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Coevolutionary dynamics on scale-free networks
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We investigate Bak-Sneppen coevolution models on scale-free networks with various degree exponents
including random networks. For> 3, the critical fithess valug&. approaches a nonzero finite value in the limit
N— oo, whereasf. approaches zero as<2y<3. These results are explained by showing analytici(iX)
=A/{(k+1)?) on the networks with sizBl. The avalanche size distributid®(s) shows the normal power-law
behavior fory>3. In contrastP(s) for 2<y<3 has two power-law regimes. One is a short regime for small
s with a large exponent; and the other is a long regime for largavith a small exponent, (7> ,). The
origin of the two power regimes is explained by the dynamics on an artificially made star-linked network.
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Bak and Sneppe(BS) [1] have introduced an excellent works (or SFNs withy=«). As we shall see, two important
model to explain the evolution of biospecies, which exhibitsresults are found in this study. First, the critical fithess value
the punctuated equilibriunbehavior[2]. The BS model has f. of BS models fory<3 is shown to have the limiting
two important features, namely, coevolution of the interactbehaviorf.(N) — 0 when the number of nodés$ of the net-
ing species and the intermittent bursts of activity separatingvork goes to infinity. In contrast, approaches a finite non-
relatively long periods of the stasis. In the BS model, thezero value as\— = for y> 3. Furthermoref,(N) on SFNs
ecosystem evolves into a self-organized criticality with ava-with finite N is shown to satisfy the relationfy(N)
lanches of mutations occurring on all scales. Aside from its= const/(k+1)?)y, which is also directly supported by simu-
importance for the evolution, the BS model has been alsgation. Second, for & y=3 the distribution of avalanches is
shown to have rich scaling behavid&j. shown to have two power-law regimes. To find the origin of

Since the BS model was suggested, the model has beehis anomalous behavior of avalanches, we also study BS
extensively studied on regular lattices or netwdr&k How-  models on an artificially made star-linked network and find
ever, many important biosystems have been elucidated tiie two similar power-law regimes.
form nontrivial networks by the recently developed network We now explain the model treated in this paper. All the
theories[4]. Important examples are the metabolic network,models are defined on a gra@r={N,K}, whereN is the
the cellular network, and the protein netwdtk-8]. Some of ~ number of nodes anHl is the number of degrees with the
the most important bionetworks are scale-free network@verage degre¢k)=2K/N. Initially, a random fitness value
(SFNS [4], in which the degree distributiop(k) satisfies a i [0, 1] is assigned to each nodel,...,N. At each time
power lawp(k) ~ k™ [4]. Thus it is important to study the Step, the system is updated by the following two rules.
BS dynamics on SFNs or to find out how the base structurg_irst assign a neV\_/_fitness value to the node_ with the smallest
of interacting biological elementgells, proteins, or specips  11tN€SS valuefy,. (i) Second, assign new fitness values to
affects the evolutionary change or dynamics of the givert/r\]/e nodes which are directly connected to the node ¥ith
biosystem. Until now, BS models on the nontrivial networks e use SFNs with the various degree exponents Gr
were not investigated extensively. Christenséal.[9] have _:{N’K}' To generate SFNs, we use the static majde
studied the BS model on random netwofRNS). Kulkaniet ~ instead of the preferential attachment algoritih
al. [11] studied the BS model on small-world networks. To understand the dependenqe of the critical fitness value
Slanina and Kotrld12] studied the forward avalanches of a fc(N) on ¥, we generate SFNs with=c, 5.7~2.15. To ex-
sort of extremal dynamics with evolving networks. Moreno ¢lude the effects of finite percolation clust¢g§ and to see
and Vazque#13] studied the BS model only on a SFN with the effect of the network structure itself, all the networks are
y=3. made to have an average degk&e=4. To understand the

In this paper, we will study BS models on SFNs in com- d_ependence on the number of nofigshe networks vyith the
plete and comprehensive ways. One of the main purposes §fzesN=10°~10 are generated for each To determine the
this study is to find which structure of interacting species iscfitical fitness value((N), we considerf,;, as a function of
the most stable network or the closest to a mutation-freéhe total number of updates[3]. Initially, fq;,(s=0) is the
network under the coevolationary change with interactinggap G(0), whereG(s) is the maximum of allf,,(s’) for 0
species. As is well known, SFNs with the degree exponents’ <s [3]. WhenG(s) jumps to a new higher value, there
2<y<3 are physically much different from those with are no nodes in the system withi(s)<G(s). Thus
v>3 [4]. We study BS models not only on SFNs with limg_ ., Gy(s)=f.(N).
2<y=3 but also on SFNs witly> 3 including random net- We measurd(N) on the various SFNs. Figure 1 shows

the plot off;(N) vs 1/N for SFNs with variousy. The values
of critical fitnessf(N— =) evaluated from data in Fig. 1 are
*Electronic address: ykim@khu.ac.kr 0.21(1), 0.191), 0.151), and 0.091) for y=<, 5.7, 4.3, and
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FIG. 1. Semilog plot of the thresholig(N) vs 1/N on RN and T - " ”
on SFNs withy=5.7, 4.3, and 3.5. Used network sizes aie 10 10 10 10
=10%,10%,1CP, and 16. The solid lines between data points are 1/N

obtained by simple linear interpolations.
FIG. 2. Log-log plot offs(N) and A/(k(N)?)y vs 1/N on SFNs

. . with y=2.75, 2.40, and 2.15. Symbols are fgfN) and the lines
3.5. The results in Fig. 1 mean that for>3, f(N—) 46 forA/(k(N)2),, whereA is a constant. The top inset shows the

—const>0). plot of fo(N) vs 1/InN for y=3.0.
Figure 2 shows the plot df.(N) vs 1/N for 2<y<3. For

v=3, f«(N) nicely satisfies the relatiofi.(N)~1/In N [13]. )
For 2<y<3, f(N)'s seem to follow a power lawf,(N) ~ ~ 2, (k+1)%p(k)
~N~7and approach to zero &kgoes tox. In contrast to the Nupdate= Ek (k+1)Prin(k) = Ky +1 1)
results in Fig. 1f,—0 for 2<y<3.

In the RN, every pair of nodes is randomly connected andnd thusf, is
the degree distribution is a Poisson distributidiB]. So the
BS model on RN9] is a good realization of the mean-field- o kel (9l 2
type random neighbor model. In the random neighbor model, ¢ Nypdate > (k+ 1%k ((k+ %’
the fitness values of the randomly selected-1) nodes as K
well as the node witli,, are updated anti=1/m[10]. The  when the number of updates is fixed ms Eq. (2) repro-
result f(>)=0.21 (1) on RN is very close to M(k)+1)=5,  duces the mean-field resuft=1/m. In SFNs with p(k)
which is expected from the random neighbor model by set=k~?, Eq. (2) becomes
ting (k)+1=m[9]. In the steady state of the BS model, the

probability measureP(f <f,) is 0. Consider the case in finite, Y>3

which the number of updates for each step is fixethaas in A A

the random neighbor model. To sustain the steady state in fo= @ R 2< y=<3. 3)
this case, at most one new fitness value should be lesg than J k>~dk

and the othem-1 new values should be larger thiy{10].

Therefore, we can easily seef.=1 or fc=1/m. Equation(3) explains the results in Figs. 1 and 2, including
On a network, the number of updates@epen'ds on the dgpe resultf.=1/In N for y=3. For 2< y< 3, measured,(N)

gree of the node witlfiy,, and the probability which a node s fitteq to the relatiorf (N)=A/(k?)y, whereA is constant

with degreek is connected to the node withy, should be and(k?)y is (k?) for the network with the siz&\. The fitted

proportional tok. For an updating step, the probability that a |. ke . _ 5
node with degreek is updated is proportional th+1, be- lines in F'g' 2 show that the relatiofy(N)=A/(k%y holds
well and directly supports Ed3).

cause the node itself can be the node With,. Therefore, . . ,
after an arbitrary update, the probabiliB,;,(k) of a node An a\{alanche in the Bak-Sneppgn mod_el 1S defme.d as the
sequential steps for which the minimal site has a fithess

with degreek being the node witlf,,;, is proportional tok .
; _ - value smaller than givefy, [3]. For each network, we choose
+1. This means thaP,,;,(k) in the steady state should be f, to satisfy[f,(N)~f.]/.(N)=0.05. The probability distri-

roportional tok+1, or . . . .
prop bution P(s) of avalanche size on the networks with the size

(k+ 1)p(k) N=1C° is shown in Figs. 3 and 4. All the data in Figs. 3 and
min(K) = = (k+ 1)p(K). 4 are taken in the steady states.
EK(k+ Dpk) (K+1 As is shown in Fig. 3P(s) in SFNs withy> 3 including

RN satisfy the normal power-law behavior with an exponen-
The average numbeN,yqq Of the nodes updated for one tial cutoff as P(s)=As”exp(-s/s;). The curves in Fig. 3
updating process is therefore represent the fitted curves to data fefs). From those fit-
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FIG. 4. Log-log plot of P(s) on SFNs withy=3 (top insej,
2.75, 2.4, and 2.15. Two crossing lines for each data set denote the
two power-law regimesP(s)=As ™ and P(S)=Bs 2. Obtained ex-
ponents,r; and 7,, are shown in Table I.

FIG. 3. Log-log plot of the avalanche size distributiB(s) on
SFNs withy=5.7, y=4.3,y=3.5, and on RNInse). The curves for
v=5.7, v=4.3, and RN denote the fits of the forrR(s)
=As "exp-s/sy) to the data. Obtained exponents arel.5 for
both y=5.7 and RN, and=1.65 for y=4.5. The line fory=3.5

denotes the fit of the forrP(s)=As ™ (r=1.65 without cutoff. ond power-law regime with the exponent in Fig. 4, be-

cause(k?) diverges for 2< y=<3, and so the subnetwork of a
tings, the obtained values forare 1.5 for RN andy=5.7, hub node and many slave nodes should be the main substruc-

and 1.65 fory=4.3. The result for RN and SFN witly ture in SENs with 2< y<3. Evidently, the jumpy steps of
=5.7 is expected from the random neighbor mddel. As y thejumpy random walknake the shorter avalanches possible
decreases to 4.0 or sejncreases to 1.65. For=3.5, how- and this effect explains the first power-law regime with the
ever, the best fitting function iB(s)=Bs” with 7=1.65 and exponentr,.

we cannot find the cutoff-dependent behavior within our To support the qualitative explanation of the two power-

data. Instead, it is even observed that tails of measured dak%w regimes, we consider an artificially made star-linked net-

for y=3.5 arounds=10° seem to deviate from the fitting \évl?t:ﬁe?\k/\‘/%\;vknclgns':igté Sdf Ig ge]it;g;“:ggg gﬁéwr%r;’] a drgr?_m
function P(s)=Bs ™ and are larger than values estimated y

o~ : ; . gling slave nodes linked directly to the star node. Then the
Lrg\r)?otrhgf E,?:)t ffc|)t:|ng_ gugcg'r?&lghgz ;ﬁtehgir ig?'gﬁﬁgzt%lmb; center nodes are linked hierarchically to one after another as
I behavi Py_f' e y=3 9 sketched in Fig. &). We make a star-linked network in
oulsn C%n?;’;c;; ?o Ei)e ?s:m;eygov{/er law behavior for3 which there are 25 base subnetworks with 500, 480and

i ; 20 slave nodes, respectively. In this network, we perform BS
anomalous behavior fd?(s) shows up for 2 y<3 (Fig. 4). P y ’

) S dynamics and find.=0.123.P(s) is also measured on the
W'e' can see two power-layv reg'm,es glearly RiB) in F|g._4. star-linked network and is shown in Fig(p. We find the
Initially, the avalanche size distribution followB(s)=s™"

. o two power-law regimes with the exponentg=3.7 andr,
about 1 decade or so. After this short initial power-law re-=1 27 The plateau between two power regimes in the data of
gime, the long second power-law regime appears®®  p(g) in Fig. 5(b) is probably from the discrete distribution of
=s""2, wherer; > 7,. The measured exponemtsr, are SUm-  ihe number of slave nodes.

marized in Table . _ o In conclusion, we study BS models on SFNs with various
Compared to the behavior of the avalanche size dlstnbu-y_ For y>3, f. approaches a nonzero value in the limit

tion for y> 3, this anomalous behavior &(s) is very pecu- ", gnd P(s) shows normal power-law behavior with
liar. In the steady state, it is expected that the node With ~>1 5. Fory<3, f, approaches zero ds(N) =A/(K?), and
(the minimal nodgis most frequently found among the last

updated nodeglO] and then the minimal node locally per-  1tAgLE I. Two power-law exponentsz, and 7, for SFNs with
forms a random walk. However, there can be longer jumps oty$3_

any length with a very low probability. If this kind of a
jumpy random wallis the motion of the minimal node, then

a subnetwork consists offaib node(center nodgand many i i

slave nodeslirectly linked to the hub should be important to 3.0 2.09 1.59
decide the behavior d?(s). Due to thejumpy random walk 2.75 2.22 1.47
behavior, the more slave nodes the hub node has, the longgn 297 1.32
is the stay of the minimal node or the longer the avalanche ;5 230 1.20

exists at the given subnetwork. This effect explains the sec
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more complex than that of Rdf13] or the epidemic dynam-
ics. The correct rate equation for BS dynamics on SFNs must
be derived by considering all the terms of the rate equation in
Ref.[10] and the base network structure simultaneously and
correctly. The derivation of the correct rate equation should
be a subject for future study. In R¢fL3], it was argued that
P(s) for y=3 satisfies a simple power law with=1.55. By
the brute-forced fit of the relatioR(s)=s"" to our data in
Fig. 4, we also obtainr=1.6 for y=3. However, this blind
application of the simple power law should be wrong and
there should exist the two-power law regimes even for
=3. One can easily identify the two power-law regimes in the
P(s) data of Ref[13] rather clearly, although the tail parts of
their data are qualitatively poor and show large fluctuations.
The occurrence of two power-law regimes fe¢s) was
also found in BS dynamics on small-world netwof&4] and
10° 10' 10? 10° 10° in an extremal dynamics with evolving networK2]. How-
S ever the origins of the two power-law regimes were com-
. . . _ pletely different from ours. The origin in the small-world
FIG. 5. (a) Schematlc of a star-linked networ_k which consists hetworks was argued to be the long-range connectivity of the
of 25 subnetworks with 500, 480.,_., and 20 dangling slave nodes. networkg 11]. The extremal dynamics with evolving random
(b) Plot of P(s) on the starlinked network structure. TWO poyorks[12] changes the network structure and is not ex-
power-law regimes withP(s)=As™(7,=3.7) and P(§)=BS™ .y the same as BS dynamics. Furthermore, the evolving
(r=1.27 are clearly shown by the lines. network develops many disconnected clusters. In the model
) . [12], the forward avalanches are mainly measured. The for-
P(s) has two power-law regimes. The origin of the tWo a4 avalanche§12] should be affected by the dynamical
power regimes is explained by the dynamics on a star-linkedgregation and splitting of subnetworks by the extremal dy-
network. , , namics, which should be the origin of the two power-law
In_ Ref.[13], BS dynamics _only ona SF_N with=3 was regimes. In contrast, our avalanches of BS dynamics are
studied and the only meaningful numerical result was tneasyred on a fully connected static scale-free network and

show f¢(N)=1/InN. Reference[13] suggested a relation ghoyid not be directly comparable to the avalanches on dy-
similar to Eq.(2) from a rate equation which was obtained pamically varying networks.

by a naive and immature analogy of BS dynamics to the

epidemic dynamics on SFN45]. However, the rate equa- The authors would like to thank Professor H. Jeong for
tion should never be the exact one. Even the exact rate equealuable suggestions. This work is supported by Korea Re-
tion for the simple random neighbor modglQ] is much  search Foundation Grant No. KRF-2004-015-C00185.
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