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It has been shown recently that border collision bifurcation in a piecewise smooth map can lead to a situation
where a fixed point remains stable at both sides of the bifurcation point, and yet the orbit becomes unbounded
at the point of bifurcation because the basin of attraction of the stable fixed point shrinks to zero size. Such
bifurcations have been named “dangerous bifurcations.” In this paper we provide explanation of this phenom-
enon, and develop the analytical conditions on the parameters under which such dangerous bifurcations will
occur.
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The bifurcations occurring in piecewise smooth maps
have attracted significant research attention in recent years
because of their applicability in a wide class of systems of
practical interestf1g including switching circuitsf2g, impact
oscillatorsf3g walking robotsf4g, and cardiac dynamicsf5g.
In such systems, as a parameter is varied, a fixed point can
collide with the borderline between two smooth regions, re-
sulting in an abrupt change in the Jacobian matrix. This leads
to a new class of bifurcations, known as border collision
bifurcationsf6g.

It has been shown that such bifurcations can lead to atypi-
cal transitions like a period-1 orbit directly bifurcating into a
chaotic orbit, or a periodic orbit suddenly vanishing as it hits
the border. Analysis of such bifurcations have been devel-
oped f6–8g depending on the eigenvalues of the Jacobian
matrix at the two sides of the border. It has been found that
under some conditions a stable fixed point occurs at both
sides of a border collision event, and it was believed that this
situation would result in no observable change in system
behaviorf7,8g. However, it has been recently shownf9g that
border collision bifurcations can also lead to a peculiar situ-
ation where the system collapses at the point of border col-
lision, even though the fixed point remains stable throughout
the range of parameter variation. The basin of attraction of
the stable fixed point shrinks as the parameter is varied to-
ward the bifurcation value, and at the bifurcation point the
basin of attraction has zero size. As a result, orbits starting
from all points other than the fixed point become unbounded
sat least from a local point of view in a neighborhood of the
bifurcating pointd. This revelation is a matter of serious con-
cern for practical systems that are modeled by piecewise
smooth maps, because the eigenvalues of the fixed point do
not give any signal of the impending collapse.

This possibility has been pointed out through numerical
exploration but the mechanism causing its occurrence is not
yet known. Moreover, in order to apply this knowledge in
practical situations, it is necessary to know the conditions
under which such bifurcations are expected to occur. The
purpose of this paper is to explain the mechanism of such

“dangerous bifurcations” and to obtain explicit conditions on
the system parameters which lead to such behavior.

It has been shownf6g that dynamical phenomena related
to border collision bifurcationssBCBd can be probed using
the piecewise linear approximation in the neighborhood of
the border crossing fixed point, expressed in the convenient
normal form:

s1d

wheretL is the trace anddL is the determinant of the Jaco-
bian matrixJL of the system at a fixed point inRAª hsx,yd
PR2:xø0j and close to the border andtR is the trace anddR

is the determinant of the Jacobian matrixJR of the system
evaluated at a fixed point inRBª hsx,ydPR2:xù0j near the
border.

We assume that the determinants of the Jacobian matrices
at the two sides of the border satisfy the conditions 1.dL
.0 and 1.dR.0. For a specific combination ofdL anddR,
the type of BCB depends on the two parameterstL and tR.
We restrict our attention to the parameter space region
bounded by

− s1 + dLd , tL , s1 + dLd, s2ad

− s1 + dRd , tR , s1 + dRd, s2bd

because, the map has a fixed point attractor form,0 if s2ad
is true, and form.0 if s2bd is true.

In order for an “attractor at infinity” to occur in addition
to the stable fixed point, it is necessary that there must be an
invariant subspace forming the boundary between the basins
of attraction of the two attractors. It is known that the stable
manifold of a saddle fixed point can form such a basin
boundary. Therefore we probe which fixed point can serve
this purpose.
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Since an unstable period-1 orbit does not occur in the
region of parameter space given bys2d, a period-1 orbit can-
not form the basin boundary. A period-2 orbit exists form
.0 if tR,−s1+dRd and for m,0 if tL,−s1+dLd, and
therefore it cannot coexist with a stable period-1 orbit.

Next, we analyze the existence and the stability of high
periodic orbitssHPOd starting from period-3. In the follow-
ing discussion we will name particular types of orbits de-
pending on the partitionssL or Rd in which the points fall.
For example, anLRRorbit implies a period-3 orbit with one
point on the left-hand side and two points on the right-hand
side. Suppose this orbit has the pointssxL1,yL1d, sxR1,yR1d,
and sxR2,yR2d. The conditions of existence of theLRR orbit
are given byxL1,0, xR1.0, andxR2.0. Out of these, the
first one is always satisfied, since there cannot be a high-
periodic orbit with all the points in one linear side. From the
other two conditions we get the inequalities

s1 + tL − dR + tRtL + dLdR + dLtRdm
1 + dR

2dL + tLdR + dLtR + dRtR − tLtR
2 . 0, s3d

s1 + tR − dL + tRtL + dLdR + tLdRdm
1 + dR

2dL + tLdR + dLtR + dRtR − tLtR
2 . 0. s4d

Notice that the denominator of both these inequalities is
the same. The region of existence of this orbit in the param-
eter space will be determined by the intersection of the re-
gions given by the above inequalities. This region is plotted
in Fig. 1. Since the LHS of the inequalities are expressed as
ratios of two functions, the ratio will be positive if both the
numerator and the denominator are positive, or if both are
negative. This leads to the conclusion that the contours of the
region of existence will be formed by

1 + tL − dR + tRtL + dLdR + dLtR = 0, s5d

1 + tR − dL + tRtL + dLdR + tLdR = 0, s6d

1 + dR
2dL + tLdR + dLtR + dRtR − tLtR

2 = 0. s7d

These lines are marked in Fig. 1.
Now, in order for this orbit to be stable, the eigenvalues of

the composite matrixJLJR
2 must be inside the unit circle. Let

t be the trace andd be the determinant of the above matrix.
If the eigenvalues are complex conjugate,ulu2=d,1 since
the system is assumed to be dissipative at both sides. There-
fore the eigenvalues can go out of the unit circle only when
they are real, giving the stability condition

− s1 + dd , t , s1 + dd. s8d

From this, the stability conditions for theLRR orbit are
found to be

1 + dR
2dL + tLdR + dLtR + dRtR − tLtR

2 . 0, s9d

1 + dR
2dL − tLdR − dLtR − dRtR + tLtR

2 . 0. s10d

Notice that the left-hand sidesLHSd in s9d is the same as the
LHS in s7d—which corresponds to the condition where the
eigenvalue becomes equal to +1.

If s9d is satisfied, then the denominator of the existence
conditions becomes positive. Therefore in the parameter re-
gion shown in Fig. 1, the stableLRRorbit must coexist with
the stable fixed point inL. These two orbits must have their
own basins of attraction, separated by the stable manifold of
a saddle-type periodic point. Which fixed point serves this
purpose?

Notice that for theLLR type period-3 orbit, the stability
conditions are

1 + dL
2dR + tRdL + dRtL + dLtL − tRtL

2 . 0, s11d

1 + dL
2dR − tRdL − dRtL − dLtL + tRtL

2 . 0. s12d

From these conditions we find that in the parameter region
under consideration, theLLR orbit is unstable—a regular
saddle. Indeed, this is the orbit whose stable manifold creates
the basin boundary.

The condition of existence of theLLR orbit is given by
xL1,0, xL2,0, and xR1.0. Ignoring the last condition
which is always satisfied, we get the inequalities

s1 + tR − dL + tLtR + dRdL + dRtLdm
1 + dL

2dR + tRdL + dRtL + dLtL − tRtL
2 , 0, s13d

s1 + tL − dR + tLtR + dRdL + tRdLdm
1 + dL

2dR + tRdL + dRtL + dLtL − tRtL
2 , 0, s14d

as the condition for its existence.
We now plot the intersection of these existence conditions

in Fig. 2. In this case also the boundaries of the region are
obtained from the numerators and denominators ofs13d and
s14d, as

1 + tR − dL + tLtR + dRdL + dRtL = 0, s15d

1 + tL − dR + tLtR + dRdL + tRdL = 0, s16d

1 + dL
2dR + tRdL + dRtL + dLtL − tRtL

2 = 0. s17d

FIG. 1. Region of existence of theLRR orbit, given by the
intersection ofs3d and s4d for m=−0.3 anddL=dR=0.9. The con-
tours are marked by the corresponding equations.
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Now notice thats6d ands15d are identical ands5d ands16d
are also identical. Therefore, the curves markeds5d in Fig. 1
and in Fig. 2, respectively, are identical, and the curves
markeds6d in Fig. 1 and in Fig. 2 are also identical. But the
curves markeds7d in Fig. 1 representing the first stability
condition of theLRR orbit and that markeds17d in Fig. 2
representing the first stability condition of theLLR orbit are
not identical.

This observation leads to the conclusion that whenever
the stableLRRorbit exists, the unstableLLR orbit swe call it
the complementaryorbitd also exists. But the reverse is not
true. In the parameter space there exists a region where the
unstableLLR orbit exists but the stableLRRorbit does not.
This region is obtained by subtracting the regions of exis-
tence of theLRR orbit from that of theLLR orbit, and is
shown in Fig. 3. WhentL is reduced from zero withtR fixed
at a value lying between −1 and −1.9, iftL crosses the line
markeds17d, a single unstable period-3 orbit comes into ex-
istence. As it is reduced below the parameter value limited

by curves7d, the stableLRRorbit begins to exist.
For a system with parameters placed in the shaded region

in Fig. 3, a stable period-1 fixed point exists inL, and a
regular saddle type period-3 fixed point also exists. Natu-
rally, the stable manifold of the saddle fixed point will divide
the phase space into two regions. One is the basin of attrac-
tion of the stable fixed point. In the absence of any other
stable orbit, the other attractor will be at infinity.

Since every distance in this map scales with the parameter
m, as the parameter is varied toward zero, the maximum
distance between the stable fixed point and the points of the
unstable period-3 orbit reduces. At the point of border colli-
sion bifurcation, i.e., atm=0 the distance becomes zero.
Therefore the area of the basin of attraction of the stable
fixed point reduces to zero.

Because of the symmetry in the map, for positive values
of m, the same phenomenon will be observed. Only, theLLR
orbit will now be stable and theLRRorbit will be unstable.
In the equations, the terms with suffixL will have to be
substituted by terms with suffixR and vice versa. For the
same values of the determinants at the two sides, these re-
gions obtained form.0 will be identical with that obtained
for m,0 sthough the regions will be different if the deter-
minants at the two sides are unequald. For a specific param-
eter combination placed in this region, the basins of attrac-
tion and the positions of the stable and unstable fixed points
are shown in Fig. 4.

Now we take up the case of orbits of periodicity four and
above. Obviously, there can be many different types of orbits
of each periodicity. We define “regular orbits” as those orbits
having the symbolsL andR occurring consecutively at least
in one cyclic permutation. We find that form.0, two types
of regular periodic orbits occur in the parameter regions2d:
sad those with one point on the right-hand side and the rest
on the left-hand sidesthe Ln−1R orbitsd, and sbd those with
two points on the left-hand side and the rest on the right-
hand sidesthe L2Rn−2 orbitsd. For m,0, the regular orbits
are ofLRn−1 andLn−2R2 types. Based on numerical investi-
gation, it is our conjecture that only these regular orbits are
responsible for the dangerous BCBs.

For each stable high periodic orbit, there will be a

FIG. 2. The region of existence of theLLR orbit for m=−0.3 and
dL=dR=0.9, obtained as the intersection of the parameter regions
given by s13d and s14d.

FIG. 3. The region where only the unstableLRR orbit exists
along with the stable period-1 fixed point.

FIG. 4. The structure of the phase space fordL=dR=0.9, tL=
−0.5, tR=−1.5.sad For a negative value of the parameterm andsbd
for a positive value ofm. The stable fixed point is shown with a
black dot and the unstable period-3 fixed point is shown with open
circles. The basin of attraction of the stable fixed point reduces to
zero size atm=0.
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complementary orbitwith the following properties:
s1d It must have the same periodicity as the observed pe-

riodic orbit.
s2d Its symbol sequence differs from that of the stable

periodic orbit by only one letter, with the exception of se-
quences consisting of only one symbol.

s3d Whenever a high periodic orbit coexists with a stable
period-1 orbit, the stable manifold of the complementary or-
bit forms the basin boundary.

In the present case, the complementary of theLn−1R orbits
are theLn−2R2 orbits, and the complementary of theLRn−1

orbits are theL2Rn−2 orbits. Note that the period-3LLR orbit
belongs to bothLn−1R class and theL2Rn−2 class.

There will be regions of the parameter space where the
above regular orbits of periods 4, 5, 6, etc., will occur. There
will also be adjacent regions where these regular orbits do
not occur, but their complementary orbits occur. These rep-
resent conditions for the occurrence of dangerous border col-
lision bifurcations. To compute these, one must obtain the
composite matrices of the regular orbits and their comple-
mentary orbits, compute their tracet and determinantd, and
then substituting into the equationt=1+d one gets the con-
tours of the regions. These regions can be easily obtained
using any symbolic computation program. For example, for
m,0 there will be a region where the regular period-4LR3

orbit will not occur, but its complementaryL2R2 orbit will
occur. This region is delimited by two lines obtained by sub-
stituting the traces and determinants of the matrices
JLJRJRJR andJLJLJRJR into the equationt=1+d.

Following this procedure, we obtain the parameter regions
where the above phenomenon occurs with orbits of period 3,
4, 5, etc., i.e., where only the unstable complementary orbits
occur, but the stable high-periodic orbits do not occur. These
regions are shown in Fig. 5. In the dark areas of the region
tL.tR, the complementary orbits belonging to the class
Ln−1R exist form,0, and those belonging to the classLn−2R2

exist for m.0. By symmetry, in the regiontL,tR the
complementary orbits belonging to the classL2Rn−2 exist for

m,0, and those belonging to the classLRn−1 exist for m
.0. Notice that the regions for the occurrence of dangerous
bifurcation thus obtained analytically exactly match those
obtained in Ref.f9g through numerical exploration.

In this paper we have shown that it is possible for a single
unstable periodic orbit to come into existence in a piecewise
linear continuous map, and that the dangerous border colli-
sion bifurcations in nonsmooth systems are caused by the
occurrence of such singleton unstable orbits. We have de-
scribed a method of obtaining the parameter space regions
where such bifurcations occur. This knowledge will help
avoid the occurrence of dangerous bifurcations in practical
systems.
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