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We consider a classical hydrogen atom in a linearly polarized electric field of slowly changing frequency. In
the process of evolution, the system passes through resonances between the driving frequency and the Keple-
rian frequency of the electron’s motion. At a resonance, a capture into the resonance can occur. After the
capture, the system evolves in such a way that the resonance condition is approximately preserved, and
parameters of the electron’s orbit are varying. We study this phenomenon in the case of 2:1 resonance and
show that the capture results in growth of the eccentricity of the electron’s orbit. It strongly depends on the
initial conditions, whether the capture occurs or not. Hence, the capture can be considered as a probabilistic
phenomenon. The capture probability is defined and calculated.
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I. INTRODUCTION

Dynamics of highly excitedsRydbergd atoms in micro-
wave fields has been a subject of extensive research during
the past thirty years. After experiments of Bayfield and Koch
f1g and theoretical work of Leopold and Percivalf2g, it was
realized that certain essential properties of the dynamics of
Rydberg hydrogen atoms can be described in the frames of
classical approach. In more recent studies, methods of clas-
sical mechanics yielded surprisingly accurate results for vari-
ous problems of the hydrogen atom in weak, slowly varying
external fieldssseef3g for referencesd. In f3g, it was shown
that this accuracy is due to the fact that in the perturbative
limit certain quantum expectation values obey the same
equations as the corresponding classical values averaged
over the Kepler motion.

One of the major areas of application of classical mechan-
ics is the chaotic ionization of Rydberg atoms. At large
enough amplitude of the external field the Chirikov reso-
nance overlap criterionf4g is met, and the system can diffuse
in the phase space until the atom is ionized. This way of
ionization was thoroughly studied for various configurations
and polarizations of external fields. See, for example, ioniza-
tion in linearly polarizedsLPd microwave fieldf5,6g, in cir-
cularly polarizedsCPd field f7g and references therein, in
elliptically polarized sEPd field f8g, in CP microwave and
magnetic fieldf9g.

Another classical idea in the field is to control the Keple-
rian motion of the electron using its resonant interaction with
a low-amplitude wave of slowly changing frequency. Dy-
namical problems of this kind were studied inf10g for a 1D
model andf11g for a 3D model. In particular, in the latter
work an hydrogen atom in a linearly polarized electric field
of slowly decreasing frequency was considered. It was
shown that at a passage through 2:1 resonancesi.e., when the
driving frequency is twice as large as the Keplerian fre-
quencyd the system with initially zero eccentricity of the
electron’s orbit is captured into the resonance. In the cap-

tured state, the electron’s Keplerian frequency varies in such
a way that the resonant condition is approximately satisfied.
In this motion the orbit’s eccentricity grows, which may re-
sult in ionization of the atom.

In the present work we also consider a 3D hydrogen atom
in a linearly polarized electrostatic field of slowly changing
frequency. We study behaviour of the system near 2:1 reso-
nance using methods of the theory of resonant phenomena,
developed inf12–14g ssee alsof15gd. These methods were
previously used in studies of various physical problems in-
cluding surfatron acceleration of charged particles in mag-
netic field and electromagnetic wavef16g, slowly perturbed
billiards f17,18g, and classical dynamics in a molecular hy-
drogen ionf19g. Recently they were also applied to study
dynamics of a classical 2D hydrogen atom in a CP micro-
wave field of slowly changing frequencyf20g.

In the present paper, we show that capture into the reso-
nance necessarily occurs not only in the case of zero initial
eccentricity but also if the initial eccentricity is not zero but
small enough. Moreover, at larger values of the initial eccen-
tricity the capture is also possible. Following the general
approach, capture into the resonance in this latter case can be
considered as a probabilistic phenomenon. We define and
evaluate its probability. The obtained results can be used to
broaden the applicability of the resonant control methods for
Rydberg atoms.

The paper is organized as follows. In Sec. II, we use stan-
dard techniques of classical celestial mechanics and the
theory of resonant phenomena to reduce the equations of
motion near the resonance to the standard form. Like inf11g,
we consider the case of small initial eccentricity. In Sec. III,
we apply relevant results off12g and find the region of so-
called “automatic capture” into the resonance at small eccen-
tricities and calculate probability of capture at larger values
of initial eccentricity. The capture significantly changes the
eccentricity of the electron’s orbit and may lead to ioniza-
tion. In Conclusions, we summarize the results.

II. EQUATIONS OF MOTION NEAR THE 2:1 RESONANCE

We study dynamics of a classical electron in a hydrogen
atom perturbed by a harmonically oscillating electric field of*Electronic address: aneishta@iki.rssi.ru, valex@iki.rssi.ru
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small amplitudem, linearly polarized along theZ axis. This
system is described with Hamiltonian

H = H0 + Zm cosC. s1d

Here H0 is the unperturbed Hamiltonian of motion in the
Coulomb field andC is the perturbation phase. Introduce the
perturbation frequencyv=dC /dt. We assume thatv
=vs«td, 0,«!1, i.e., that this frequency slowly changes
with time. For brevity, we put the electron mass and charge
to 1, and use dimensionless variables.

The unperturbed trajectory of the electron is an ellipse
with eccentricitye sassumed smalld, semimajor axisa, and
inclination i. It is a well-known fact from celestial mechanics
that the so-called Delaunay elementsL ,G,H , l ,g,h provide
a set of canonical variables for the system under consider-
ation ssee, e.g.f21gd. The Delaunay elements can be defined
as

L = Îa, G = Îas1 − e2d, H = Îas1 − e2d cosi . s2d

l is the mean anomaly,g is the argument of the periapsis, and
h is the longitude of the ascending nodessee Fig. 1d.

In these variables, Hamiltonians1d takes the formssee
f11gd

H = H0 + mH1, H0 = −
1

2L2 ,

H1 = sin io
k=1

` Fak + bk

4
fsinskl + g − Cd + sinskl + g + Cdg

+
bk − ak

4
fsinskl − g − Cd + sinskl − g + CdgG , s3d

where

ak =
2a

k
J k8sked, bk =

2aÎ1 − e2

ke
Jksked. s4d

Here Jks·d is the Bessel function of integer orderk, and
J k8s·d is its derivative.

In order to avoid possible singularities ate=0, we make a
canonical transformation of variablessL ,G,H ; l ,g,hd
° sP3,P2,P1;Q3,Q2,Q1d defined with generating function
P3sl +g+hd+P2sg+hd+P3h. The new canonical variables
fcalled Poincaré elements of the first kindg are expressed in
terms of the old ones as follows:

P3 = L, Q3 = l + g + h,

P2 = G − L, Q2 = g + h,

P1 = H − G, Q1 = h. s5d

As the perturbation frequency slowly varies with time, the
system passes through resonances with the unperturbed

Keplerian frequencyl̇. Near a resonance, certain terms in
expressions3d for H1 are changing very slowly. Consider a
passage through the 2:1 resonance. In this case, after averag-
ing over fast oscillating terms, we obtain the Hamiltonian
describing the dynamics near the resonance:

H = −
1

2P3
2 + masP2,P3dsin i sins2Q3 − Q2 − Q1 − Cd,

s6d

where we introduced the notationasP2,P3d=sa2+b2d /4. In
s6d, we have used that at small values of eccentricitya2
<b2<ea/2.

The resonance is defined by 2Q̇3=vstd, t=«t. It follows

from the unperturbed Hamiltonians3d that Q̇3=1/P3
3. Hence,

denoting the value ofP3 at the resonance asPr, we find

Pr = S 2

vstd
D1/3

. s7d

Our next step is to introduce the resonant phase.
We do this with the canonical transformation
sP3,P2,P1;Q3,Q2,Q1d° sJ3,J2,J1;g3,g2,g1d defined with
the generating function

W= J3s2Q3 − Q2 − Q1 − Cd + J2Q2 + J1Q1. s8d

For the new canonical variables we have

J3 = P3/2, g3 = 2Q3 − Q2 − Q1 − C,

J2 = P2 + P3/2, g2 = Q2,

J1 = P1 + P3/2, g1 = Q1. s9d

The Hamiltonian function takes the form

H = −
1

8J3
2 + masP2,P3dsin i sing3 − vstdJ3. s10d

Near the resonant valueP3=Pr we can expand this expres-
sion into series. With the accuracy of orderOsuP3−Pru3d we
obtain the following Hamiltonian:

FIG. 1. The Keplerian ellipse is shown with the bold line. The
rest system of coordinates issXYZd; the z axis is orthogonal to the
plane of the orbit. The periapsis and the ascending node are denoted
with P andN accordingly.
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F = −
3

2

sP3 − Prd2

Pr
4 + mãsJ2,P3dsin i sing3, s11d

where canonically conjugated variables areP3/2 andg3 and
ã is function a expressed viaJ2, P3. Introduce notationsP
=P3, w=g3+3p /2, J=J2. The Hamiltonians11d does not
contain g2, henceJ is an integral of the problem. Another
integral isJ1, corresponding to the fact that Delaunay ele-
mentH is an integral of the original systems3d. Coefficient
sin i in s11d should be taken atP=Pr. We have

usin i uP=Pr
=Î1 −

H2

sJ + Pr/2d2 . s12d

The initial value of eccentricity is small, though not nec-
essarily zero. Froms4d, we have

ãsJ,Pd <
ae

4
=

1

4
PÎSP

2
− JDSJ +

3

2
PD . s13d

Small eccentricity implies thatP/2−J!1. As the system
evolves near the resonance, small variations ofP are essen-
tial when calculating the termsP/2−Jd in s13d and less im-
portant in the other terms. Hence, in these latter terms, we
can putP=Pr. We write

J +
3

2
P < 2P,

where we have used thatP/2<J. Thus we obtain

ãsJ,Pd <
Î2

4
Pr

3/2ÎP

2
− J s14d

and the following expression for the Hamiltonian:

F < F1 = −
3

2

sP − Prd2

Pr
4

+ mÎ1 −
H2

sJ + Pr/2d2

Î2

4
Pr

3/2ÎP

2
− J cosw. s15d

Introduce so-called Poincaré elements of the second kind:

x = ÎP − 2J cosw, y = ÎP − 2J sinw. s16d

The transformationsP/2 ,wd° sx,yd is canonical with gen-
erating functionW1=sy2/2dcotw−Jw. Change the sign ofF1

and, to preserve the canonical form, the sign ofx. Thus, we
obtain the Hamiltonian in the form

F1 =
3

2

sx2 + y2d2

Pr
4 − 3

x2 + y2

Pr
4 sPr − 2Jd + mAsH,J,Prdx,

s17d

where

AsH,J,Prd =
Pr

3/2

4
Î1 −

H2

sJ + Pr/2d2 .

Note that if the eccentricity is small, thenPr −2J!1, and
hence the slow variation ofPr is essential only in the second
term in s17d. In the other terms,Pr can be assumed to be

constant, say,Pr =Pr0, wherePr0 is the value ofPr at t=0.
Now, we renormalize the HamiltonianF1→ 2

3Pr0
4 F1 to trans-

form it to the following standard form studied inf12g:

F1 = sx2 + y2d2 − lsx2 + y2d + m̃x, s18d

with l=2sPr −2Jd andm̃=mAsH ,J,Pr0d. We describe the dy-
namics defined by Hamiltonians18d in Sec. III.

III. CAPTURE INTO THE RESONANCE AT SMALL
VALUES OF ECCENTRICITY

Dynamics in the system with Hamiltonian functions18d
was studied in details inf12g. In this section we put forward
the results off12g relevant to our study.

In s18d m̃.0 is a constant parameter, andl is a slow

function of time,l̇,«. Assume thatl̇.0.
On the phase planesx,yd, the valuesÎP−2J and w fsee

s16dg are polar coordinates. Note that eccentricity in the
original problem is proportional toÎP−2J.

Parameterl is changing slowly, and as the first step we
consider the problem at fixed values ofl. Phase portraits at
different values ofl are presented in Figs. 2 and 3. Atl
,l* = 3

2m̃2/3 fFig. 2sadg there is one elliptic stable point A on

FIG. 2. Phase portraits of the system at fixed values ofl; m̃
=0.01.sad l=0.05,l* ; sbd l=0.069624<l* .
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the portrait. Atl.l* sFig. 3d there are two elliptic stable
points A and B, and one saddle point C. Separatricesl1,l2
divide the phase plane into three regionsG1,G12,G2. In Fig.
2sbd, the portrait atl=l* is shown.

The coordinates of point C arex=xc, y=0, where xc
=xcsld is the largest root of equation

]F1sx,0,ld
]x

= 4x3 − 2lx + m̃ = 0. s19d

At lùl* , introduceFc=Fcsld=F1sxc,0 ,ld and F̃sx,y,ld
=Fsx,y,ld−Fcsld. In G12 we haveF̃,0, in G1 and G2 F̃
.0, on the separatricesF̃=0.

As parameterl slowly grows with time,l̇,«, curvesl1,

l2 defined withF̃=0 slowly move on the phase plane. On
time intervals of order«−1 their position on the phase plane
essentially changes, together with the areas ofG12, G2. On
the other hand, area surrounded by a closed phase trajectory
at a frozen value ofl is an approximate integralsadiabatic
invariantd of the system with slowly varying parameterl.
Therefore, a phase point can crossl1, l2 leaving one of the
regionsGi and entering another region.

Denote withfxstd ,ystdg a phase point moving according to
s18d. Without loss of generality assume thatl=l* at t=0.

The initial point (xs0d ,ys0d) can be either insidel1 fF̃0

=F̃(xs0d ,ys0d ,l*),0g or out of l1 fF̃0.0g. The following
assertion is valid. All points lying insidel1 at l=l* except,

maybe, of those belonging to a narrow strip −k1«6/5ø F̃0
,0, wherek1 is a positive constant, stay inG12 at least
during time intervals of order«−1.

This result is due to the fact that the area ofG12 mono-
tonically grows with timefsee belows22d and s23dg, and
conservation of the adiabatic invariant makes a phase point
go deeper and deeper into this region. A point captured in
G12 rotates around point A=sxA,0d, wherexA is the smallest
root of Eq.s19d. As time grows,uxAu also grows and point A
on the portrait slowly moves alongx axis in the negative
direction. Therefore, the motion is a composition of two
components: fast rotation along a banana-shaped curve sur-

rounding A and slow drift alongx axis. The area surrounded
by each banana-shaped turn is approximately the same and
equals the areaSsl*d surrounded by the trajectory passing
through (xs0d ,ys0d) at l=l* . Hence, the average distance
between the phase point and the origin slowly grows, corre-
sponding to the eccentricity growth in the original problem.

In f11g, it was shown that a point having zero initial ec-
centricity necessarily undergoes the eccentricity growth. The
formulated result implies that this is also valid for all the
points initially fi.e., atl=l*g inside l1, except, maybe, for a
narrow strip close tol1. A typical linear size of this domain is
of order m̃1/3. In f22g this phenomenon was described in the
problem of motion of Saturn’s satellites and called “auto-
matic entry into libration”ssee alsof23gd.

Consider now the case when the point(xs0d ,ys0d) is out-

side l1: F̃0.0. With time the area insidel1 grows, and at a
certain moment the phase trajectory crossesl1. In the adia-
batic approximation the area surrounded by the phase trajec-
tory is constant:Ssld=Ssl*d. Hence, in this approximation
the time moment of crossingl1 can be found from equation
S1sLd=Ssl*d. HereS1sld is the area insidel1 as a function
of l andL is a value of the parameter at this moment. After
crossing, there are two possibilities:sid the phase point can
continue its motion inG12 during a time interval of order at
least«−1 sthis corresponds to capture into the resonance and
growth of the eccentricityd; sii d without making a full turn
insideG12 the phase point can crossl2 and continue its mo-
tion in G2 sthis corresponds to passage through the resonance
without captured. The area ofG2 also monotonically grows
with time fsee belows22d and s23dg, hence such a point
cannot crossl2 once more and return toG12.

It is shown inf12g that the scenario of motion after cross-
ing l1 strongly depends on initial conditions(xs0d ,ys0d): a
small, of order«, variation of initial conditions can result in
qualitatively different evolution. If the initial conditions are
defined with a final accuracyd, «!d!1, it is impossible to
predict a priori the scenario of evolution. Therefore, it is
reasonable to consider capture intoG12 or G2 as random
events and introduce their probabilities.

Following f24g, consider a circle of small radiusd with
the center at the initial pointM0. Then the probability of
capture intoG12 is defined as

P = lim
d→0

lim
«→0

S12

SM0

d , s20d

whereSM0

d is the measure of the circle of radiusd andS12 is
the measure of the set of points inside this circle that are
captured finally intoG12.

Let l=L be the parameter value at the moment of cross-
ing l1 in the adiabatic approximation. The following formula
for probability P is valid:

P =
I1 − I2

I1
, whereI1sld = −R

l1

]F̃
]l

dt,

I2sld = −R
l2

]F̃
]l

dt, s21d

and the integralsI1, I2 are calculated atl=L. Calculating the
integrals, one findsf12g

FIG. 3. Phase portrait of the system atl=0.1.l* ; m̃=0.01.
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I1sLd =
1

2
s2p − Qd, I2 =

Q

2
, Q = arccosS L

2xc
2 − 2D .

s22d

Here Q is the angle between the tangencies tol1 at C, 0
øQ,p. Note that

dS2

dl
= I2,

dS12

dl
= I1 − I2. s23d

Geometrically, formulas21d can be interpreted as follows. In
a Hamiltonian system, phase volume is invariant. As param-
eterl changes byDl, a phase volumeDV12 enters the region
G12. At the same time, a volumeDV2 leaves this region and
entersG2. The relative measure of points captured inG12 is
sDV12−DV2d /DV2. The integralI1 in s21d is the flow of the
phase volume acrossl1, and I2 is the flow acrossl2. There-
fore, P gives the relative measure of points captured into
G12.

Note that, rigorously speaking, there also exists a set of
initial conditions that should be excluded from consideration.
Phase trajectories with initial conditions in this set pass very
close to saddle point C, and the asymptotic results off12g
cannot be applied to them. However, this exclusive set is
small: it can be shown that its relative measure tends to zero
faster than any positive power of«.

In Fig. 4sad, capture into the resonance is shown. First, the
phase point rotates around the origin in regionG1, then it
crossesl1, enters regionG12 and continues its motion in this
region. In the course of this motion, the average distance
from the origin grows, corresponding to the growth of the
eccentricity. The motion of captured phase points is regular

in the sense that two initially close captured phase points
stay close to each other in the process of further evolution. In
Fig. 4sbd, all the parameter values are the same as in Fig.
4sad, but initial conditions are slightly different. In this case,
after crossingl1, the phase point crossesl2 and gets into
region G2. This is a passage through the resonance without
capture. Variation of eccentricity in this case is due to tran-
sition from G1 into G2. For numerics, we usedl=l0+«t.

We have tested formulas21d for probability of capture
numerically. We considered a square of size 100«3100« on
sx,yd plane centered at the pointsx̄0, ȳ0d where the formula is
tested, and took 100 initial points for the system with Hamil-
tonian s18d in this square. The numerical value of capture
probability at the central pointPnum is the ratio of captured
trajectories to the total number of trajectories. The results of
numerical test show considerably good agreement with the
formula. A part of these results form̃=0.001,«=0.0001 are
presented in Table I.

At the end of this section, we comment on the parameters’
range appropriate for the methods used. First of all, it must
be m!1 and «!1, otherwise it is not possible to use the

FIG. 4. Passage through the resonance onsx,yd plane and corresponding variation of eccentricitysbottom plotsd; m̃=0.001;«=0.0001.
sad Passage with capture into the resonance;sbd passage without capture; initial conditions in the casessad and sbd are different.

TABLE I. Numerical value of capture probabilityPnum vs the-
oretical valuePth.

x̄0 ȳ0 Pnum Pth

0.255 0.105 0.14 0.146

0.225 0.115 0.12 0.130

0.275 0.085 0.10 0.120

0.295 0.115 0.09 0.101

0.305 0.125 0.11 0.096
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perturbation theory methods. One can also give some addi-
tional restrictions. Consider Hamiltonians18d. A typical scale
on the corresponding phase portrait can be found using the
condition that the first and the last terms in the Hamiltonian
are of the same order. Thus, we find that typical values ofx
andy on the portrait are of order ofm1/3. Hence we find that

typical frequency of motion on this portrait isVtyp, ḟ
,m2/3. The adiabaticity conditionsi.e., that variation of the
driving frequency during a period of motion is much smaller
than the frequency of motiond can be written as«!Vtyp

2 or
«!m4/3. Therefore, of the two small parameters,« should
always be the smallest. Also, it is necessary for application
of the time averaging that the driving frequency is much
larger than the typical frequency of motion on the phase
portrait: v@Vtyp. Thus, we obtainm!v3/2. Essentially, this
condition provides possibility of using the isolated resonance
approximation.

IV. CONCLUSIONS

Summarizing the results, we can say the following.sid
Capture into the resonance in the considered problem results
in growth of the eccentricity of the electron’s orbit.sii d On
the phase plane around the originse=0d, there exists a region
of size of orderm̃1/3 such that all phase trajectories with
initial conditions si.e., at l=l*d in this region undergo a
capture into the resonance with necessitys“automatic cap-
ture”d. siii d If initial eccentricity is larger, and the initial point
on the phase plane is out of the region mentioned above,
there is a finite probability that the phase trajectory will be
captured into the resonance. This probability is given by
s21d.
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