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Network clustering coefficient without degree-correlation biases

Sara Nadiv Sofférand Alexei VazqueZz
lDepartment of Mathematics, Rutgers University Piscataway, New Jersey 08854, USA
Department of Physics and Center for Complex Network Research, University of Notre Dame, Notre Dame, Indiana 46556, USA
(Received 26 September 2004; published 13 May 2005

The clustering coefficient quantifies how well connected are the neighbors of a vertex in a graph. In real
networks it decreases with the vertex degree, which has been taken as a signature of the network hierarchical
structure. Here we show that this signature of hierarchical structure is a consequence of degree-correlation
biases in the clustering coefficient definition. We introduce a definition in which the degree-correlation biases
are filtered out, and provide evidence that in real networks the clustering coefficient is constant or decays
logarithmically with vertex degree.
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The increasing availability of network data representing S ¢
many real systems have motivated the development of statis- ilk>1 '
tical measures to characterize large netwdrks5]. These (c)= D 1 (2)

measures revealed that, as a difference with the classical
Erdos-Rényi[6] random graph model, real networks are
characterized by a power law distribution of vertex degreeghe second is obtained computing first the average amd
[1,7,8, a high clustering coefficient or transitivifyt,9], and ki A

degree correlations between connected verfités12. Yet, 2) and then their ratio

it is important to characterize up to which extent the mea- > t;
sures provide information about the studied networks. For o
instance, it has been shown that in some networks the degree C= k) (3
correlations are a consequence of the existence of large de- > ( )

gree vertices and, therefore, the sequence of vertex degrees is i \2

sufficient to characterize those netwofi2-14. As noticed in Ref[19], the two definitions of global cluster-

In this work we study the influence of degree correlauonsIng coefficient may give different values. Consider, for in-

on the clugte'rlng coefficient. We show _that mqst of the Ob'stance, a double star of vertices(Fig. 1). In this casegc)
served variations of the clustering coefficient with the vertex__ 1 while C=O(1/N), the two global clustering coefficients
degreeq15-14 are determined by the degree correlations ticall _d'ff . ,f N> 1 gTh' di 9 kes th
among connected vertices. Based on this fact, we introduceqsfama Ically ditrering 10 +. NS discrépancy makes the
new definition of clustering coefficient, filtering out the ef- comparison between.analytlcal re;_ults obtained for d'ﬁefe”t
fect of degree correlations. The similarities and dif“ference@raph models and different definitions of global clustering

between the two definitions are analyzed through the stud oefficient difficult. At the local level of a single vertex the
of different real networks lustering coefficienfl) may also give counterintuitive re-

Consider undirected simple graphsiord N vertices sults. For instance, the local clustering coefficient of the two

Let k be the degree of a vertex afdthe number of edges Central vertices of the double star é3=c,=O(1/N), ap-

among its neighbors. The standard definition of local clusterProaching zero foN>1. We cannot, however, increase the
ing coefficient is number of connections among the neighbors of vertex 1

ilki>1

1

e+

¢ = (k—:> (1) N-2
2

2
'| is the number of pairs that can be made using _ ]
2 FIG. 1. Double star with two vertices, 1 and 2, connected to
neighbors. Furthermore, to characterize the global clustering-2 other vertices. The neighbors of vertexat 2) are connected
coefficient two different measures have been introduced. Thgs most as their degrees allow. Yet, with the usual definition of
first is just the average of; over all vertices with degree clustering coefficient we obtain;=O(1/N), approaching zero in

larger than one the limit N> 1.

Where(
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without increasing the degree of its neighbors. In this sense(@a 8 7 2 2 2 (b).@ ()

the neighbors of vertex 1 are as clustered as they can be. % 9 9 9
This example shows that the local clustering coefficient of
a large degree vertex connected to vertices with much 0,000 0

smaller degrees will be always small, no matter how its

neighbors are interconnected. We would like instead a mea

sure of clustering coefficient that allows us to quantify the s o9 000

connectivity among the neighbors of a vertex, independently ) . o

of its degree and the degree of its neighbors. The clustering F'G: 2. Algorithm to compute;. (2) A vertexi (open circlg is

coefficient is a three vertex correlation measure and, as it i gr;”ze‘;ted tbo g\_/e ”e'ghﬁo'@"ii C'm'es)b""'th degrez seéquence o

the general case in statistics, to define a three point correlg=""’ ’thlgl ( )_ :]nbce cac nelgl ortchan N Chobnnecfje at most wit

tion measure we should filter out two point correlations, rep-OUIr other neighiors, we replace e neignuors degree sequence
' I%west row by {4,4,1,1,1 (middle row. It is easy to see that after

resented here by the degree correlations between connectge . : . )

i We tackle thi bl defining the clusteri fconnectlng the first neighbor to all others, we get four triangles and
\/_e_r ICes. Q ackle this pro_ em de Inlng € clustering Coely, oo extra edges that cannot be used anyrmugpper row. Sum-
ficient relative to the maximum possible number of edges 5
between the neighbors of a vertex, given their degree sewarizing, for this exampley; =4, ;=5 and(2)=10- (c) Subgraph
quence. Letv; be the maximum number of edges that can b&yith maximum number of edges among the neighbors, with
drawn among thé; neighbors of a vertek given the degree =0.4 and¢;=1.

sequence of its neighbors. A neighbjpican have at most
min (k-1 ,k—1) edges with the other neighbors, therefore \grtices (i) & = c,, as follows from(4). Therefore, when the

_ clustering is one by the usual definition it is one by our
() e

definition. Notice that the opposite is not necessarily true

[see Fig. Zo)]. (iii) When all thek; neighbors of a vertex

‘ have degrees larger than or equal to the degree of the vertex
. i . itself (a regular graph, for instanc€,=c;.

While (2) takes into account only the degree of the vertex, The example in Fig. 2 shows how the usual definition

(); considers that occasionally, not all tke-1 excess edges underestimates the clustering around a given vertéxthis

are available at the neighbors iofw; considers, in addition, case, whilec;=0.4, the number of edges between neighbors

the possibility of the excess edges to actually form trianglesis as large as it can be given for their degree sequence, as it

w; can be computed using the following algorith(t) Start- s correctly quantified using our definitidi,=1). In the fol-

ing from the neighbor’s degree sequer{gg, ..., k)t (N=k),  |owing we compare the usual and our clustering coefficient

construct the lisfmin(k;, k;)-1,...,min(k;,k,) -1}, arranged  definitions using the graph representation of four real sys-

in a decreasing ordef2) Draw an edge from the first ele- tems. The degree of correlations present on these graphs is

ment to as many as possible other elements in the list, alwayguantified by the assortativity coefficien{11], taking val-

going from largest to smaller. Each time an edge is drawnues between -1highly disassortativeto 1 (highly assorta-

one is subtracted from the remaining degree of the connectatle). The systems considered are, in increasing order of as-

vertices.(3) Remove the first element and any zero from thesortativity, (1) the autonomous system representation of the

list and sort the list in decreasing ordé4) Repeat the pro- Internet, as for April 200{21], (2) the protein-protein inter-

cess and stop when the list is empty. The number of maxiaction network of the yeassaccharomyces cerevisig22],

mum possible connections; is the total number of edges (3) the semantic web of English synonyiiis7], and(4) the

wiSQi:

% > [min(k,kj) - 1]

neighbors

drawn(see Fig. 2 co-authorship network of mathematical publications between
A proper definition of local clustering coefficient, remov- 1991 and 199923]. In Table | we show the two global
ing the effects of degree correlations, is clustering coefficients as computed with the usual and our
¢ definitions. For the two disassortative grapghs:0), there is
T =— (5) an order of magnitude difference between the global cluster-
Wi
cient read usual and our definitions. The graphs are listed in increasing order
of their degree of assortativity, quantified by the degree-correlation
E C 2 t coefficientr [11], taking values from —fully disassortativeto 1
i|w;>0 ~ i (fully assortative.
R SIS S ©
w; ~
o0 ~ Network r (©) C © C
Some general properties of our definition of clustering coefnternet -0.19 045 0.0090 049 045
ficient are the following(i) If all the neighbors of a vertex Protein interaction -0.13  0.12  0.055 0.16 0.19
has degree onéstal then its clustering coefficient is unde- Semantic 0.085 0.75 0.31 0.83 0.59
fined. Indeed, the concept of clustering is meaningless for the_authorship 0.67 0.65 056 078 0.85

central vertex of a star, as it is meaningless for degree one
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3(b), and almost absent for the highly assortative co-
authorship graph in Fig.(8). In contrast, when computed
with our definition(5), (C), does not exhibit a strong varia-
tion with increasing vertex degrdeee Fig. 3.

In particular, the decreasing trend is completely absent for
the InternetFig. 3(a)], indicating that the variations previ-
ously observed with the standard definitigkb] are reflect-
ing degree correlations. The large variationg@f, with the
vertex degre&k have been interpreted as the existence of a
hierarchical structure, with high degree vertices interconnect-

ing highly connected subgraphs made of smaller degree ver-
tices, but with no or few connections among vertices in dif-
ferent subgraph§l5,16. The existence of this hierarchical
structure, however, was already predicted from the analysis
of the degree correlation$,10]. The present work makes
the bridge between these two different approaches to quan-
tify the hierarchical structure of the Internet, showing that
the variations in the clustering coefficient with the vertex
degrees, as measured with the usual definition, are just re-
flecting the existence of degree correlations. These conclu-
sions are also applicable for the protein-protein interaction
E graph, with a degree of disassorative close to that of the
] Internet graph.

In the case of the Internet we can also follow changes in
the clustering coefficient as the network evolves, with around
3000 vertices in 1997 to 10 000 vertices in 20@d), re-
mains essentially stationary within this periddata not
shown), as doegc), [15]. In contrast, in random graphs with
fixed degree distribution and degree correlations the local
clustering coefficient approaches zero with increasing graph
size, independently of the vertex degf@d]. Therefore, the
- Internet is more clustered than expected from the degree dis-
LR LAY tribution and degree correlations alone.

- In the case of the semantic wgbig. 3(c)], although the
00 clustering coefficient variations are reduced after filtering out
N o O - the degree correlations, there is still a logarithmic decrease
o with increasing the vertex degrdeee inset of Fig. @)].
Using a deterministic growing graph model introduced in
Ref. [25], we show that this logarithmic decay may be the
general case for graphs wheém,~ 1/k. In the deterministic
10 10 10 model, we start with one edge at time-1. At each time
k step we create a new triangle on each existing edge by con-

FIG. 3. Average clustering as a function of the vertex degree, a9€Cting its two endpoints to a new vertex. At tire0 we
computed using the usual definiticigircles, our definition ap- €t One triangle and at time=1, we will have the triangle
proximating ; by Q; (square} and our definition usingy; (tri-  from the previous step and three new ones, each is using one
angles. The graphs are shown in increasing order of their assorta€dge from the existing usual triangle and two new edges with
tivity, with the most disassortative graph on the top, and the morét hew vertex between. Since this model is built recursively,
assortative graph on the bottom. we can find by induction the degree of a verteir) =271

and the number of triangles passing throught;itk;—1,

ing coefficientgc) andC computed with the usual definition. where 7 is the time elapsed from the introduction of the
With our definition, however, both global measures of clus-vertex, resulting in the clustering coefficient2/k; [25]. To
tering coefficient(6) give values of the same order, indepen- compute the clustering coefficient according to our definition
dently of the degree correlations. (5) we need to determine the scaling f with the vertex

Another characteristic feature of the usual definition ofdegreek,. From the(); definition (4) and the evolution rules
clustering coefficient is that, when the average is restricted tof the model we obtain the following recursive relation
vertices with the same degree),, it decays agc) ~k™®  Qi(7+1)=2Q;(7)+2™% From this recursive relation and the
with vertex degre¢15-18. This decay can be observed in initial condition (2;(0)=1 we obtain by inductior);(7)=(r
Fig. 3 for the four graphs considered here, being more pro+1)27. We have also obtained an exact expressiondpr
nounced for the two disassortative graphs in Figs) and  [20], which in ther> 1 limit results inw; = (); and
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_ 2 sures that target this topological property, like the degree-
G = log, k (7) correlation coefficient [11] and the degree dependency of
2 the average degree of the neighbors of a vertex as a function

. N . . of its degred5]. Therefore, a definition of clustering coeffi-
Trhae has na%zlrse ?r:ettiuitlatdeer?r:ir::gtr:co;nccl)gge;?ndlcgéi?ﬁct:?ear:t 'ir;cient containing the effect of degree correlations is giving
grap . . . €ring redundant information, information which is better character-
characterized by an inverse proportionality with the vertex

degree, our clustering coefficient will exhibit a logarithmic ized using the proper degree correlation measures. In con-

decrease with increasing the vertex degree. This observaticglr’naSt’ our definition filters out the degree correlations provid-

is in agreement with the semantic web data as \Meig). :ﬂgiﬁsmﬁ;ﬁﬁﬁ'ahigdetrc:ipe ?Skﬁtl)cnﬂ measure that targets the
3(c)], where(c),~ 1/k and @), ~ 1/logk. g prop :

Finallv. for th . hin Fidd d After removing these biases the local clustering coeffi-
inally, for the most assortative graph in idd} we do ._cient does not depend strongly on the vertex degrees, being
not observe a substantial difference between the two defin

bf the same order for small and large degree vertices. More

tions of clustering coefficient. This o_bservation is explained recisely, we observe two different scenarios, either the local
by the fact that in a highly assortative graph the degree o lustering coefficient is approximately constant or it decays

connected vertices is quite sim”&j'iyzﬂiz( ‘) and the two logarithmically with increasing the vertex degree. These re-
2 sults will eventually force us to reevaluate the clustering

clustering coefficient definitions give similar results. based analysis of complex networks, and other approaches
The dependence of the usual clustering coefficient witl[lB 26-28 based on this magnitude.

the vertex degree gives information about the degree corre-
lations present in the corresponding graph. These degree cor- The authors thank A.-L. Barabasi and A. Vespignani for
relations, however, can be already characterized using meaelpful comments and discussion.
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