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Front propagation in hyperbolic fractional reaction-diffusion equations
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From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of
subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional
derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion
dimensionless number and the fractional index satisfy a certain condition, we find fronts exhibiting an un-
physical behavior: they travel faster in the subdiffusive than in the diffusive regime.
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. INTRODUCTION Il. HYPERBOLIC FRACTIONAL REACTION-DIFFUSION
EQUATIONS

_Hyperbollc reaction-diffusion equations have been ap- a reaction-dispersal equation has been recently derived
plied to model memory or delay effects in heat conduction

. . o according to the CTRW framewofl.0]. Inverting Eq.(3) in
[2] and many other biological applicatioksee Ref[1] and Ref.[10] by a Fourier-Laplace transform and assuming de-
references therejn In all these models, memory effects

: . . ; coupled spatial and temporal memories, one gets
come from assuming a single and small waiting time be-

tween successive jumps. From the continuous-time random (., e , ,

walk (CTRW) framework the practical procedure consists in p(xt) = . dt'¢(t') . dX (x)p(x = x",t=t)
expanding in Taylor series the waiting time probability dis- “

tribution function (PDF in the Laplace space. Up to first v ,

order one gets the classical parabolic reaction-diffusion * 0 dt’ ¢(t") f(p(x,t = 1)), 1)

equation, commonly called Fisher’s equation, and up to sec-

ond order one has the hyperbolic reaction-diffusion equationvhere p(x,t) is the concentration of particles at positign
(see Ref[1] for detail9. By considering an anomalous wait- and timet, ¢(t) is the waiting time PDF, and(x) is the

ing time PDF one finds a fractional reaction-diffusion equa-jump length PDF. The survival probability at the current po-
tion (Ref.[3] and references therein are a complete guide tajtion is d(t)=[7dt' (). Finally, f represents the rate of
physics phenomena related to these equaliand up to first  creation or removal of particles which, as usual in population
order in the Taylor expansion one has a parabolic reactionrdynamics, depends explicitly om as a nonlinear function.
diffusion equation. The speed of fronts for these equationgye definef=rpF(p), wherer is the constant growth rate,
has been recently fourjd], as well as asymmetric fronfS]  and considef of the Fisher-KPP typ€l1,7], that is,F(p) is
and the Turing conditions for pattern formatigh]. In this  gych that(0)=1, F(p) <F’(0), andF(p)>0 for p (0, 1).

work we derive and study a fractional hyperbolic reaction- L L2
diffusion (FHRD) equation. We consider an anomalous, thatl‘et us assume a Gaussian jump length PBIk) =€ and

is, a Lévy(i.e., a stablg waiting time PDF often used in the thta_(:l?yomalous version Of th? SIHQI? waiting time ng)
literature [3], and retain terms up to second order in the=€ > With 0<y=1, which is a Lévy(i.e., stabl¢ distri-
Taylor expansion. We analyze the speed of fronts in FHRDPution. If one chooses other similar anomalous PDFs, these
equations by using the Hamilton-Jacobi equation meffdd can be written after a Taylor expansion @(k)fl
and find numerical and approximated solutions to the speed:a;(ck)?+--- and ¢(s)™1=1+p;(s7)7+5B(s7)?’+: -+ with
The Hamilton-Jacobi formalism of classical mechanics hagroper «; and 8, coefficients[12]. So, our choice does not
already been widely employed to derive the speed of frontgmply a loss of generality. On setting both PDFs in the
in hyperbolic reaction-diffusion equations under Fisher-Fourier-Laplace transform of Eql) one has
Kolmogorov-Petrovskii-PiskunoyFisher-KPP kinetics [8]. Iy i,

We determine here also the limits of the linear speed selec- e - e Ip(k,s) = [ - 1]f(k.S). ()
tion for hyperbolic fronts in terms of the reaction-diffusion  From now we assume short jump lengthsk<1) and
dimensionless numbex (it is the quotient between the char- gmga)| waiting timegsr<1). These facts allow to us keep the
acteristic waiting and reaction timeand the fractional €X-  inear terms in the expansion of PDFs, i.@(k)=1-g2k

ponenty. Within the linear speed selection range we find (97 _ y . . e
fronts that travel faster in the subdiffusive regime than in the?)'E)dFe _;TI(ST) I Howhever, dealing V\_”th the vlvaltllng t:jmek
diffusive one. Our results may be potentially interesting to" D7 We shall explore the next approximation level and take

consider the effect of a time delay in folded polymers, sca|ee(37>272~= 1+(sn)?+5(sn?. On one hand, by introducing
free networkgd9], and magnetically confined plasmigs. e K =1-¢22 ande® = 1+(s7)? into Eq.(2), we get(af-
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FIG. 1. Front profiles obtained from numerical integrations of

Eq. (4). Here we have chosey=0.7,a=rr=10"%. Inset: Front pro-
files collapse by exchanging the variablest) for (x—cAt,t+At).
In this case we have computed 0.559 directly from the numerical
calculations[the predicted value from Eq12) is 0.551 and At
=7.5,t,=7.5(squares t,=15 (circles, t;=22.5(up triangle$, and

t;:30 (down triangles We have omitted the asterisks for notational

simplicity.

ter inverting the Fourier-Laplace transfoif@] the parabolic
fractional reaction-diffusiofPFRD equation

ap= o0 a7 . (3)
The speed of fronts propagating according to E). has
been already studied recenfl§]. On the other hand, if we

introducee ™% = 1-02k? and 57" = 1+(sn) 7+ (sn?” into

Eq. (2) one gets the hyperbolic fractional reaction-diffusion

(HFRD) equation

77(927 ¥ v 2y-1 -1

S AP+ dp=Doup+ a7+ (4)
where we have defined the diffusion coefficié o2/ 7.

In this work we focus on fronts arising from E@). Let us
stress that in the absence of reactid0) the transport
regime in this case is always subdiffusive in the large tim
limit (see Ref[13] for detail9. In order to check the exis-
tence of fronts as solutions of E(#) we have integrated it

numerically by using a finite difference scheme based in the
equivalence of the Riemann-Liouville and Grinwald-

Letnikov derivativeq14], in the same way as appear in Ref.
[15]. We have also got the following stability condition for
the algorithm to converge:
a®" Y AX")? + 4(AtT)?Y _
2a” Y (AX)A(AL)? ’

where(Ax")? and(At")? are the grid spacing along thé and

t" axes, respectively. Figure 1 shows numerical solutions of

Eq. (4) for several times from a steep initial condition. We
also plot(inset in Fig. } the collapse of these profiles when
an appropriate change of variables is made.

(S
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Ill. SPEED OF HFRD FRONTS

The Hamilton-Jacobi equation corresponding to the prob-
lem (1) under an initial condition with compact support is
(see Ref[10])

(5

where@(H) and®(p) are nothing but the Laplace transform
and the bilateral transform of the waiting time and the jump
length distributions, respectively. The speed of the front is
determined by the system of algebraic equations

H dH_H

p’ dp p’
whereH=H(p) is obtained from Eq(5). On putting ¢(H)
=e"H” andd(p)=e” into Eq. (5) it reads as

(6)

g7 =t L g1
Hr

)

wherea=rr is the dimensionless reaction-diffusion number.
This dimensionless parameter expresses the quotient be-
tween the characteristic waiting time and the characteristic
reaction time. Up to first order iH 7 and ino?p? one obtains

the Hamilton-Jacobi for the PFRD equation and the speed
has been already found ia6]. Up to second order ikl 7 one
haseM”"=1+(Hn)7+3(Hn?” and up to first order in2p?,

Eq. (7) reads

a
1-— 8

HT) ®
which requireHr>a in order to have physical meaning. By
virtue of the first equation irt6) and (8) the speed of the
front is given by

UZpZZ(HT)7[1+%(H7‘)7](

y(3-7)/2

TNy —aVl+y’2

(o

v

Y

9

wherey=Hr is, from the second equation {8), a solution
of the transcendent equation

(L= py™= 23 =29y + 2=y -a3 -9 =0.

(10

As Eq.(10) has no analytical solution we propose to find an
approximated solution by assuming a perturbative expansion
aroundy=a, that is, we insery=a+e€ in (10) and find up to
first order ine

2a(1 +a”/2)
€= .
(2-3yar+22-v)

11

Therefore, the approximated solution for the speed is from
Egs.(9) and(11)
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TABLE |. Comparison of the speed from El2) (Cyeo) and
from numerical integrations of Eq4) (cp,m for a=10"

Y Ctheor Chum
0.3 0.095 0.117
0.5 0.231 0.266
0.7 0.552 0.559

0.99 1.917 1.880

gl (2-3ya’+2(2-y) |2

Uy= T 2a<1+a_7)
2

[G(a,y)a]® "2

03 T T T T T T T T T
" 0.0 0.2 0.4 0.6 0.8 1.0
G(a,yal” |~ Y
y {1 ,[6@yal }
2 FIG. 2. Plot for the critical reaction-diffusion dimensionless
3a%(1-7)+2(3-7v) number versus the fractional indexgiven in Eq.(13). When the

with G(a,y) =

" . (12 values ofa andy lie over the curvea.(y) given in Eq.(13) no linear
(2-3y)a”+2(2-y) speed is selected. The cura&(y) represents the separatrix of the
As Hr>a, one must demand that>0. Thus, the conditions domain wherey,>v; andv, <v;.

for the existence of a linear speed selection for fronts in

HFRD equations is from Eq11) framework. IfN is of the order of the truncation of the Taylor
4 2\ 1y ) ser_igs iQST of the inverse of thg Laplace transform of the

a<ady) = (_7’> if y> 2. (13) waiting time PDH ¢(s)™!] andM is of the order of the trun-

3y-2 3 cation of the Taylor series iap of the bilateral transform of

the jump length PDE®(p)], it is shown in[16] that only for

For y=<2/3 no condition is required. Let us to stress that for . " )
14 q N=<M is the minimum linear speed selected. From EGs.

the classical casg=1 one has from Eq(10) y=4a/(2-a)

and from Eqgs(9) and(13) and(7) one obiains
_ o \a Vex= —min Y : (15
01—47-2+a if a< 2. (14 “ Ty=aIn¥2e’(1 -aly) + aly]

This result is already known for hyperbolic reaction- The solution ofv,., has to be numerically obtained. Now we
diffusion equationgl). In Table | we compare the results of can make two approximations to the previous exact result.
the speed from Eq(12) and the speed we have calculated Up to first order we takeH?” = 1 +(H7)” which corresponds

from the numerical integration of Eq4). We find a good g the parabolic approach. Then, from E¢. and (7)
agreement for all the values of It is interesting to find the

set of values foa and y for which the linear speed selection

holds and the correlation between the transport regime anc 3'0_ ' ' ' ' ' '

the speed of the front. This is illustrated in Fig. 2. For values —v
of a higher thana’(y), the linear speed of the fronts is also Vo T
selected but fronts can travel faster fpr<1 than fory=1. | Vg
This is inconsistent with the fact that for<1 the transport 204 TS

is subdiffusive, i.e., slower than in the transport regime for
y=1 (normal diffusion). Fronts witha>a’(y) lack physical ~ *“15
meaning. e

1.0 -

IV. COMPARISON WITH OTHER APPROACHES
0.5 1

In the context of front speed, we discuss the improvement
achieved by using HFRD over PFRD equations in this sec-

tion. For this purpose, we need to deal with the complete 0'00_00 ' 025 ' 0.50 ' 0.75 ' 1.00
jump length PDF, that is, we need to consider the infinite a
order in the Taylor expansion ab(p). Otherwise, a front FIG. 3. The dimensionless speed/q is plotted versus. A

cannot exist if one considers the complete tail for the waitingmonotonically increasing behavior of the speed and a considerable
time PDF. This was shown in R€fl6] where we studied the improvement of the hyperbolic approach in comparison to the para-
linear speed selection for fronpulled frontg in the CTRW  bolic approach is observed.
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o . y V. CONCLUSIONS
Uprd = —MiN—7 " 1 (16) ) ) )
Ty=aln? Il +y?—ay”’] We have proved numerically the existence of a traveling

wave front solution and have studied the speed of fronts for
Up to second order"?"=1+(H7)"+2(H7)?” we get the FHRD equations. We have found numerical and approxi-
hyperbolic approach and the speed of the front is from Eqgmated solutions for the speed exhibiting a good agreement.

(6) and (7) Conditions for the existence of a linear front speed selection
in terms of the reaction-diffusion dimensionless number
o y and the fractional index have been found. We have also
Uhrd= —MiN . mathematically shown, within the linear speed selection, the
Ty>a 1 1 emergence of fronts driven by subdiffusion transport, that
1/2 Y _\2Y _ -1, _\2v-1 . " ) "
In [1 TyTHTY a(y * 2y )] can travel, ifa>a’(y), faster than fronts driven by classical

diffusion. However, this mathematical result has no physical
(17) meaning. Finally, we have compared the parabolic approach

) ) ) with the result obtained from the complete waiting time PDF

In Fig. 3 we plot the numerical computations for the speed of¢gied the exact cas@and a notable deviation has been ob-
the fronts coming from these three different ca&e®, (16),  served. However, when the hyperbolic approach is consid-
and(17). It is observed that the parabolic approach considgreq, the agreement with the exact case is substantially im-

erably deviates from the “exact case” while the hyperbolicproved within the range of values afwhere the fronts have
approach is a good approach for small valuea @ds it must physical meaning.

be in order to get fronts with physical meaningmproves

substantially the parabolic approach, and allows us to think
that the hyperbolic approach retains most of the memory
contained in the complete form of the waiting time PDF and  This work has been supported by the MCYT under Grant
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