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Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids
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We study the diffusion and phase separation properties of a gradient- based lattice Boltzmann model of
immiscible fluids. We quantify problems of lattice pinning associated with the model, and suggest a scheme
that removes these artifacts. The interface width is controlled by a single parameter that acts as an inverse
diffusion length. We derive an analytic expression of a fully developed interfacial curve and show that inter-
faces evolve towards this stable distribution if no fluid is trapped. Fluid can become trapped inside a competing
phase if no connecting path to the bulk phase exists. Such trapped bubbles also evolve towards the fully
developed interfacial curve but constraints on mass conservation limit this development. We also show how
small numerical errors lead to spontaneous phase separation for all values of the diffusion length.
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[. INTRODUCTION simulate two-phase miscible and immiscible fluid flow de-
pending upon the choice of the inteparticle interactions.
However in these models the magnitude of the surface ten-
sion is not knowr{12]. Collectively, these models have been
applied to a multitude of multiphase flow problems, includ-

Since the development of the lattice BoltzmafiB)
method[1-3] it has often been used to study complex mul-
tiphase fluid flow[4—8]. The fundamental idea of the LB
method is to construct simplified kinetic models that incor-: o ) X
porate the essential physics of microscopic or mesoscopifd the verification of Laplace law and capillary wave dis-
processes. Macroscopic or hydrodynamic behaviors such £8rsion[9,13,14, spinoidal decompositiofil5,16, studies
interface dynamics naturally emerge as a result of these kRf the Rayleigh-Taylor instability7], free surface flo17],
netics provided that correct conservation laws and symmelows in porous medigl8-20, contact line motiori21], and
tries such as rotational invariance are followed. The macrodiffusivity [12].
scopic dynamics of the fluid is the result of the collective All of the above models have their positive and negative
behavior of many microscopic particles and is not sensitiveproperties and the use of one instead of the other is a ques-
to the underlying microscopic physics. tion of taste and of the application of interest. Here we study

There are several LB models for simulation of immisciblea modified version of the color-gradient method for three
multiphase flow. Here we study the method based on coloreasons. First the interfacial width is small and hence the
gradientg9]. The color-gradient method retains sharp inter-position of the interface can be known accurately; second,
faces and the surface tension in this model is set by a singlihe value of the surface tension is easy to calculate and ad-
adjustable parameter and may be calculated analyticalljust; and third, it is straightforward to control the contact
[5,9]. An alternative multiphase LB model proposed by Shanangle and the wetting tendency of the solid phase. All of
and Cher{10] is based on microscopic interactions betweenthese properties are advantages when studying complex in-
particles. This model also has sharp interfaces and allows thterface motion in confined and/or complex geometries.
simulations of two phases of significantly different densities We focus our attention on a problem of lattice pinning.
in the case of one component fluid. Both of these model§Ve first discuss the origin of the pinning and show how it
have unphysical properties, e.g., the inconsistency betwearan be removed by changing the color redistribution scheme.
thermodynamic and kinetic pressurgl]. In the Shan and We then go on to analyze the diffusive properties of the new
Chen model the surface tension is given by strength of theolor redistribution and explain why the width of the inter-
microscopic interaction and the shape of the density profiléacial region in this type of models is set by a single param-
at the liquid-gas interface. Although it is possible to adjusteter 8 that appears in the previous work of d’Ortoatal.
these two independently, keeping the density profile constari22]. We propose thap plays the role of an inverse length
and changing the surface tension requires the adjustment stale and show that the fully developed interfacial curve can
two parameters. Furthermore the absolute value of surfadee accurately predicted. We also show how spontaneous
tension is not known prior to evaluation of the density profilephase separation takes place in models of this type.
on the interface. A third LB model of immiscible fluids was  The remainder of this paper is organized as follows. In
proposed by Swifet al. [11] using a free-energy approach. Sec. Il the LB color gradient method is reviewed. In Sec. llI
Their model is constructed so that the pressure tensor is comve describe the lattice pinning problem. Section IV contains
sistent with the tensor derived from the free-energy functiorour solution to the lattice pinning problem. In Sec. V we
of nonuniform fluids. This model leaves the interface widthdiscuss the interfacial properties of the improved method.
relatively wide. There also exists a class of LB models thafinally Sec. VI contains a description of spontaneous phase
are derived from kinetic equatiorjd2]. These models can separation.
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Il. METHOD perpendicular to an interface than parallel to it. Consequently
blue particles move preferentially towards blue particles and
red particles towards red particles, inducing spontaneuos
phase separation. The two-phase step in the color gradient

point the populgnons_Ni (X.'t) are k”O.W”- The sgbscnp_]t method can roughly be divided into the following substeps.
denotes the lattice directiofy connecting two neighboring (1) Calculation of the color gradient: For brevity we de-

Iatttl)clze 5|test,_ tlhe _sut)herscrllpt den((j)_test thetpaglplethtyp(ee(_i noteN"*?with R andNP"“® with B. We use the notatioR; and
or blue particles in the color gradient methpod is the posi- B, for the numbers of red and blue particles traveling to

tion in the lattice, and is the simulation time step. These lattice directionc,, respectively. We also sé =R +B,. The
give the density, the velocity and the pressure/stress of thg,, gradient is“given by ' :

fluid at a given point.
Each simulation time step consists of the following steps. foxt)=> ¢ [Ri(x +c,t) = Bj(x + ¢, b)]. (6)
(1) Propagation Particle populations hop to neighboring i

sites,N/(x+¢;,t) =N/ (x,t—1).
(2) Calculation of pseudoequilibrium populatioh$(e°),

The LB method 1-3,5 is constructed on a regular lattice
face-centered hypercubiFCHC) lattice. At each lattice

(2) Perturbation of the populations,

(c-f)* 1

1-d D D(D+2 N/ (x,t) = Ni(x,t) + Alf(x,t)|| ———-=|. 7

NfT(e(’)(NU’“):NU( b O+%Ci'“+ (2c4b )‘cici:uu (00D =N t) + Alf(x N{ ff 2 "
D The parameteA is linearly proportional to the magnitude of

ST -u), (1)  surface tension such thgs,9]
2
- 1920A
o= —2p (8)
1 A
Ng©¥(dg,u) = N"(do— Su -u). () N o

c (3) Redistribution of color: Color but not mass is redis-

tributed to minimize the diffusion of color across the inter-
face[9]. The 18 directions; are ordered in descending order
starting from the one closest to the color gradient. The direc-
tions closest to the color gradient are occupied by red par-

the number of lattice directions, which for the FCHC lattice ticles and_the rest With_ blue pa_lrticles ponserving the mass of
has the valueb=24. c2 is the length of the vectors; each particle type. This step is considerably simplified and

squared, which for the FCHC =2, andD is the dimen- MProved in this paper.

sion of the_ I_att_ice.(For the_ FCHC lattice |§3:4) The . LATTICE PINNING

pseudoequilibrium populations are chosen in such a way ) ) )

that in the long-wavelength limit the Navier—Stokes equa- 1he color gradient method has a potentially serious draw-

These quantities have the following interpretatidd$:is the
number of particles of typer, andu is the fluid velocity. 0
<dy<1 is the proportion of the rest particles, which deter-
mines the compressibility of the fluid. We udg=1/3.b is

[5,6,10. tice site is on or near an interface of blue and _red fluid. Now

(3) Collision: The populations\? relax towards the pseu- SUppose the fluids have a constant flow velocity everywhere
doequilibrium distributions, on the lattice, but that this velocity is not high enough to
move significant populations of red particles from one site to

N7’ (x,1) = (1 +N)NZ(x,t) = ANT©(x, t). (3)  another. In this situation the interface cannot move and is

ginned to the lattice.
In Fig. 1 we show how the velocity of a small red bubble
'depends on its size. We plot the average velocity of the red
articles as a function of the effective radius of the bubble.
his is given byR=VM/pm, whereM is the mass of the
bubble and is the density of the fluid. As we see bubbles as

Here \ is a relaxation parameter which acts as an invers
relaxation time. It also sets the value of kinematic viscosity
i.e., v=—[c?/\(D+2)]-[c?/2(D+2)] [5,6,10. These colli-
sion and relaxation rules lead to the following macroscopi
mass and momentum equatidiag:

ap+V -v=0, (4) large as seven full lattice sitedR=1.49 are completely
pinned. Some of the smaller bubbles were not pinned, and
IVHV-VV=—Vp+ Vi, (5) ~ We suspect this to be a result of the symmetric configurations
available for the bubble at these sizes. This seems to depend
wherep=3%; ;N7, p=%p, andv=pu. on the initial conditions however, and any bubble smaller
(4) External forces Addition of, e.g., gravity or a pres- than R<1.13 is always pinned, any bubble between sizes
sure gradient. 1.13<R<1.49 is likely to be pinned, and any bubble be-

(5) Two-phase step, which is discussed further below. tween sizes 1.49 and 1.59 can become pinned.

In the simplest case two immiscible fluids are identical What causes this lattice pinning? The clearest case of this
except they have different “color,” red and blue. These twophenomenon can be seen in very small bubbles of red fluid
fluids are immiscible. The surface tension is introduced byimmersed in a blue sea. Figures 2 and 3 demonstrate one
creating an anisotropic pressure field. Particles are redistritease. Although we show the small bubble case as a demon-
uted in such a fashion that there are more particles movingtration the effect persists on larger scales.
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FIG. 1. We plot the average velocity of the red bubble as a
function of the bubble sizeR¢q punnieiS the effective radius of the R=1.332 R=0.267
bubble, veq bunbie IS the average velocity of the bubble, averaged
over 10 000 time steps, ang, is the velocity of the surrounding (@ (b)
blue fluid.

FIG. 3. (Color onling (a) The total red population at each site,

For our purposes there are two specific cases where thighd the directions of color gradients arising from this distribution.
effect is significant. In the first case, small bubblg®., The directions closest to the color gradient are shown numbered,
bubbles concentrated around a single lattice poiill not  starting from the direction closest to the gradient. These directions
move unless they are forced very hard. This problem is sigsend red particles, the last one sending a fraction of red and blue
nificant when studying the separation and flow of an initallyparticles. The remaining directions send blue partidigsWe show
mixed state. The second case concerns nonwetting and wesshematically the red populations at each site, and the amount of
ting fluid that becomes stuck near walls, and leads to aed particles moving through each link at each simulation time step.
history-dependent contact angle. In this paper we specificalljVe have cancelled out equal and opposite currents hence showing
address the first case; the latter will be discussed in a subsenly the excess flow of the red particles.
guent studyf 23].

In Fig. 3 we further study the lattice pinning presented ineach site. The directions closest to the color gradient are
Fig. 2. Figure 8a) gives the direction of the color gradient at numbered. These directions are occupied by red particles, the

last one being partially occupied by red and by blue. Figure

B=0.266 B=1.067 B_0267 B=0.266 B=1.067 B_0.267 3(b) shows a graphical presentation of the concentration of
R=0000 R=0.000 R=0000 R=0.000 R=0-000 R=0.000 red color at each site and of the excess flows from one site to
Bo1.064 B=1070  Bel.06} B=1.070 the othe_r. One can see that most of the red fluid is_going
R=0.000 R=0.000  R=0.000 R=0.000 around in a figure-eight shaped curve. What makes this pos-

sible? In the middle-left site the last direction to send red
particles is the top-right direction and in the middle-right site
B=0.266 1 _f 2] . B=0.803 B=0.267 the last direction to send red particles is the top-left direction.
R=0.000 p_0266 R=0.000  R=0.000 p_350 R=0.000 All these particles return to the middle-right and middle-left
sites because the first direction to send particles on both top-

= B=1.067 p= = B=1.067 R= - Lo o
1328[688 R=0.000 {%;8;8‘5’3 1]%;8:822 R=0.000 3;868(7) left and top-right sites is the downwards direction.
To understand this problem we make three important ob-
B=1.064 B=0.000  B=0.000 B=1.070 i i i istribution i
R=0.000 Ro1070  Rei 064 R=0.000 servations. F_lrst,_ we note that the red partlc_le distribution is
not symmetric with respect to the color gradient. Second, we
notice that the lattice pinning does not necessarily have any-
B=0266 5t ooo B=0000  B=0000 5% o “B-0267 thing to do with the spurious currents that are present near a
R=0.000 R_jgg7 R=0.267  R=0.266 p_5gqq R=0.000 two-fluid interface[5]. In the example we are showing there

are no spurious currents M=R, +B; (i.e., the red+blue fluid
B=0.266 B=0000 g 6001  B=0.000 B=1066

B=0.260 R=1.067 B=0001  B=0.000 p_yg01 11%28.(2)8(7) combination, nor are there any interfacial anisotropic pres-

' : : ' sure gradients, becauge the parameter controlling the sur-
B=1.064 B=1.070 B=1.064 B=1.070 face tension, has been set to zero. The only reason that the
R=0.000 R=0.000  R=0.000 R=0.000 red particles are pinned is because of the color redistribution.

Because the directions close to the color gradient are filled
with red particles in order of proximity, the red particles are
B=0.266 B=0267  B=0.266 B=0.267

R=0.000 B=1.067 p_q5600  R=0.000 B=1967 R_5500 allowed to wander around in circles. Our third observation is
R=0.000 R=0.000 . - : L . e
that there is a limit to lattice pinning. If the fluid velocity is
FIG. 2. Lattice pinning in action. The velocity at each lattice site high Qnough or if the bubble is large enoggh this 'f'nd of
is NU=2N;c;=9.393x 10°%. The red particles go around in small trapping phenomena cannot take place. It is essentially one
loops and at each site the number of red particles is conservegartially filled direction that allows for the collective flow
While we have a nonzero flow velocity the red particles do notfrom left to right to be leaked back to the left. If the amount
move, and are thuginnedto the lattice. of the collective flow exceeds the “leak-back capacity” the
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red fluid will move. The largest leak-back capacities are typi-
cally found in cases where there are sharp edges or cusps,
like the small bubbles.

IV. IMPROVED METHOD

Vredbubble Vblue

The crucial part of this solution is to allow the red and the
blue fluids to moderately mix and to keep the color distribu-
tion symmetric with respect to the color gradient. The reason
for lattice pinning is that at the sites where it happens all of 0.5 1 1.5 2
the particles of one kind are sent to one direction and hence redbubble
they cannot move from one site to another. An obvious way
to fix this problem is to send only a fraction of particles of
one color to these dlrecuor.]s' ThIS.W”.I also a"o"‘.’ the 'mPTr' of the bubblep eq puppiels the average velocity of the bubble, aver-
face to move slowly and Wlthout'pmnlng.. A solution to this aged over 10 000 time steps, angl,, is the velocity of the sur-
problem has been proposed in a different context byqnging blue fluid. For3=1.0 only bubbles smaller than sife
d'Ortonaet al. [22] and Tolkeet al. [24]. The method of ¢ 75 are completely pinned, and for smalfethis size is even

d'Ortonaet al. sends a fraction of particles that is propor- reduced. In the case of the old method, bubbles as large aRsize
tional to the inner product of the color gradient and the lat-=1.59 could be pinned and all bubbles smaller tiRx11.16 are

tice direction in question. We changed the distributions ofaiways pinned.
d’Ortonaet al. slightly in order to make certain that no nega-
tive populations of either type of particles will occur. We use
the following redistribution:

FIG. 4. Comparison of the old method to the improved method.
The units are the same as in Fig.Req nubbielS the effective radius

pinned bubbles tent to move in bursts, i.e., they remain es-
sentially pinned for a while, then jump to the next lattice site

R R and so on. We suspect that, because of the ability for the two
Ri= R+BN{ +,8(R+B)2Ni(e°3(N,O)cos¢, (9 fluids to mix, the largest leak-back-capacity is eventually
filled and the bubble is allowed to move to the next site.
Comparing Fig. 4 to Fig. 1, we see that the improved
B = B N - B RB NEI(N,0)cose (100  method clearly reduces the problem of lattice pinning. We
" R+B ' "(R+B)?" ’ ’ suspect that the ability to form symmetrical bubbles at

smaller sizes and the slightly larger bubble radius are respon-
sible for this effect. The lattice pinning is not completely

g ) oo . removed whenB=1.0, but its effects are reduced. Other ad-
a?e% blue partlcles at a given an-,_ .|s.def|n(.ad .by Eq(?), vantages of the new method include the ability to remove
N; (N, 0) is the zero-velocity equilibrium distributiorg is history dependent contact anglé&3] and the relative

a parameter giving the tendency of the two fluids to separatgymoothness of the interfaces. Significantly, the improved

and ¢ is the angle between the color gradiérand the di-  nethod is much easier to implement than the old method.
rection ¢;. Without the last term in the equations, red and

blue particles would be distributed according to their num- V. DIFFUSIVE PROPERTIES
bers and there would be no tendency for the fluids to sepa-
rate. 8 can take any value between 0 and 1. Adncreases
the interface is less diffuse, i.eB, sets the surface width. If

B>1 there can be negative populations of particles, but it one-dimensional diffusive D1Q2 mod@s), with zero ve-

these are kept small the stability is maintained. . ; o
We test the model in the case of small bubbles as in Seé(lc'ty everywhere. In this model there are two velociligs

o g ik trib it (ed
IIl. We initialize the lattice with fluid that has a constant flow ~* andc,=-x. The equilibrium distributions ar#};""(x, t) .
velocity u=5.4x 103%. Any velocity can be chosen for =p(x,t)/2. If the system starts from the case of zero velocity

qualitatively similar behavior. We use a two-dimensional €V€yWhere and constant densitythenN;(x,t)=p/2 for all

system of size 3& 30 with fluid densityN=10, and initialize X @ndt. Then Eqs(9) and(10) can be written as

a small red bubble in the center of this space. The size of this R (x ) = R(x,t)/2 + sgr(f)(- 1) "286(x,)[1 - &(x,t)],

bubble is adjustable. In Fig. 4 we plot the average velocity of

the red bubble averaged over 10 000 time steps after the i=1,2, (12)

steady state has been reached as a function of bubble mass,

for the improved method whe=1.0, 0.9, 0.8. We plot the _ _ _ _ i1 _

average velocity of the red bubble averaged over 10 000 time Bi(x,0) =BOD/2 = sgif) (= 1 B(x, DL - .0,

steps after the steady state has been reached. =12 (12)
For 8=1.0 only bubbles smaller than size 18 are com- Y

pletely pinned. As the bubble size increases the velocity apwhere ¢ is the fraction of red particles, i.e.,¢

proaches the surrounding fluid velocity. As the valuefof =R/p, sgr(f)=1 if f points to thex direction, sgif)=-1 if f

decreases the pinning threshold also decreases. Small upeints to x direction, and sgffi)=0 if f=0.

Here R, and B; are the numbers of red and blue particles
going to directionc;, R and B are the total numbers of red

In this section we study the diffusive properties of the
model, more specifically how spontaneous phase separation
ftakes place. We first consider an extremely simplified case of
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10 d¢ R+w R
d¢_Rte R_2 (14)
dx N N N
3 If these two equations are combined one finds
©
2 d¢ _4p
5 —=—¢p(l-¢). 15
g ax N H(1-¢) (15
This equation for the shape of the fully developed interfacial
curve is the same for all models using the improved color
‘ , gradient methodi.e., Eqgs.(9) and (10)]; only the prefactor
. 60 80 100 K(B) changes. The solution to E(L5) gives
celBx
FIG. 5. One-dimensional diffusive multiphase LB model. We P(X) = B (16)
plot the fully developed stable interfacial curves as a functiog.of 1+Ce‘P

For 8= 1.0 the system size is 100 lattice sites; Bx 0.5 we use a . . . .
larger system size of 500 lattice sites in order to obtain fully devel-If one further knows the midpoint of the interface, i.e., where

oped interfacial curves. Periodic boundary conditions are used. Thg’(XZXO)ZO'S' the full form of the equation is known,
smooth curves show the theoretical prediction of &). KB (x=xp)

- - - - . ¢ = —1 " eK(B)(X_XO) . (17)

It is easy to see that if there is no color gradient, ife.,

=0, then the distribution®; and B; do not change. This In Fig. 5 we plot these curves versus the measured interfacial
means thaR(x,t)=R andB(x,t)=B is an equilibrium dis- curves and can see an excellent agreement. We also see why
tribution. However this distribution is unstable. Even the g sets the length scale. On large scabesx,>1/K(8)] one
smallest change from it will lead to spontaneous phase sepaiways sees red particles separated from blue particles. At the
ration. It is also relatively straightforward to see that anyinterfacial regions the red and the blue particles mix. The
linear ramp, i.e.R(x,t)=a+b(x—X%y) andB(x,t)=N-R(x,t) width of the interfacial regions is given ¢ ™(g). The in-
is an equilibrium distribution. This is because at each nodeerfacial length scale is therefore inversely proportiongsto
within the ramp the number of blue and red particles is confor =1 and the one-dimensional mod&l=10,4=0.5 we
served. This distribution is even stable to small deviationsobtain a length scale of 10, which is consistent with Fig. 5.
i.e., deviations that do not change the direction of the color We next investigate the one-dimensional projection of the
gradient at any of the nodes. However in the case of a lineaull four-dimensional FCHC LB model presented in the first
ramp there is a net flow of red particles towards the excess afection. We sef=0, but we also show, just as in R¢22],
red particles and a net flow of blue particles towards thehat this parameter has only a weak effect on the interfacial
excess of blue particles. Hence this distribution cannot stagurve. The amount of particles traveling from right to It
stable in a closed system with no sources or sinks of blue ang+ to right) is 1—18|\|+43AGN:%N, The amount of total change
red particles. To find the stable equilibrium distribution of -5,,sed by the color gradient ﬁ%%ie(l/\““i)]/ﬁ’\"ﬁ(l‘@

red and blue particles in the case of a closed system, WQ[(1+€§)/18],8N¢(1—¢>). If we combine these we find
initialize a lattice of 100 sites with a linear ranmfR(x,t)

=5.0+2.@x-50) andB(x,t)=10.0-R(x,t) and used periodic R 1+2 R+tw 1+12
boundary conditions. The results as a function @fare s 18 BN¢(1—¢)=T— 18 BNg(1 - ¢)
shown in Fig. 5.

The resulting fully developed interfacial curves may be (18
quantitatively predicted. Because there are no currents of e;%ind therefore
ther blue or red particles in steady state, at each site the
number of red particles leaving the site to the left-hand side d¢ =
must equal the number of red particles arriving from the ax - 31 TV2B(1 - ). (19
left-hand side. Consider a situation where the color gradient
points towards the right-hand side. Let the amount of redhereforeK(ﬁ):§(1+\5),8.
particles on the site on the left-hand sidefand on the site In Fig. 6 we show the fully developed interfacial curve for
on the right-hand side bR+w. Then the one-dimensional projection of the full three-dimensional

LB model with the improved color gradient scheme. The
RI2 +Bh(1— ) = (R+ w)/2 - BA(L - ), interfacial curves for differenB are collapsed onto a single

curve by rescaling thex axis with 8. The curve going
through the data points is given by Ed6) with K(8) given
by (19).

©=4BH1 ). (13 In Fig. 7 we show how the interfacial curve changes as a
function of A. Here we choosg3=1. We see little or no
The first derivative of$ can be approximated as change as expected.
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. FlG'. 6. The_ful!y developed mte_rfamal_ curve for the one- FIG. 8. The interfacial curve for two-dimensional bubble. We
dimensional projection of the three-dimensional LB method. The . . "
curves with differenis are collapsed into a single curve by rescal- plot the amount of the red fluid as a function of position. We have
ing thex axis bisected the bubble in four different directions. The solid line is the

theoretical curve given by Eq§l7) and(19).

We next study the method in a two-dimensional systemgne of the sites becomes slightly less red. This small error
We initialized a red bubble of radius 20 in a gystem szs'zecauses the color gradient close to it to point away as seen in
100x100, i.e., we filled sites for whickix-=50°+(y=50°  Fig. 9 and slowly but certainly this small deviation grows
< 202 with red fluid and the rest of the sites with blue fluid at |arger_ When it becomes |arge enough it Spreads to the neigh-
rest. After 100 timesteps a fully developed interfacial curveporing sites and at one point there is a reversal of the direc-
is reached. The interface is fully symmetric and the curve haggn of the color gradient at one of the sitéfeom positive
the same predicted _shape in all direc_tions. Th_e in_terfaciaj(_direction to negativex-direction. This leads to a nucle-
curve for this bubble in the case 1.0 is shown in Fig. 8. ation of a quasi-one-dimensional red bubble. At the points of
dimensional system of size 180100 100 obtaining a fully  right-hand side try to develop towards the fully developed

developed interfacial curve in all directions. interfacial curve, but because there is not enough space and
the system is effectively one-dimensional, the color is
V1. SPONTANEOUS PHASE SEPARATION trapped into small red and blue islands. The change in the

interfacial curve is largest at these gradient reversal sites. If

To further understand the onset of the spontaneous phaseere would be no reversals the system would always evolve
separation, we study in this section a case where small ndowards the fully developed interfacial curve.
merical errors lead to a rapid phase separation. We tested the Once these red and blue islands have formed the relative
model in a three-dimensional system with periodic boundaryifferences between the red and blue content within the is-
conditions and system size of 3B 3 lattice sites, with a land continues to decrease, i.e., within the isldgimdthe y
linear ramp inx direction. Figure 9 shows the results sche-andz directions the behavior of the system is diffuse. There
matically, and Fig. 10 shows the phase separation explicitlyare two reasons for this: first, the color gradient is largest in

We started the system as in the case of one-dimensional cagte x direction; and second, there is no space for the interfa-
with a linear ramp, i.e.N=10R(x,t=0)=5.0+2.Gx-15

andB=N-R. —o—@- —o—-@- - —@-

In the early stages the system behaves exactly as the ont

dimensional system but at one point due to round-off errorse— @—@)— -0 @ -0 @
10 —o@ o0 X i
o A=0.0
g A=107° t L b
b < A=107* B FIG. 9. Early stages of spontaneous phase separation in quasi-
s 6l © A=1073 & one-dimensional system, at timgs<t,<t;. We show the relative
g + A5 *103 & amounts of red particles as the sizes of the circles and the color
g 4% & ] gradients with an arrow. The system has periodic boundary condi-
< e tions in (t;) direction. In the beginningall the color gradients are
otk pointing straight to the right-hand side. At some pdinjone of the
sites gets a little less red particles than it's supposed to and this
0 —mmmmmamnat turns the color gradients away from that row. The column that con-
0 20 40 60 80 100

M tained the original site is affected the strongest. This leads at one
point to a reversal of the direction of the color gradiéni. Even-
FIG. 7. Surface tension included. As theparameter changes tually this induces the reversal in the whole column and spontane-
the surface width remains the same. We psel. ous phase separation takes place.
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10 1 1 1 10
N
<R> 5 — 5 5 5 5
e
% 10 20 30 0 20 30 10 20 30 0 20 30 D 10 20 30
1 1 1 1 10,
R 5\/7//\ 5\FJ 5\/%\ 5 5
10 20 30 0 20 30 10 20 30 0 20 30 b 10 20 0
X - position
(a) (b) (c) d (e)

FIG. 10. Steps of spontaneous phase separation in quasi-one-dimensional system. The system>s&& 3. &nh the bottom we plot
the amount of red as a function rffor all three values of=1, 2, 3. On the top we plot the amount of these combined as a functien of
The progress in time is shown from left-hand to right-hand sides. These distributions are taken atti®ds=12, t=14, t=25, andt
=35. At first two of the rowsgy=1) gets separated from the thifa). Then there is a color gradient reversal inside a (bwThis eventually
leads to color gradient reversals for theolumns(c). Finally there is spontaneuous phase separdtipand (e).

cial curve to develop in the and z directions. The color into the equation the system starts trying to minimize the
gradient is largest in the direction because that is its origi- surface area between red and blue fluids and the separation
nal direction. Even after the color gradient obtainandz  continues. The separation always happens regardle8s®f
components due to the numerical errors this direction remerely sets the length scale of the interface.

mains dominant. This is because the increase in the color

gradient in they and z directions is limited by the system

size. The antidiffuse behavidii.e., separation of phases VIl. CONCLUSIONS

takes place in the direction of the color gradient. In the di- We have reported and quantified a problem of lattice pin-
rections perpendicular to the color gradient there is ng P q P P

antidiffuse tendency and the two phases mix. The blue an'c]ing associated With the LB COIC.” gradient me_thod. These
red particles are therefore mixed in these islands. problems can be fixed by changing the recoloring step and

We have shown that if there is a color gradient present i”ﬁ:m'nga\évige{o"}ﬁrfffﬁzhj?ﬁiﬂﬂfﬁg cr)iCeOk\)/[/Iirt]r? tsrtgpié?-
the system it tries to evolve towards a fully developed inter- roved method thepdistribution of red and inJe articles is
facial curve. This development separates the two fluids. The P

development starts from the places with color gradient inver-Syrnrnetrlc around the color gradient. We have studied inter-

sions, i.e., places whef82¢| attains its maxima, and propa- facial and phase separation properties of the improved

gates outwards. This behavior is similar to the early stages omethOd and have shown _that 'ghe_method 3|gn|f|c_antly dimnin-
spinoidal decomposition, see, e.g., REE]. In fact it should Ishes the problem of lattice pinning. The analytical expres-

be possible to measure the antidiffusivity as a functioggof sion for the shape of the interfacial curve is found, and the

by measuring how the interfacial curve changes. If there ié)arameter,B Is shown to act as a measure for the inverse

no space for one colored fluid to go this process stops. In Onlgterfaual width.

dimension with zero velocity no gradient inversion is revers-

ible and a!l fluid pecomes stuck into these small islands. In ACKNOWLEDGMENT

two and higher dimensions the process continues as long as
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