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From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of
subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional
derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion
dimensionless number and the fractional index satisfy a certain condition, we find fronts exhibiting an un-
physical behavior: they travel faster in the subdiffusive than in the diffusive regime.
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I. INTRODUCTION

Hyperbolic reaction-diffusion equations have been ap-
plied to model memory or delay effects in heat conduction
f2g and many other biological applicationsssee Ref.f1g and
references thereind. In all these models, memory effects
come from assuming a single and small waiting time be-
tween successive jumps. From the continuous-time random
walk sCTRWd framework the practical procedure consists in
expanding in Taylor series the waiting time probability dis-
tribution function sPDFd in the Laplace space. Up to first
order one gets the classical parabolic reaction-diffusion
equation, commonly called Fisher’s equation, and up to sec-
ond order one has the hyperbolic reaction-diffusion equation
ssee Ref.f1g for detailsd. By considering an anomalous wait-
ing time PDF one finds a fractional reaction-diffusion equa-
tion sRef. f3g and references therein are a complete guide to
physics phenomena related to these equationsd and up to first
order in the Taylor expansion one has a parabolic reaction-
diffusion equation. The speed of fronts for these equations
has been recently foundf4g, as well as asymmetric frontsf5g
and the Turing conditions for pattern formationf6g. In this
work we derive and study a fractional hyperbolic reaction-
diffusion sFHRDd equation. We consider an anomalous, that
is, a Lévysi.e., a stabled, waiting time PDF often used in the
literature f3g, and retain terms up to second order in the
Taylor expansion. We analyze the speed of fronts in FHRD
equations by using the Hamilton-Jacobi equation methodf7g
and find numerical and approximated solutions to the speed.
The Hamilton-Jacobi formalism of classical mechanics has
already been widely employed to derive the speed of fronts
in hyperbolic reaction-diffusion equations under Fisher-
Kolmogorov-Petrovskii-PiskunovsFisher-KPPd kinetics f8g.
We determine here also the limits of the linear speed selec-
tion for hyperbolic fronts in terms of the reaction-diffusion
dimensionless numbera sit is the quotient between the char-
acteristic waiting and reaction timesd and the fractional ex-
ponentg. Within the linear speed selection range we find
fronts that travel faster in the subdiffusive regime than in the
diffusive one. Our results may be potentially interesting to
consider the effect of a time delay in folded polymers, scale-
free networksf9g, and magnetically confined plasmasf5g.

II. HYPERBOLIC FRACTIONAL REACTION-DIFFUSION
EQUATIONS

A reaction-dispersal equation has been recently derived
according to the CTRW frameworkf10g. Inverting Eq.s3d in
Ref. f10g by a Fourier-Laplace transform and assuming de-
coupled spatial and temporal memories, one gets

rsx,td =E
0

t

dt8wst8dE
R

dx8Fsx8drsx − x8,t − t8d

+E
0

t

dt8fst8df„rsx,t − t8d…, s1d

where rsx,td is the concentration of particles at positionx
and time t , wstd is the waiting time PDF, andFsxd is the
jump length PDF. The survival probability at the current po-
sition is fstd=et

`dt8wst8d. Finally, f represents the rate of
creation or removal of particles which, as usual in population
dynamics, depends explicitly onr as a nonlinear function.
We definef ; rrFsrd, where r is the constant growth rate,
and considerf of the Fisher-KPP typef11,7g, that is,Fsrd is
such thatFs0d=1, FsrdøF8s0d, andFsrd.0 for rP s0,1d.
Let us assume a Gaussian jump length PDFFskd=e−s2k2

and
the anomalous version of the single waiting time PDFwssd
=e−sstdg

with 0,gø1, which is a Lévysi.e., stabled distri-
bution. If one chooses other similar anomalous PDFs, these
can be written after a Taylor expansion asFskd=1
−a1sskd2+¯ and wssd−1=1+b1sstdg+ 1

2b2sstd2g+¯ with
properai and bi coefficientsf12g. So, our choice does not
imply a loss of generality. On setting both PDFs in the
Fourier-Laplace transform of Eq.s1d one has

sfesstdg
− e−s2k2

grsk,sd = fesstdg
− 1gfsk,sd. s2d

From now we assume short jump lengthsssk!1d and
small waiting timessst!1d. These facts allow to us keep the
linear terms in the expansion of PDFs, i.e.,Fskd.1−s2k2

andesstdg
.1+sstdg. However, dealing with the waiting time

PDF, we shall explore the next approximation level and take
esstdg

.1+sstdg+ 1
2sstd2g. On one hand, by introducing

e−s2k2
.1−s2k2 andesstdg

.1+sstdg into Eq. s2d, we getsaf-
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ter inverting the Fourier-Laplace transformf3g the parabolic
fractional reaction-diffusionsPFRDd equation

]t
gr =

s2

tg ]xxr + ]t
g−1f . s3d

The speed of fronts propagating according to Eq.s3d has
been already studied recentlyf4g. On the other hand, if we
introducee−s2k2

.1−s2k2 and esstdg
.1+sstdg+ 1

2sstd2g into
Eq. s2d one gets the hyperbolic fractional reaction-diffusion
sHFRDd equation

tg

2
]t

2gr + ]t
gr = D]xxr +

tg

2
]t

2g−1f + ]t
g−1f s4d

where we have defined the diffusion coefficientD;s2/tg.
In this work we focus on fronts arising from Eq.s4d. Let us
stress that in the absence of reactionsf =0d the transport
regime in this case is always subdiffusive in the large time
limit ssee Ref.f13g for detailsd. In order to check the exis-
tence of fronts as solutions of Eq.s4d we have integrated it
numerically by using a finite difference scheme based in the
equivalence of the Riemann-Liouville and Grünwald-
Letnikov derivativesf14g, in the same way as appear in Ref.
f15g. We have also got the following stability condition for
the algorithm to converge:

a2g−1sDx*d2 + 4sDt*d2g

2ag−1sDx*d2sDt*dg , 1,

wheresDx*d2 andsDt*d2 are the grid spacing along thex* and
t* axes, respectively. Figure 1 shows numerical solutions of
Eq. s4d for several times from a steep initial condition. We
also plotsinset in Fig. 1d the collapse of these profiles when
an appropriate change of variables is made.

III. SPEED OF HFRD FRONTS

The Hamilton-Jacobi equation corresponding to the prob-
lem s1d under an initial condition with compact support is
ssee Ref.f10gd

1

ŵsHd
= F̂spd +

r

H
S 1

ŵsHd
− 1D s5d

whereŵsHd andF̂spd are nothing but the Laplace transform
and the bilateral transform of the waiting time and the jump
length distributions, respectively. The speed of the front is
determined by the system of algebraic equations

v =
H

p
,

dH

dp
=

H

p
, s6d

whereH=Hspd is obtained from Eq.s5d. On putting ŵsHd
=e−sHtdg

andFspd=es2p2
into Eq. s5d it reads as

esHtdg
= es2p2

+
a

Ht
fesHtdg

− 1g s7d

wherea=rt is the dimensionless reaction-diffusion number.
This dimensionless parameter expresses the quotient be-
tween the characteristic waiting time and the characteristic
reaction time. Up to first order inHt and ins2p2 one obtains
the Hamilton-Jacobi for the PFRD equation and the speed
has been already found inf16g. Up to second order inHt one
hasesHtdg

.1+sHtdg+ 1
2sHtd2g and up to first order ins2p2,

Eq. s7d reads

s2p2 = sHtdgF1 +
1

2
sHtdgGS1 −

a

Ht
D s8d

which requiresHt.a in order to have physical meaning. By
virtue of the first equation ins6d and s8d the speed of the
front is given by

vg =
s

t

ys3−gd/2

Îy − aÎ1 + yg/2
s9d

wherey;Ht is, from the second equation ins6d, a solution
of the transcendent equation

s1 − gdyg+1 −
a

2
s3 − 2gdyg + s2 − gdy − as3 − gd = 0.

s10d

As Eq. s10d has no analytical solution we propose to find an
approximated solution by assuming a perturbative expansion
aroundy=a, that is, we inserty=a+e in s10d and find up to
first order ine

e .
2as1 + ag/2d

s2 − 3gdag + 2s2 − gd
. s11d

Therefore, the approximated solution for the speed is from
Eqs.s9d and s11d

FIG. 1. Front profiles obtained from numerical integrations of
Eq. s4d. Here we have choseng=0.7, a=rt=10−4. Inset: Front pro-
files collapse by exchanging the variablessx,td for sx−cDt ,t+Dtd.
In this case we have computedc=0.559 directly from the numerical
calculationsfthe predicted value from Eq.s12d is 0.551g and Dt
=7.5, t1

* =7.5 ssquaresd, t2
* =15 scirclesd, t3

* =22.5sup trianglesd, and
t4
* =30 sdown trianglesd. We have omitted the asterisks for notational

simplicity.
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vg .
s

t 3 s2 − 3gdag + 2s2 − gd

2aS1 +
ag

2
D 4

1/2

fGsa,gdags3−gd/2

3H1 +
fGsa,gdagg

2
J−1/2

with Gsa,gd =
3ags1 − gd + 2s3 − gd
s2 − 3gdag + 2s2 − gd

. s12d

As Ht.a, one must demand thate.0. Thus, the conditions
for the existence of a linear speed selection for fronts in
HFRD equations is from Eq.s11d

a , acsgd = S4 − 2g

3g − 2
D1/g

if g .
2

3
. s13d

For gø2/3 no condition is required. Let us to stress that for
the classical caseg=1 one has from Eq.s10d y=4a/ s2−ad
and from Eqs.s9d and s13d

v1 = 4
s

t

Îa

2 + a
if a , 2. s14d

This result is already known for hyperbolic reaction-
diffusion equationss1d. In Table I we compare the results of
the speed from Eq.s12d and the speed we have calculated
from the numerical integration of Eq.s4d. We find a good
agreement for all the values ofg. It is interesting to find the
set of values fora andg for which the linear speed selection
holds and the correlation between the transport regime and
the speed of the front. This is illustrated in Fig. 2. For values
of a higher thana*sgd, the linear speed of the fronts is also
selected but fronts can travel faster forg,1 than forg=1.
This is inconsistent with the fact that forg,1 the transport
is subdiffusive, i.e., slower than in the transport regime for
g=1 snormal diffusiond. Fronts witha.a*sgd lack physical
meaning.

IV. COMPARISON WITH OTHER APPROACHES

In the context of front speed, we discuss the improvement
achieved by using HFRD over PFRD equations in this sec-
tion. For this purpose, we need to deal with the complete
jump length PDF, that is, we need to consider the infinite

order in the Taylor expansion ofF̂spd. Otherwise, a front
cannot exist if one considers the complete tail for the waiting
time PDF. This was shown in Ref.f16g where we studied the
linear speed selection for frontsspulled frontsd in the CTRW

framework. IfN is of the order of the truncation of the Taylor
series inst of the inverse of the Laplace transform of the
waiting time PDFfwssd−1g andM is of the order of the trun-
cation of the Taylor series insp of the bilateral transform of
the jump length PDFfFspdg, it is shown inf16g that only for
NøM is the minimum linear speed selected. From Eqs.s6d
and s7d one obtains

vex=
s

t
min
y.a

y

ln1/2feyg
s1 − a/yd + a/yg

. s15d

The solution ofvex has to be numerically obtained. Now we
can make two approximations to the previous exact result.
Up to first order we takeesHtdg

.1+sHtdg which corresponds
to the parabolic approach. Then, from Eqs.s6d and s7d

FIG. 3. The dimensionless speedvt /s is plotted versusa. A
monotonically increasing behavior of the speed and a considerable
improvement of the hyperbolic approach in comparison to the para-
bolic approach is observed.

TABLE I. Comparison of the speed from Eq.s12d sctheord and
from numerical integrations of Eq.s4d scnumd for a=10−4.

g ctheor cnum

0.3 0.095 0.117

0.5 0.231 0.266

0.7 0.552 0.559

0.99 1.917 1.880

FIG. 2. Plot for the critical reaction-diffusion dimensionless
number versus the fractional indexg given in Eq.s13d. When the
values ofa andg lie over the curveacsgd given in Eq.s13d no linear
speed is selected. The curvea*sgd represents the separatrix of the
domain wherevg.v1 andvg,v1.
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vprd =
s

t
min
y.a

y

ln1/2f1 + yg − ayg−1g
. s16d

Up to second order,esHtdg
.1+sHtdg+ 1

2sHtd2g we get the
hyperbolic approach and the speed of the front is from Eqs.
s6d and s7d

vhrd =
s

t
min
y.a

y

ln1/2F1 + yg +
1

2
y2g − aSyg−1 +

1

2
y2g−1DG .

s17d

In Fig. 3 we plot the numerical computations for the speed of
the fronts coming from these three different casess15d, s16d,
and s17d. It is observed that the parabolic approach consid-
erably deviates from the “exact case” while the hyperbolic
approach is a good approach for small values ofa sas it must
be in order to get fronts with physical meaningd, improves
substantially the parabolic approach, and allows us to think
that the hyperbolic approach retains most of the memory
contained in the complete form of the waiting time PDF and
has the advantage that it is still analytically treatable.

V. CONCLUSIONS

We have proved numerically the existence of a traveling
wave front solution and have studied the speed of fronts for
FHRD equations. We have found numerical and approxi-
mated solutions for the speed exhibiting a good agreement.
Conditions for the existence of a linear front speed selection
in terms of the reaction-diffusion dimensionless numbera
and the fractional indexg have been found. We have also
mathematically shown, within the linear speed selection, the
emergence of fronts driven by subdiffusion transport, that
can travel, ifa.a*sgd, faster than fronts driven by classical
diffusion. However, this mathematical result has no physical
meaning. Finally, we have compared the parabolic approach
with the result obtained from the complete waiting time PDF
scalled the exact cased and a notable deviation has been ob-
served. However, when the hyperbolic approach is consid-
ered, the agreement with the exact case is substantially im-
proved within the range of values ofa where the fronts have
physical meaning.
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