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Lattice Boltzmann model for axisymmetric multiphase flows
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A lattice Boltzmann model is presented for axisymmetric multiphase flows. Source terms are added to a
two-dimensional standard lattice Boltzmann equation for multiphase flows such that the emergent dynamics
can be transformed into the axisymmetric cylindrical coordinate system. The source terms are temporally and
spatially dependent and represent the axisymmetric contribution of the order parameter of fluid phases and
inertial, viscous, and surface tension forces. A model which is effectively explicit and second order is obtained.
This is achieved by taking into account the discrete lattice effects in the Chapman-Enskog multiscale analysis,
so that the macroscopic axisymmetric mass and momentum equations for multiphase flows are recovered
self-consistently. The model is extended to incorporate reduced compressibility effects. Axisymmetric equilib-
rium drop formation and oscillations, breakup and formation of satellite droplets from viscous liquid cylindri-
cal jets through Rayleigh capillary instability, and drop collisions are presented. Comparisons of the computed
results with available data show satisfactory agreement.
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[. INTRODUCTION model in this paper. The approach consists of adding source
) o ) _ terms to the 2D Cartesian LBE model based on the kinetic
Fluid flow with interfaces and free surfaces is common iNtheory of dense fluids for multiphase flo@&0,11. This ap-
nature and in many engineering applications. Such interfaciaéroach is similar in spirit to the idea proposed [it77] to
flows which typically involve multiple scales remain a for- o)y single-phase axisymmetric flows. However, multiphase
midable nonlinear problem rich in physics and continue 6,y problems involve additional complexity as a result of
pose challenges to experimentalists and theoreticians alik@erfacial physics involved—i.e., the surface tension forces
[1]. Numerical simulation of multiphase flows is challenging 4nq the need to track the interfaces. In this case, the accuracy
as the shape and location of the interfaces must be computef the numerical discretization of the source terms represent-

in conjunction with the solution of the flow fiel@,3]. Com- g interfacial physics also becomes an important consider-
putational methods based on the lattice Boltzmann equatiogyjon.

(LBE) for simulating complex emergent physical phenomena  Ths paper is organized as follows. In Sec. II, the axisym-
have attracted much attention in recent yg&S]. The LBE  eyric LBE multiphase model is described. Then, in Sec. Ill,
simulates multiphase flows by incorporating interfacial phyS+ts extension to simulate axisymmetric multiphase flows with
ics at scales smaller than macroscopic scales. Phase segregayced compressibility effects is described. The computa-

tion and interfacial fluid dynamics can be simulated by in-tjona methodology adopted is also discussed in this section.
corporating interparticle potential$,7], concepts based on |, gec. |, the axisymmetric model is applied to benchmark

free energy8,9], or kinetic theory of dense fluid10-12. problems to evaluate its accuracy. Finally, the paper closes
The formulation of the standard LBE is based on the Caryyih g summary in Sec. V.

tesian coordinate system and does not take into account axial

symmetry, which may exist. Numerous multiphase flow situ-

ations exist where the fluid dynamics can be approximated ad!- AXISYMMETRIC LBE MULTIPHASE FLOW MODEL
axisymmetric[1,13]. Examples include head-on collision of
drops, normal drop impingement on solid surfaces, and Rayz,
leigh instability of cylindrical liquid columns. Currently, full

To simulate axisymmetric multiphase flows, axisymmetric
ntributions of the order parameter and inertial, viscous,
. . ! . and surface tension forces may be introduced to the standard
three-dimensiona(3D) calculations have to be carried out 2D LBE. The source terms, which will be shown to be spa-

for problems which may be approxima_ted as axi_symm_etriqia"y and temporally dependent, are determined by perform-
[14-16. In 3D computations, computational conS|derat|onsi g a Chapman-Enskog multiscale analysis in such a way

restrict the numerical resolution that may be employe_d angh o+ the macroscopic mass and momentum equations for

: : - ‘?nultiphase flows are recovered self-consistently. The intro-

breakup of drops into satellite droplets the size of the dropy,,«ion of source terms makes it necessary to calculate ad-

!ets may be such that_the 3D 9?'0'5 may not resolve th_em. Titional spatial gradients when compared to those in the stan-

improve the. computational efficiency of the LBE for axISYM- gard LBE. While this approach is developed for a specific

metric multiphase flows, we propose an axisymmetric LB| pr jtiphase flow model based on kinetic theory of dense
fluids [10,11], it can be readily extended to other LBE mul-
tiphase flow models.

*Electronic address: nandha@ecn.purdue.edu The governing continuum equations of isothermal multi-

"Electronic address: jabraham@ecn.purdue.edu phase flowf18,19 in the cylindrical coordinate system when
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the axisymmetric assumption is employed are 6 2 5

1 ’ 1
ap + Fﬁr(PrUr) +d,(pu,) =0, (1) Fluid 2 %
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FIG. 1. Schematic of the arrangement of the coordinate system
1 in axisymmetric multiphase flojr,z) and(y,x) coordinate direc-
p(dU, + U dp U, + U dUy) = = 9,P + Fszt Fexzt F&r(rnzr) tions are showh
+ 3,117, S

P:pgﬂ (10)

1+y+ 72 - yg B ap2
wherep is the density and, andu, are the radial and axial (1-y)3 '
components of velocity. These equations are derived from _ . .
kinetic theory, which incorporates intermolecular interaction whelre V_t.’p/ 4 Thet p?.ralmetk;a? |sthrelaftfed t.to tg‘? mtetrmo}
forces which are modeled as a function of density followingt(;Cu ar Ipalr\lmze podetnhla an Of ee elc ve | |amht;: ebr 0
the work of van der Waalg20]. The exclusion volume effect € moecuied, an € mass of a single molecura, by

— 3 i H
of Enskog[21] is also incorporated to account for an increaseb_277d /3m. R is a gas constant arill is the temperature.

in collision probability due to the increase in the density ofThe Ca.maZTD%Stirgngf EOS hztis_sapernodafl Fllllp_-l];
nonideal fluids. These features naturally give rise to surfac€YUVe—1-€., p=J—I0r a certain range of values o
tension and phase segregation effects. The other variabl en the state fluid temperature is below its critical value.

which appear in the above equations will now be described, IS un;table part O.f the curve is the drwmg mechanism
M., T,,, andTl,, are the components of the viscous Stressrespon5|ble for keeping the phases of fluids segregated and
terrrlysorrgnd arezéiven by for maintaining a self-generated sharp interface.

We now modify the standard LBE in such a way that it
I, = 2ud,u,, (4)  effectively yields the axisymmetric multiphase flow equa-
tions (1)—(10) in a self-consistent way. To facilitate this, we

employ the following coordinate transformation, illustrated
in Fig. 1, which allows the governing equations to be repre-
sented in a Cartesian-like coordinate system—ey):

: o _ (r,2) = (v.%), (12)
where u is the dynamic viscosityFs, andFg, are the axial
and radial components, respectively, of the surface tension (Ur, Up) — (Uy,Uy). (12)
force, which are given by19]

iy, =11, = u(du, + d,Uy), (5)

I1,,= 2udu,, (6)

Assuming a summation convention for repeated subscript in-

F = Kp(?r|: %ﬂr (tp) + 4, (&Zp)] , ) dices, Eqs(1)—(8) may be transformed to
ap + d(pu) = = p_:jy (13
Fsz= Kpﬁz|:}(9r(r(9rp) + (?z((?zp):| : (8)
' r p(U; + Udl) = = P + Fgj + Feyqi + dl (9l + diy) ]
where « controls the strength of the surface tension force. + Faxi, (14)

This parameter is related to the surface tension of the fluinhere
o, through the density gradient across the interface by the

equation[22] Fsi = kpdV%p (15)
ap )2 andi,j,ke{x,y}. The right-hand sidédRHS in Eq. (13),
o= KJ (%> d (9)  -pu,ly, is the additional term in the continuity equation that

arises from axisymmetry. The corresponding term for the

Thus, the surface tension is a function of both the parametdPomentum equatiofl4) is
« and the density profile across the interface. The téfms w 1
andF,, in Egs.(2) and(3), respectively, are the radial and Faxi = —Layu; + quy] + Kpﬁi(‘ﬁy ) (16)
axial components of external forces such as gravity. y y

The pressureP is related to density through the  To recover Egs(13) and (14), we introduce two addi-
Carnahan-Starling-van der Waals equation of stgteS  tional source terms, and S to the standard 2D Cartesian
[23] LBE which has(},, as its collision term and a source term for
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the internal and external forceS,. These unknown addi- Cartesian-like terms in Eqgs(13) and (14) in a self-
tional terms, representing the axisymmetric mass and mceonsistent way. Since the zeroth kinetic moment of the term
mentum contributions, respectively, are to be determined sﬁiqM(p,O) is involved in the derivation of the macroscopic
that the macroscopic behavior of the proposed LBE corremass conservation equation from the LBE, the source term
sponds to axisymmetric multiphase flow. Thus, we proposes, in Eq. (17) is proposed to be equal §*(p,0) multi-

the LBE plied by an unknowrm’ and normalized by the density.
1 The other source terd, is proposed analogous to the source
fo X +e,8,t+ &) —fu(x,t) = 5[ Qolix + Qaliere, gt+5)] term in Eq.(20). Thus, we propose
1 . 18,0 |
+ 5[ Salixt + Sulxre, 5,1+ 16 Se = o m, (22)
+ TS+ Sse 0]
L Sal(xt) al (x+e, 8,t+8) 10t e, —U =
2 o SE (‘p—RT')szf*Wp,u). (23

1 '’ !
+ol Slocy * Silcre aue2)19% Here the unknownsn’ and F/ in the above two equations
(17) can be determined through Chapman-Enskog analysis as will
be shown later. It must be stressed that all terms, including

wheref,, is the discrete single-particle distribution function, the collision term, on the RHS are discretized by the appli-
corresponding to the particle velocigy, wherea is the ve-  cation of the trapezoidal rule, since it has been argued that at
locity direction. The Cartesian component of the particle ve{east a second-order treatment of the source terms is neces-
locity, ¢, is given byc=4,/ &, whered, is the lattice spacing sary for simulation of multiphase floW0,11]. The macro-
andé; is the time step corresponding to the two-dimensionalscopic fields are given by
nine-velocity modelD2Q9) [24] shown in Fig. 1. Here, the

collision term is given by the Bhatnagar-Gross-KrdB8kGK) p=D f (24)
approximation| 25] o
f,— N
Q,=-——*, 7=—, (18
T & U =2 f o (25)

where is the relaxation time due to collisiong, is the time
step, andf¢?is the truncated discrete form of the Maxwell- |n this model, the order parameter is the dengitywhich
ian, distinguishes the different phases in the flow.

e.-u (e,-u)? 1u-u Equation(17) is implicit in time. To remove implicitness
f9=f2M(p,u) = w,| 1 + LIIQT + ZaR 2 >R in this equation we introduce a transformation following the
(RT) procedure described by Hat al.[10,27], whereby
(19
whereR is the gas constant, is the temperature, andl, is f_a =f,- %Qa - %(sa +S,+9)6 (26)

the weighting coefficients in the Gauss-Hermite quadrature
to represent the kinetic moment integrals of the distribution )
functions exactlyf26]. For isothermal flows, the fact®Tis N EQ. (17), so that we obtain
related to the particle speedasRT=1/3c% The term in Eq. _ _
17), fa(x +e,0,t+ &) = fa(x,1)

S = (€qj = W)(Fj + Feyj)
“ pRT

represents the effect of internal and external forcing terms oQyere

the change in the distribution function. The internal force

term gives rise to surface tension and phase segregation ef- - T _ea

fects which are given by O =—-4 a
“ 7+ 1/2

Fi=-dy+Fg, (21)

where the functiony=P-pRT is the nonideal part of the Thus, f, is the transformed distribution function that re-
equation of state, Eq10). The first two terms on the RHS of moves implicitness in the proposed LBE, E4.7), which
Eg. (17) corresponds to those presented bydtial.[27]. As  describes the evolution of thi, distribution function. The
mentioned above, the last two teri8sandS) in this equa-  following constraints on the equilibrium distribution and the
tion are to be selected such that their behavior in the convarious source termig28,29 are imposed from their defini-
tinuum limit would simulate the influence of the non- tion:

~ T / ’
feM(p,u), (20) = Qi+ T+—1/2[Sa +S,+S)xpd: (27

(28)
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2 f=p, X %%, =pu;, > o, =pRTS; +puu;,
> 12%,i€41€u = P(RD2(Ui S + Ui 5 + WSy),  (29)

> S,=0, X S.e,=F,

> Su8uiaj = (Fi + Fex)Uj + (Fj + Fey)li,  (30)
2 S;: m’, E S;eai =0, 2 S;eaieaj =m'RT i
(31
28,20, 2 Sei=F, X Sie.e,=(Fu+Fu).

(32

PHYSICAL REVIEW E 71, 056706(2005

1
O():4, fY) + Dy fi7) = = =12, (42)
T
Now, invoking the Chapman-Enskog ansatz
1 p 1 0
(1) 3. om
% <eai) “ py; Z. €/ 0
(42)
and performingZ () on Egs.(40) and(41), we obtain
dp+ dlpuy) =m', (43)
d,p=0, (44

respectively. Combining the first- and second-order results
given by Eqgs(43) and(44) and consideringﬂt:at0+ €dy,, We
get

ap + dlply) =m’. (45

Comparing this equation and E(L3), the unknownm’ is
obtained as

Then the following relationships are obtained between the

transformed distribution function and the macroscopic fields,
which also include the curvature effects resulting from axial

symmetry:

— 1
p:Equm’«%, (33)

e 1 "
pu = 2 e+ E(Fi +Feoyi + F) 6. (34

Now, to establish the unknowma’ and F! in the above

formulation, the Chapman-Enskog multiscale analysis is per-

formed[21]. Introducing the expansion80]

fo(x+e,8,t+8)= 2 Dy f(x1),

(35
a=0
Dtn = ﬁtn + eak[?kv (36)
f,=> M, (37)
a=0
=2 o, (38)
=0

wheree=¢; in Eq. (27), and using Eq(26) to transformf_a
back tof,, the following equations are obtained in the con-
secutive order of the parameter

O(%):f0 = feq, (39)

1
O(e):D, fO=-=fY+35 +3 +3, (40)
0 o T [¢3 (¢3 o

_ Py
y

This is the axisymmetric contribution to the Cartesian form
of the equation for the order parameter—i.e., the density
characterizing the different phases of the flow. Taking the
first kinetic momentX e, (-), of Eqgs.(40) and(41), respec-
tively, we get

m' = (46)

dr(pU) + dlpuit) = = Gi(pRT) + Fi + Feyi + FY,  (47)

o, (pu) + 4 d1 = 0, (48)

where

Hl(]l) = E fg)eaieaj . (49)

Employing the expression fcfl‘al) from Eq.(40) in Eq. (49),
together with the summational constraints given above, and
neglecting terms of the ord&@(Ma®) or higher, we get

Hfjl) = - TRTp(ﬁle, + &in) . (50)
Equation(48) then simplifies to
o, (puy) = Gl RTp(dju; + du)]. (51
Combining Egs(47) and(51), we get
a(pu) + dpuity) = — & (pRT) + Fj + Foyi + F/
+ gl 7aRTp(du; + au)],  (52)
or substituting forF; from Eq. (21), we obtain
a(pu) + dpuUity) = =GP + Fgj + Fey + F
+ r?][ré}RTp(&Jul + &,u])] (53)

Using Eqgs.(45) and(53), this can be simplified to

056706-4



LATTICE-BOLTZMANN MODEL FOR AXISYMMETRIC.... PHYSICAL REVIEW E 71, 056706(2005

uu Ga(X +e,8,t+ &) — g,(x,t
P(atui + ukakui) - p_)llz =" aiP + Fs,i + I:exti + I:i” ga(x o 5t) ga(x )

~ T / !
+ O,)][T&tRTp(aJul + 0"i U])] ) - an|(x,t) + T+ 1/2[Sga + Sga + %a]|(x,t)5t! (58)
(54) where
Comparing Eqs(14) and(54), we obtain the other unknown _ 9. - g
F’ where Qo == :+—1/; (59
u;u 1 u;u
F/ = Fayi - p—;/l = 5[0yui +Gu,] + Kpo"i<§o7y ) - p—;/Y. and
eM(p,0
(55) %= fORT+ lﬂ(p)w. (60)
p

This is the axisymmetric contribution to the Cartesian form .
) : The corresponding source terms become
of the equation for the momentum, where the first, second,

and third terms on the RHS correspond to the viscous, sur- feaM (1)

face tension, and inertial force contributions, respectively. Sy = (€4 —uj){(F]— + Fextj)

The dynamic viscosity is related to the relaxation time for

collisions by u=p78RT=pAcZ, wherec?=1/3c? The set of feaM(pu)  29M(p, 0)

equations corresponding to the axisymmetric LBE multi- —( < - )01'1//(0) , (6
phase flow model is given by Eq&7) and (28) together P

with Egs.(20), (22), (23), (33), (34), (46), and(55). In gen-

eral, this multiphase model and that proposed byetiel. / —SRT= fiqM(p,0)<_ &Y)RT 62)
[10] face difficulties for fluids far from the critical point S = SRT= p y ’

and/or in the presence of external forces. This difficulty is

related to the calculation of the intermolecular force in Eq. feqM

(21), involving the computation oy which can become S, =SRT=(g —uj)Fj’M- (63)

quite large across interfaces. Unless this term is accurately
computed, the model may become unstable because of n
merical errord14,31]. Hence, an improved treatment of this
term is necessary. This will now be described.

l'ILhe term g, in Eq. (61) is multiplied by the factor
[feM(p,u)/ p—f2¥M(p,0)/p]. This factor, from the definition
of the equilibrium distribution functiorf? in Eq. (19), is
proportional to the Mach number and thus becomes smaller
. AXISYMMETRIC LBE MULTIPHASE FLOW MODEL in the incompressible limit. Hence, it alleviates the difficul-
WITH REDUCED COMPRESSIBILITY EFFECTS ties associated with the calculation of #)é, a major source
_of numerical instability with the original mod¢lL0]. Thus,

He and co-workergl1] have proposed that through a suit- g4 (58)(63) are found to be numerically more stable com-
able transformation of the distribution functidr, which pared to Eq.(27) supplemented with Eq€20), (22), and
involves invoking the incompressibility condition of the (23). In this new framework, we still need to introduce an
fluid, and employing a new distribution function for captur- 5 qer parameter to capture interfaces. Here, we employ a
ing the interface, the difficulty with handling the intermo- fynction ¢, referred to henceforth as the index function, in
lecular force termv;¢s can be reduced. We apply this idea to piace of the density, as the order parameter to distinguish the
the axisymmetric model developed in the previous SeCt'O”phases in the flow.

We replace the distribution functiof), by another distribu- The evolution equation of the distribution function whose
tion functiong, through the transformatiofi.1] emergent dynamics governs the index function has to be able
to maintain phase segregation and mass conservation. To do
this, we employ Eq(27) together with Eqs(20), (22), and

(23) by keeping the term involving;» andm’, while the rest

of the terms may be dropped as they play no role in mass

The effect of this transformation will be discussed in greateiconservation. In addition, the density is replaced by the index
detail below. By considering the fluid to be incompressible,function in these equations. Hence, the evolution of the dis-

63 (p,0)

9o = FRT+ f(p) = (56)
p

ie., tribution function for the index function is given by
d fox+e,8,t+8) — f(x.1)
d_tlﬁ(P) = (3 + ud)(p) =0, (57) - .
= Qg (1) + T+—1/2[Sfa + Sl & (64)
and using the transformation, E456) and(26), Eq. (27) is
replaced by where the collision and the source terms are given by
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- 8
-2 G = — S [Bw(x+ e, 8) ~ wlx + Zeai‘”]@)
Q=-—"1—, (65) 38 o1 i
T+ 1/2
+ 0(5:1) (73
pRT 13
Viw = gdw = -5 2 [w(X+e,8) ~w()]+0(&)
eqM ’
BT TR e

’ ) , (74)

The hydrodynamic variables such as pressure and fluid veor any functionw. Notice that these discretizations are both
locity can be obtained by taking appropriate kinetic momentyased on the lattice based stencil, instead of the standard

of the distribution functiorg,—i.e., stencil based on the coordinate directions. In addition, in the
1 1 application of this model, the implementation of boundary
P=>0,- Eujﬁjw(p) +§m’RT51, (68)  conditions plays an important role. In particular, along the

axisymmetric line—i.e.y=0—specular reflection boundary
conditions are employed for the distribution functions. For

pRTY= >, 0.6, + }(Fsi + Foxi) O + }FM- (69)  the D2Q9 model shown in the inset of Fig. 1, Wegstf:,
« 2 2 fo=fg andfe=f, andg, =0 Gs=s, andge=g, for the dis-
This follows from the definition of,, given in Eq.(56) and tribution functions after the streaming step. For macroscopic
also includes curvature effects. The index function is ob-conditions, along this liney,=4y(-)=0, through which the

tained from the distribution functiof, by taking the zeroth smgular_ source terms of type M(f) in the model can be .
Kinetic moment—i.e., appropriately treated. On the other hand, boundary condi-

tions along the other lines are similar to those for the stan-

— 1
¢=Efa+5%m’6t. (70 dard LBE.

The termsm’ andF;’ are given in Eqs(46) and(55), respec- IV. RESULTS AND DISCUSSION
tively. The density is obtained from the index function

through linear interpolation—i.e., results are presented in lattice units; i.e., the velocities are
b= (on = p0) 71 scaled by the particle velocitg, the distance by the mini-
dy—¢ THPY mum lattice spacing,, and time byc/ 8,. All other quantities
. ) are scaled as appropriate combinations of these basic units.

where p_ and py are the densities of the light and heavy First, the axisymmetric LBE multiphase flow models are ap-
fluids, respectively, angb_and ¢y, refer to the minimum and  pjied to verify the well-known Laplace-Young relation for an
maximum values of the index function, respectively. Theseaxisymmetric drop. According to this relatioaP=20/Ry,
limits of the index function are determined from Maxwell's \yhere AP is the difference between the pressure inside and
equal area constructiof20] applied to the function(#)  outside of a dropg is the surface tension, amy is the drop
+¢RT. . _ _ _ radius. For different choices of the surface tension parameter

Thus, the axisymmetric LBE multiphase flow model with ., the surface tension values are obtained from(Exby the
reduced compressibility effects corresponds to Eqsyeplacing density in Eqg7) and (8) by the index function.
(58)—(71) The relaxation time for collisions is related to the To obtain the normal gradient used in H@), a physica'
viscosity of the fluid using the same expression as derived igonfiguration consisting of a liquid and a gas layer is set up.
the previous section. If the kinematic viscosity of the light once equilibrium is reached, the density gradient may be
fluid, », is different from that of the heavy fluidy,, its  computed and hence the surface tension. Having obtained the
value at any point in the fluid is obtained from the index re|ationship between the surface tensioand the parameter

In the rest of this paper, unless otherwise specified, the

p(P) =p_+

function through linear interpolation—i.e., «, axisymmetric drops of four different radiy=40, 50, 60,
b- and 70 are set up in a domain discretized by 2aD1 lattice
V() =v+ b (v=mw). (72)  sites. Periodic boundaries are considered inxteirection

H L

and an open boundary condition is considered along the
It may be seen that the model requires the calculation oboundary that is parallel to the axisymmetric boundary. By
spatial gradients in Eq$61) and(66) and of the Laplacian in  considering three different values &f 0.05, 1.0, and 0.15,
Eg. (15). Since maintaining accuracy as well as isotropy isthe pressure difference across the drops is determined. Figure
important for the surface tension terms, they are calculate@ shows a comparison of the pressure difference across the
by employing a fourth-order finite-difference scheme for theinterface of the drops computed using the axisymmetric
gradient and a second-order scheme for the Laplacian, givemodel developed in Sec. Il and that predicted by the
respectively, by Laplace-Young relation. It is found that the computed results
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0.00012
—— Analytical (k=0.05) 4
® LBM (k=0.05) o
0.0001 —a Analytical (k=0.1) e
o LBM (k=0.1) e
—*— Analytical (k=0.15)
0.00008 ® LBM (k=0.15) /./V
' " ® FIG. 2. Pressure difference across axisymmet-
.// 7 ric drops as a function of radius for different val-
$ 0.00006 - s Eas ues of the surface tension parameteCompari-
/«/ /)// son of computed results _using th(_e e_txisymmetric
0.00004 1 /,/ e LBE model versus theoretical prediction based on
T " the Laplace-Young relation. Quantities are in lat-
- /// - tice units.
0.00002 - T /,//I/P
- P
T
T
0¥ ; ; . .
0 0.005 0.01 0.015 0.02 0.025 0.03
1/Ry

are in good agreement with the theoretical values, with a&onditions. The drop changes from a prolate shapé at

maximum relative error of about 3%.

=2000 to oblate shape &t 16 000. Such shape changes con-

Another important test problem is that of an oscillating tinue until the drop reaches its equilibrium spherical shape.
axisymmetric drop immersed in a gas. Since current versionBigure 4 shows the temporal evolution of the interface loca-

of the LBE simulate a relatively viscous fluid, it is appropri-

tions of the oscillating drop with the conditions above for

ate to compare the oscillation frequency with that of Miller two different surface tension parametars0.02 and 0.08. It
and Scriveri32]. In contrast to earlier analytical solutions on is expected that increasing the surface tension will reduce the
drop oscillations, this work considers viscous dissipation eftime period of oscillations. The comput€® gg) and analyti-
fects in the boundary layer at the interface. According tocal (T,,,) time periods, wherdl =27/ w,, when k=0.02

[32], the frequency for thath mode of oscillation for a drop
is given by

+=a? (75)

wherew, is the angular response frequency arﬁ,ds Lamb’s

natural resonance frequency expressefB3a$

()2 nin+21)(n-1)(n+2)

w = g.
" Rinpg+ (n+1)p|]

Ry is the equilibrium radius of the drops; is the interfacial
surface tension, ang, and pq are the densities of the two
fluids. The parametes is given by
e (2n+ DA (pgpipg
2Y%Ry[npg + (n+ Dpy L (rup) ' + (ugpg) V21’

(76)

(77)

are 29483 and 29 448, respectively. Asis increased to
0.08,Trgg andT,,, become 14 388 and 14 313, respectively.

It may be seen that the computed and analytical values agree
well, the difference being less than 1%. Also, the time period
decreases ag is increased, which is consistent with expec-
tations.

Consider next the effect of changing the drop size on the
time period of oscillations. Figure 5 shows the interface lo-
cations of an oscillating drop as a function of time for the
following two initial sizes:Ryi,=30, Ryna—=45 andR,,;,=40,
Rna=55. Reducing the drop size reduces its time period.
The computed time period of the larger drop is equal to
29 483, while that for the smaller drop is 20 118. Compari-
son of the computed time periods with the analytical solution
shows that they agree within 1% for these cases. Next, con-
sider three different kinematic viscosities of the liquig:
=1.6667x 102, 3.3333x 1072, and 5.0<1072 Figure 6

wherew, andug4 are the dynamic viscosity of the two liquids. shows the effect of drop viscosity on the temporal evolution
The subscriptgy and | refer to the ambient gas and liquid of the interface locations of the drop. It is found that as the
phases, respectively. We consider the second mode of oscltinematic viscosity is increased the time period increases
lation and analytical expressions for the time period are premoderately which is consistent with the analytical solution.
sented in Eq(75). The computed time periods at these viscosities are 29 483,
The initial computational setup consists of a prolate31 030, and 32 925, while the analytical values are 29 448,
spheroid of minimumR,;,) and maximumR,o) radii of 40 30597, and 31 318, respectively, with a maximum error
and 55, respectively, placed in the center of the domain diswithin 5.1%.
cretized by 20X 101 lattice sites. We consider the surface The third test problem considered here is that of the
tension parameterg=0.2 and the density of the gas and the breakup of a cylindrical liquid column into drops, a fascinat-
drop to bepy=0.1 andp;=0.4, respectively. The kinematic ing problem of long-standing theoretical and practical inter-
viscosities of both the gas and the drop are considered to kest. In a seminal work, Rayleidl34] showed through a lin-
the same and given by, =1,=1.6667x 10°2. Figure 3 shows ear stability analysis of an inviscid column of cylindrical
the configurations of an oscillating drop at different timesliquid of radius R, that the column will be unstable if the
computed using the standard axisymmetric model with thesaxisymmetric wavelength of any disturbankg is longer
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FIG. 3. Configurations of an oscillating drop as a function of tifRg;,=40, Rya=55, pg=0.1, p=0.4, andy=v3=1.6667x 1072
Quantities are in lattice units.

than its circumference; i.e., the wave numbér27R,/\y  t=28 000,46 000,52 000, the cross section of the column be-
should be less than 1. Later, the theoretical analysis wasomes progressively thinner in the center, and by mass con-
extended to more realistic conditions by including viscosity.servation, the ends becomes largertA60 000, notice that a

In the last three decades, several experimental and numerida¢ad-type structure is formed at the ends and with a thin
investigations have also been performed. To evaluate the adigament between them. Such a structure has been observed
symmetric LBE model, we study the Rayleigh capillary in- in experimentg1] and in other numerical simulatio85].
stability for different wave numbers. Initial studies carried Eventually, the column breaks up, forming a thin ligament in
out with k" > 1 showed that the liquid does not break up. Wethe middle, which then becomes a satellite droplet.

will now present results of cases with break up. Consider a Let us now increase the wavelength of the disturbance to
cylindrical liquid column of radiufk;=45 subject to an axi- \y=600, keeping the physical parameters the same as before.
symmetric cosinusoidal wavelengkly=320—i.e.,k'=0.88.  We consider a domain represented by 851 lattice sites.

To simulate the dynamics of instability for this wave number,SinceR,=45, as before, the wave number is 0.47. Figure 8
we consider a domain discretized by 32151 lattice sites shows the temporal evolution of the configurations of the
with p,=0.1, p=0.4, v4=1=6.6667X 102, and x=0.1. liquid column at this reduced wave number. The axisymmet-
Since k' <1, it is expected that the liquid column would ric disturbance grows with time. Since the wavelength is
eventually break up. Figure 7 shows the configurations of théonger, it can be noticed that the ligament that is formed
liquid column at different times. As time progresses, the im-during the Rayleigh instability is also longer. As a result,
posed interfacial disturbances on the liquid column grow. Atafter the column breaks up, a larger satellite droplet is
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FIG. 4. Interface location of an oscillating
drop as a function of time for two values of the
surface tension parameter Ry,i,=40, Rya=55,
pg=0.1, p=0.4, and y=ry=1.6667<1072
Quantities are in lattice units.

FIG. 5. Interface location of an oscillating
drop as a function of time for two drop sizes:
pg=0.1, p=0.4, 1y=1,=1.6667x 1072 and «
=0.02. Quantities are in lattice units.

FIG. 6. Interface location of an oscillating
drop as a function of time for different kinematic
viscosities 11 Rypin=40, Rpna=55, py=0.1, p
=0.4, and«=0.02. Quantities are in lattice units.
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FIG. 7. Configurations of a cylindrical liquid column at different times undergoing Rayleigh breakup and satellite droplet formation:
K'=0.88,py=0.1, p;=0.4, andy;=1,=6.6667x 10"2. Quantities are in lattice units.

formed. To express the drop size distribution with wave To evaluate the drop size distribution computed using the
numbers more quantitatively, we plot the nondimensionabxisymmetric LBE model, we consider the experimental data
size of the main and satellite dropS=R/R,, as a function of Rutland and Jamesd87], the experimental data and ana-
of wave numberk” in Fig. 9. It may be noted that Rayleigh's lytical solution based on a third-order perturbation analysis
original analysis predicts only the onset of breakup and nobf the NSE by Lafranc§36], a boundary integral solution of
the formation of satellite droplets. To predict analytically sat-the NSE by Mansour and Lundgréd8] and a finite-element
ellite droplet formation, it has been shown that at least asolution of the NSE by Ashgriz and Mashay&g]. It can be
third-order perturbation analysis of the Navier-Stokes equaseen in the figure that as long as the wave number is less than
tion (NSE) is needed[36]. Computations based on direct 1, as expected there will be a satellite droplet formation. As
solutions of the NSE also predict the formation of the satelthe wave number is reduced, the sizes of both the main drop
lite droplets. and satellite droplet increase. The rate of increase of the size

056706-10



LATTICE-BOLTZMANN MODEL FOR AXISYMMETRIC.... PHYSICAL REVIEW E 71, 056706(2005

150 150
@ @
<75 X 75
> > e
%0 100 200 300 400 500 600 % 100 200 300 400 500 600
X Axis X Axis
t=0 t=20000
150 150
@ @
Z 75 Z 75
> > _\_/—
0% 100 200 300 400 500 600 05 100 200 300 400 500 600
X Axis X Axis
t=36000 t=52000
150 150
@ @
<75 “‘\\\\\‘ 4///,r”‘ <75
> >
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
X Axis X Axis
t=60000 t=66000
150 150
© ©
E 75 ‘\\\\ E 75
0 100 200 300 400 500 600 0 100 200 300 400 500 600
X Axis X Axis
t=78000 t=80000

FIG. 8. Configurations of a cylindrical liquid column at different times undergoing Rayleigh breakup and satellite droplet formation:
k*:O.47,pg:0.1,p|:0.4, andy=vy=6.6667x 1072 Quantities are in lattice units.
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FIG. 10. Colliding drops at different timeg Ny,.=20,No,=0.589,r=4, andA=1. Time is normalized by the relative velocity between
the drops and their diameter. Axes are in lattice units.

of the satellite droplet is greater than that of the main dropeventually separate with the formation of a satellite droplet,
Notice that there is considerable scatter in the available datahich are consistent with experimental observations. Also
in the figure. The computed results from the axisymmetricnotice that for the latter case, the temporarily coalesced drop
LBE model are presented for wave numbers greater than amndergoes various stages of deformation which are consis-
equal to 0.47. Ignoring the two experimental data points otent with a recent theoretical analy$#]. Additional details
Lafrance[36] for the satellite drop sizes that deviate consid-of these and other studies of drop collisions are given in Ref.
erably from the others, we find that the axisymmetric mode[41].

is able to reproduce the drop size distribution quantitatively

within 12%.
The axisymmetric model has been employed to study V. SUMMARY
head-on collisions of drops of radR; and R, approaching In this paper, a LB model for axisymmetric multiphase

each other with a relative velocity. The dynamics and flows is developed. The axisymmetric model is developed by
outcome of colliding drops are characterized mainly by theadding source terms to the standard Cartesian BGK LBE.
Weber numbemMy, defined byNye=p(Ri+R)U?/o [39].  The source terms, which are temporally and spatially depen-
Additional parameters that may have an influence are theent, represent the axisymmetric contributions of the order
Ohnesorge numbeKgy, defined byNon=16w/VpRio and  parameter, which distinguish the different phases, as well as
ratios of liquid and gas densiti¢s) and dynamic viscosities inertial, viscous, and surface tension forces. Consistency of
(N). According to experiments39], it is expected that lower the model in achieving the desired axisymmetric flow multi-
Nwe collisions lead to coalescence while higitgg. to sepa-  phase behavior is established through the Chapman-Enskog
ration by reflexive action. Figures 10 and 11 present dropnultiscale analysis. The analysis shows that the axisymmet-
configurations aNy,.=20 and 100, respectively. Notice that ric macroscopic conservation equations are recovered in the
at Nwe=20, the drops coalesce, while =100, they continuum limit. An axisymmetric model with reduced com-
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FIG. 11. Colliding drops at different time& Ny,=100,Ny,=0.589,r=4, andA=1. Time is normalized by the relative velocity between
the drops and their diameter. Axes are in lattice units.

pressibility effects is then developed to improve its compu-quency of drop oscillations is less than 5.1% and that for
tational stability. In this version, a transformation is intro- drop sizes as a result of Rayleigh breakup is 12%.

duced to the distribution function in the LBE such that it

reduces .the compressib[lity effects. Comp_arisons of com- ACKNOWLEDGMENTS
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