[4], and cardiac dynamid$].  the piecewise linear approximation in the neighborhood of
In such systems, as a parameter is varied, a fixed point cafie border crossing fixed point, expressed in the convenient
collide with the borderline between two smooth regions, renormal form:
sulting in an abrupt change in the Jacobian matrix. This leads
to a new class of bifurcations, known as border collision

bifurcations[6]. r( 7L )(xk) ( ) <0
It has been shown that such bifurcations can lead to atypi- -8 0/\y + o/* =Y
cal transitions like a period-1 orbit directly bifurcating into a (xk+1) T
chaotic orbit, or a periodic orbit suddenly vanishing as it hits =
the border. Analysis of such bifurcations have been devel- i ( r )(xk> +( )M, =0
oped [6—8] depending on the eigenvalues of the Jacobian -0k 0/\n 0 ’
matrix at the two sides of the border. It has been found that \ TR
under some conditions a stable fixed point occurs at both (1)

sides of a border collision event, and it was believed that thi%vhere 7_is the trace and, is the determinant of the Jaco-

situatipn would result in no observable change in systeny; matrixJ, of the system at a fixed point iRy:=1{(X,y)
behavior[7,8]. However, it has been recently shoy@] that < R2:x=<0} and close to the border ang is the trace and

b;)_rder EOII'S'tOhn blfurtcatlons” can als? :ﬁad to ? pfetk:)ullgr S'tuﬁs the determinant of the Jacobian matdix of the system
ation where the sysiem collapses at th€ point of bOTder Coly a1 ated at a fixed point iRg:={(x,y) € R?:x=0} near the
lision, even though the fixed point remains stable throughougOrder
the range of parameter variation. The basin of attraction o ) . . :

! : , . : We assume that the determinants of the Jacobian matrices
the stable fixed point shrinks as the parameter is varied to:

. . : . . at the two sides of the border satisfy the conditiorss 4
War_d the blfurc_atlon value, an_d at the blfurcatlon_pomt the>0 and 1> 85> 0. For a specific combination & and dx,
basin of attraction has zero size. As a result, orbits startin
; ! : e type of BCB depends on the two parametgrand 7.
from all points other than the fixed point become unbounde ; . .
. o ) e restrict our attention to the parameter space region
(at least from a local point of view in a neighborhood of the
i . . ) e X bounded by
bifurcating poinj. This revelation is a matter of serious con-
cern for practical systems that are modeled b_y piecewise —(1+8)<7m<(1+8), (2a)
smooth maps, because the eigenvalues of the fixed point do
not give any signal of the impending collapse. _
This possibility has been pointed out through numerical (1+69) < 7r<(1+r), (D)
exploration but the mechanism causing its occurrence is N@iecause, the map has a fixed point attractonferO0 if (2a)
yet known. Moreover, in order to apply this knowledge ins true, and foru>0 if (2b) is true.
practical situations, it is necessary to know the conditions |n order for an “attractor at infinity” to occur in addition
under which such bifurcations are expected to occur. Theg the stable fixed point, it is necessary that there must be an
purpose of this paper is to explain the mechanism of suckhyariant subspace forming the boundary between the basins
of attraction of the two attractors. It is known that the stable
manifold of a saddle fixed point can form such a basin
*Also at the Department of Electrical Engineering. Electronic boundary. Therefore we probe which fixed point can serve
address: soumitro@ee.iitkgp.ernet.in this purpose.
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19 ; ! ' ' ' 1+6§5|_+T|_5R+ o TRt 5R7'R_TL7'§1:O- (7)

These lines are marked in Fig. 1.
1 Now, in order for this orbit to be stable, the eigenvalues of
©) the composite matrid, J3 must be inside the unit circle. Let

1 7 be the trace and be the determinant of the above matrix.
e If the eigenvalues are complex conjugae?=5<1 since
&0 1 the system is assumed to be dissipative at both sides. There-
fore the eigenvalues can go out of the unit circle only when

) .. ", L.
@ they are real, giving the stability condition

o ‘ —(L+o <7< (1+9). (8)
] Yo 1 From this, the stability conditions for theRR orbit are
_19 . found to be
-19 -1 0 1 L9
'TL 1+5§25L+TL5R+ 5|_7'R+ 5RTR_TL72R> O, (9)
FIG. 1. Region of existence of theRR orbit, given by the 1+ 5%@_ - 70— OTR— OrTR T 7-|_7-2R >0. (10
intersection of(3) and (4) for u=-0.3 andd_ =dg=0.9. The con- ) ) ) )

tours are marked by the corresponding equations. Notice that the left-hand sid&HS) in (9) is the same as the

LHS in (7)—which corresponds to the condition where the
eeigenvalue becomes equal to +1.

If (9) is satisfied, then the denominator of the existence
conditions becomes positive. Therefore in the parameter re-
gion shown in Fig. 1, the stableRR orbit must coexist with
the stable fixed point i.. These two orbits must have their

rown basins of attraction, separated by the stable manifold of
a saddle-type periodic point. Which fixed point serves this
purpose?

Notice that for theLLR type period-3 orbit, the stability
conditions are

Since an unstable period-1 orbit does not occur in th
region of parameter space given (&), a period-1 orbit can-
not form the basin boundary. A period-2 orbit exists for
>0 if ;g<-(1+68g) and for u<0 if 7. <-(1+4), and
therefore it cannot coexist with a stable period-1 orbit.

Next, we analyze the existence and the stability of hig
periodic orbits(HPO) starting from period-3. In the follow-
ing discussion we will name particular types of orbits de-
pending on the partitionf. or R) in which the points fall.
For example, ah.RR orbit implies a period-3 orbit with one

point on the left-hand side and two points on the right-hand 1+ 555R+ TROL + OjTL+ 0.7 — TRTE >0, (11
side. Suppose this orbit has the poits;, Y1), (Xr1,Yr1),
and (Xgp,Yro). The conditions of existence of tHeRR orbit 1+ 80r— 1R — Sx7 = O.7 + 72 > 0. (12)

are given byx ; <0, Xg; >0, andxg,>0. Out of these, the N ) ) )
first one is always satisfied, since there cannot be a highFrom these conditions we find that in the parameter region
periodic orbit with all the points in one linear side. From the under consideration, theLR orbit is unstable—a regular

other two conditions we get the inequalities saddle. Indeed, this is the orbit whose stable manifold creates
the basin boundary.
(1+7 = S+ Tr7 + 8, 0-+ S TR L The condition of existence of tthR orbit is given_t_)y
>0, (3)  x1<0, x,<0, and xg;>0. Ignoring the last condition

— 2
1+ 38R0, + TL0r+ OLTR+ ORTR— MLTR which is always satisfied, we get the inequalities

(L+ 71— 8 + 17+ SR+ SRT) 1

l+mz— O + T+ S0+ 7.5 <0, 13
( R L RTL L7R L R)M >0 (4) 1+5E5R+ TR5|_+5RT|_+5|_T|__TRT|2_ ( )
1+ 633+ 1O+ & TR+ SrTR— TLTR
Notice that the denominator of both these inequalities is (L+7 - R+ 1R+ 6o+ RO
the same. The region of existence of this orbit in the param- <0, 14
' 1+ 80+ TRéL + SrT + 8.7 — TRTL

eter space will be determined by the intersection of the re-

gions given by the above inequalities. This region is plottec®S the condition for its existence.

in Fig. 1. Since the LHS of the inequalities are expressed as We now plot the intersection of these existence conditions
ratios of two functions, the ratio will be positive if both the in Fig. 2. In this case also the boundaries of the region are
numerator and the denominator are positive, or if both ar@btained from the numerators and denominatoré&l8f and
negative. This leads to the conclusion that the contours of thel4), as

region of existence will be formed by 1+ 75— 8, + 770+ 8-+ 0xm. =0 (15)
1+n - 0r* R7L+ d0r+ O7R=0, (5) 1+7 — g+ TR+ ORdL + TR =0, (16)
1+TR_5|_+TRT|_+5|_5R+7'|_6R:O; (6) 1+5|2_5R+TR5L+6RTL+6LTL_TRTE:0' (17)
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FIG. 2. The region of existence of thé¢ R orbit for x=-0.3 and
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FIG. 4. The structure of the phase space #pr 63=0.9, 7, =
-0.5, 7r=-1.5.(a) For a negative value of the parameteand (b)
for a positive value ofu. The stable fixed point is shown with a
black dot and the unstable period-3 fixed point is shown with open
circles. The basin of attraction of the stable fixed point reduces to
zero size aju=0.

6.=6r=0.9, obtained as the intersection of the parameter regions

given by (13) and(14).

Now notice thai6) and(15) are identical an@5) and(16)
are also identical. Therefore, the curves mar®dn Fig. 1

and in Fig. 2, respectively, are identical, and the curved@!!V:

marked(6) in Fig. 1 and in Fig. 2 are also identical. But the
curves marked7) in Fig. 1 representing the first stability
condition of theLRR orbit and that marked17) in Fig. 2
representing the first stability condition of théR orbit are
not identical

by curve(7), the stableLRR orbit begins to exist.

For a system with parameters placed in the shaded region
in Fig. 3, a stable period-1 fixed point exists in and a
regular saddle type period-3 fixed point also exists. Natu-
the stable manifold of the saddle fixed point will divide
the phase space into two regions. One is the basin of attrac-
tion of the stable fixed point. In the absence of any other
stable orbit, the other attractor will be at infinity.

Since every distance in this map scales with the parameter
M, as the parameter is varied toward zero, the maximum

This observation leads to the conclusion that Whenevepistance between the stable fixed point and the points of the

the stabld_RRorbit exists, the unstableLR orbit (we call it
the complementaryrbit) also exists. But the reverse is not

true. In the parameter space there exists a region where t A

unstableLLR orbit exists but the stableRR orbit does not.

This region is obtained by subtracting the regions of exis-

tence of theLRR orbit from that of theLLR orbit, and is
shown in Fig. 3. Whem_is reduced from zero withg fixed
at a value lying between -1 and -1.9,7if crosses the line

marked(17), a single unstable period-3 orbit comes into ex- . .
game values of the determinants at the two sides, these re-

istence. As it is reduced below the parameter value limite

19

FIG. 3. The region where only the unstall®R orbit exists
along with the stable period-1 fixed point.

unstable period-3 orbit reduces. At the point of border colli-
sion bifurcation, i.e., atu=0 the distance becomes zero.
erefore the area of the basin of attraction of the stable
ixed point reduces to zero.

Because of the symmetry in the map, for positive values
of u, the same phenomenon will be observed. Only,thR
orbit will now be stable and theRR orbit will be unstable.

In the equations, the terms with sufflx will have to be
substituted by terms with suffiR and vice versa. For the

gions obtained fop. >0 will be identical with that obtained
for © <0 (though the regions will be different if the deter-
minants at the two sides are unequ&lor a specific param-
eter combination placed in this region, the basins of attrac-
tion and the positions of the stable and unstable fixed points
are shown in Fig. 4.

Now we take up the case of orbits of periodicity four and
above. Obviously, there can be many different types of orbits
of each periodicity. We define “regular orbits” as those orbits
having the symbol& andR occurring consecutively at least
in one cyclic permutation. We find that far>0, two types
of regular periodic orbits occur in the parameter regi@n
(a) those with one point on the right-hand side and the rest
on the left-hand sidéthe L" IR orbitg), and (b) those with
two points on the left-hand side and the rest on the right-
hand side(the L?R"? orbits). For <0, the regular orbits
are of LR™ andL""?R? types. Based on numerical investi-
gation, it is our conjecture that only these regular orbits are
responsible for the dangerous BCBs.

For each stable high periodic orbit, there will be a
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complementary orbitvith the following properties:
(1) It must have the same periodicity as the observed pe-
riodic orbit.
(2) Its symbol sequence differs from that of the stable
periodic orbit by only one letter, with the exception of se-
quences consisting of only one symbol.
(3) Whenever a high periodic orbit coexists with a stable 5

period-1 orbit, the stable manifold of the complementary or- 0)
bit forms the basin boundary. \

In the present case, the complementary ofitfiéR orbits
are theL""?R? orbits, and the complementary of thd&R"*
orbits are the_?R"2 orbits. Note that the period43LR orbit
belongs to both.""!R class and th&.?R"2 class.

There will be regions of the parameter space where the _19 ‘
above regular orbits of periods 4, 5, 6, etc., will occur. There ~19
will also be adjacent regions where these regular orbits do
not occur, but their complementary orbits occur. These rep-
resent conditions for the occurrence of dangerous border col- FIG. 5. The regions of dangerous border collision bifurcation
lision bifurcations. To compute these, one must obtain thebtained using the conditions of existence of complementary orbits
composite matrices of the regular orbits and their complefor 6.=0.9, 5=0.9.
mentary orbits, compute their trageand determinand, and
then substituting into the equatiar=1+4 one gets the con- ©<0, and those belonging to the clakB™ exist for u
tours of the regions. These regions can be easily obtained g Notice that the regions for the occurrence of dangerous
using any symbolic computation program. For example, folifyrcation thus obtained analytically exactly match those
=0 there will be a region where the regular periol®  ,piained in Ref[9] through numerical exploration.
orbit will not occur, but its complementary’R* orbit will In this paper we have shown that it is possible for a single
occur. This region is delimited by two lines obtained by sub-ynstaple periodic orbit to come into existence in a piecewise
stituting the traces and determinants of the matricé§inear continuous map, and that the dangerous border colli-
JurIrIr andJ J, Jplg into the equationr=1-+0. ___sion bifurcations in nonsmooth systems are caused by the

Following this procedure, we obtain the parameter regiongccyrrence of such singleton unstable orbits. We have de-
where the above phenomenon occurs with orbits of period J¢ribed a method of obtaining the parameter space regions
4, 5, etc., i.e., where only the unstable complementary orbitghere such bifurcations occur. This knowledge will help

occur, but the stable high-periodic orbits do not occur. Thesggid the occurrence of dangerous bifurcations in practical
regions are shown in Fig. 5. In the dark areas of the regioRystems.

7.> 7, the complementary orbits belonging to the class

L" 'R exist for u <0, and those belonging to the clds5?R? This work was supported in part by the Department of
exist for u>0. By symmetry, in the region <7z the  Atomic Energy, Government of India under Contract No.
complementary orbits belonging to the cla$®"2 exist for ~ 2003/37/11/BRNS.
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