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Capture into resonance in dynamics of a classical hydrogen atom in an oscillating electric field
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We consider a classical hydrogen atom in a linearly polarized electric field of slowly changing frequency. In
the process of evolution, the system passes through resonances between the driving frequency and the Keple-
rian frequency of the electron’s motion. At a resonance, a capture into the resonance can occur. After the
capture, the system evolves in such a way that the resonance condition is approximately preserved, and
parameters of the electron’s orbit are varying. We study this phenomenon in the case of 2:1 resonance and
show that the capture results in growth of the eccentricity of the electron’s orbit. It strongly depends on the
initial conditions, whether the capture occurs or not. Hence, the capture can be considered as a probabilistic
phenomenon. The capture probability is defined and calculated.
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I. INTRODUCTION tured state, the electron’s Keplerian frequency varies in such

) ) ) ) ) a way that the resonant condition is approximately satisfied.
Dynamics of highly excitedRydberg atoms in micro- | this motion the orbit's eccentricity grows, which may re-
wave fields has been a subject of extensive research during,it in ionization of the atom.

the past thirty years. After experiments of Bayfield and Koch | the present work we also consider a 3D hydrogen atom

[1] and theoretical work of Leopold and PerciVal, it was i 4 jinearly polarized electrostatic field of slowly changing
realized that certain essential properties of t_he dynamics qpequency. We study behaviour of the system near 2:1 reso-
Rydberg hydrogen atoms can be described in the frames @fance using methods of the theory of resonant phenomena,

classical approach. In more recent studies, methods of Claa'eveloped in12-14 (see alsd15]). These methods were
sical mechanics yielded surprisingly accurate results for Varipreviously used in studies of various physical problems in-

ous problems of the hydrogen atom in weak, slowly varyinge|yding surfatron acceleration of charged particles in mag-
external fields(see[3] for referencep In [3], it was shown  petic field and electromagnetic waj#6], slowly perturbed
t_ha_t this accuracy is due to the_fact that in the perturbativeyjjiards [17,18, and classical dynamics in a molecular hy-
limit certain quantum expectation valu_es obey the Sam@jrogen ion[19]. Recently they were also applied to study
equations as the c_orrespondlng classical values averag@t}namicS of a classical 2D hydrogen atom in a CP micro-
over the Kepler motion. o _ wave field of slowly changing frequend¢g0].

_ O_ne of the major areas _of application of classical mechan- |, the present paper, we show that capture into the reso-
ics is the chaotic ionization of Rydberg atoms. At largenance necessarily occurs not only in the case of zero initial
enough amplitude of the external field the Chirikov reso-gccentricity but also if the initial eccentricity is not zero but
nance overlap criteriop#] is met, and the system can diffuse gma|| enough. Moreover, at larger values of the initial eccen-
in the phase space until the atom is ionized. This way Oficity the capture is also possible. Following the general
ionization was thoroughly studied for various configurations,pnroach, capture into the resonance in this latter case can be
and polarizations of external fields. See, for example, ionizaggnsidered as a probabilistic phenomenon. We define and
tion in linearly polarizedLP) microwave field[5,6], in cir-  gyajuate its probability. The obtained results can be used to
cularly polarized(CP) field [7] and references therein, in proaden the applicability of the resonant control methods for
elliptically polarized (EP) field [8], in CP microwave and Rydberg atoms.

magnetic field9]. o The paper is organized as follows. In Sec. II, we use stan-
_ Another classical idea in the field is to control the Keple-qarq techniques of classical celestial mechanics and the
rian motion of the electron using its resonant interaction W'ththeory of resonant phenomena to reduce the equations of
a low-amplitude wave of slowly changing frequency. Dy- mqtion near the resonance to the standard form. LiKd 1h
namical problems of this kind were studied[t0] for a 1D \ye consider the case of small initial eccentricity. In Sec. III,
model and[11] for a 3D model. In particular, in the latter \ye apply relevant results ¢2.2] and find the region of so-
work an hydrogen atom in a linearly polarized electric field ¢4jeq “automatic capture” into the resonance at small eccen-
of slowly decreasing frequency was considered. It wagyicities and calculate probability of capture at larger values
shown that at a passage through 2:1 resonéreewhen the ot injtial eccentricity. The capture significantly changes the

driving frequency is twice as large as the Keplerian fre-gccentricity of the electron’s orbit and may lead to ioniza-
quency the system with initially zero eccentricity of the tion In Conclusions. we summarize the results.
electron’s orbit is captured into the resonance. In the cap-

II. EQUATIONS OF MOTION NEAR THE 2:1 RESONANCE

We study dynamics of a classical electron in a hydrogen
*Electronic address: aneishta@iki.rssi.ru, valex@iki.rssi.ru atom perturbed by a harmonically oscillating electric field of
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[S)

W4 In order to avoid possible singularitiesext 0, we make a
canonical transformation of variablegL,G,H;l,g,h)
—(P3,P,,P;1;Q3,Q,,Q;) defined with generating function
P5(1+g+h)+P,(g+h)+Psh. The new canonical variables
[called Poincaré elements of the first kjrete expressed in
terms of the old ones as follows:

P3=L, Q3=|+g+h,

PZ:G_L, Q2:g+h,

Pl:H_G, Q]_:h. (5)

FIG. 1. The Keplerian ellipse is shown with the bold line. The  As the perturbation frequency slowly varies with time, the
rest system of coordinates (XY 2); the z axis is orthogonal to the system passes through resonances with the unperturbed
plane of the orbit. The periapsis and the ascending node are deno"%éplerian frequenc;i. Near a resonance, certain terms in
with P andN accordingly. expression(3) for H, are changing very slowly. Consider a

passage through the 2:1 resonance. In this case, after averag-
small amplitudey, linearly polarized along th& axis. This  ing over fast oscillating terms, we obtain the Hamiltonian

system is described with Hamiltonian describing the dynamics near the resonance:
H=Hg+ZucosW. (1) 1 o
: I L == —— + pa(P,,Py)sini sin(2Q; - Q. — Q; - W),
Here H, is the unperturbed Hamiltonian of motion in the 2P3
Coulomb field andV is the perturbation phase. Introduce the (6)

perturbation frequencyow=dW¥/dt. We assume thatw

—w(et), 0<e<1, i.e., that this frequency slowly changes where we introduced the notatian(P,,P3;)=(a,+b,)/4. In
with time. For brevity, we put the electron mass and chargd6), we have used that at small values of eccentricify
to 1, and use dimensionless variables. ~b,~eal2.

The unperturbed trajectory of the electron is an ellipse The resonance is defined b@;:w(r), r=gt. It follows

with eccentricitye (assumed small semimajor axisa, and _— 3
inclinationi. It is a well-known fact from celestial mechanics from t'he unperturbed Hamiltonia) that Q;=1/Ps, Hence,
denoting the value oP; at the resonance &%, we find

that the so-called Delaunay elemehtss,H,l,g,h provide

a set of canonical variables for the system under consider- 2 \113
ation (see, e.g[21]). The Delaunay elements can be defined P, = (?) (7)
as W\ T,

Our next step is to introduce the resonant phase.
We do this with the canonical transformation

| is the mean anomalyg is the argument of the periapsis, and (P3,P2,P1;Q3,Q2,Q1)—(J3,J2,31; 3, ¥2, 1) defined with

L=vVa, G=\a(l-€), H=\al-€é)cosi. (2

h is the longitude of the ascending nogee Fig. 1 the generating function
In these variables, Hamiltoniafl) takes the form(see
[11]) W=J5(2Q3 = Q= Q1 = W) + 1,Q, + J1Qs. (8
1 For the new canonical variables we have
H=Ho+ uHj, Ho:‘ﬁa
J3=P3l2, y3=2Q3-Q,-Q; -V,
R i . J,=Py+ Pyf2 =Q
lesmlz [sin(kl +g—"W) + sinkl + g+ ¥)] 2=F2 v Y2=W,
k=1
by - J1=P1+P3/2, y=0Q;. 9
+ 2 Gk - g- W) +sinkl—g+ W[, (3
4 The Hamiltonian function takes the form
where 1
2a Za\’,m H=- 8_\15 + pa(Py,Ps)sini siny;— w(7)J;. (10
ac=" Tike, b= ——Jke. (@)

Near the resonant value;=P, we can expand this expres-
Here () is the Bessel function of integer ordér and  sion into series. With the accuracy of orde(|P;-P,|®) we
J () is its derivative. obtain the following Hamiltonian:
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3(P3—P)?
2 P/
where canonically conjugated variables &g?2 andy; and

@ is function @ expressed vid,, Ps. Introduce notation$
=P3, ¢=7y3+3w/2, J=J,. The Hamiltonian(11) does not
contain y,, hencelJ is an integral of the problem. Another
integral isJ;, corresponding to the fact that Delaunay ele-
mentH is an integral of the original syste). Coefficient
sini in (11) should be taken &®=P,. We have

H2
S|n||p:pr= Vl_(J+—Pr/2)2'

The initial value of eccentricity is small, though not nec-
essarily zero. Front4), we have

N

Small eccentricity implies thaP/2-J<1. As the system
evolves near the resonance, small variation® @fre essen-
tial when calculating the terrfP/2-J) in (13) and less im-

+ pa(Jy, Ps)sini sin ys, (11)

(12

ae 1
@J,P)=="=-P
4" 4

(13)

portant in the other terms. Hence, in these latter terms, we

can putP=P,. We write
J+ §P ~ 2P
2 1

where we have used thB/2=J. Thus we obtain

P
=-J
2

\2

wJ,P) =~ —P3’2

(14)

and the following expression for the Hamiltonian:

\’ 3/2
+ur1- \/— -3 (15
J+P /2)2 cose. (19

Introduce so-called Poincaré elements of the second kind:
(16)

The transformatiorlP/2,¢)— (X,y) is canonical with gen-
erating functionW, = (y?/2)cot ¢—J. Change the sign af;
and, to preserve the canonical form, the sigrxofhus, we
obtain the Hamiltonian in the form

x=\VP-2Jcose, y=\VP-2Jsine.

3 X2+ 2\2 X2+ 2
F= 30 XY o o5+ wAHLILPX,
2 P ;
(17)
where
3/2 2
H
AH,J,P)=—"—|1- .
( 0 4 (J+P,/2)?

Note that if the eccentricity is small, the® -2J<1, and
hence the slow variation d¥, is essential only in the second
term in (17). In the other termsP, can be assumed to be

PHYSICAL REVIEW E 71, 056623(2005

0.5

y
0
(@)
X
clg.s 0.5
057
0
(b) .
05 i X
205 0 0.5

FIG. 2. Phase portraits of the system at fixed values ;oft
=0.01.(a) A=0.05<\+; (b) A=0.069624= \..

constant, sayP,=P,,, whereP,, is the value ofP, at 7=0.
Now, we renormalize the Ham|Itonlaﬁ1—> P o1 to trans-
form it to the following standard form studled ia2]:

F1= 0 +y?)2 = NOC +y?) +ux, (18)

with N\=2(P,—2J) and=uA(H,J,P,y). We describe the dy-
namics defined by Hamiltoniafi8) in Sec. IIl.

2)2_

Ill. CAPTURE INTO THE RESONANCE AT SMALL
VALUES OF ECCENTRICITY

Dynamics in the system with Hamiltonian functighg)
was studied in details ifiL2]. In this section we put forward
the results of12] relevant to our study.

In (18) »>0 is a constant parameter, andis a slow

function of time A ~ . Assume thah>0.

On the phase plang,y), the values/P-2J and ¢ [see
(16)] are polar coordinates. Note that eccentricity in the
original problem is proportional tgP-2J.

Parameten is changing slowly, and as the first step we
consider the problem at fixed valuesXaf Phase portraits at
different values of\ are presented in Figs. 2 and 3. At
<\=2%2B[Fig. 2@)] there is one elliptic stable point A on
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051y ; rounding A and slow drift along axis. The area surrounded

: by each banana-shaped turn is approximately the same and
equals the are&(\+) surrounded by the trajectory passing
through (x(0),y(0)) at A=\«. Hence, the average distance
between the phase point and the origin slowly grows, corre-
sponding to the eccentricity growth in the original problem.

In [11], it was shown that a point having zero initial ec-
centricity necessarily undergoes the eccentricity growth. The
formulated result implies that this is also valid for all the
points initially [i.e., at\=\+] insidel,, except, maybe, for a
narrow strip close td;. A typical linear size of this domain is
of order '3, In [22] this phenomenon was described in the
problem of motion of Saturn’s satellites and called “auto-

: matic entry into libration”(see alsd23]).
-05 Consider now the case when the pair{0),y(0)) is out-

= 0 0.5 ~
0 sidel;: Fy,>0. With time the area insidg grows, and at a
FIG. 3. Phase portrait of the systemxat0.1>\+; ©=0.01. certain moment the phase trajectory crodsesn the adia-
batic approximation the area surrounded by the phase trajec-
tory is constantS(\) =S(\«). Hence, in this approximation
the time moment of crossinig can be found from equation
S1(A)=8(\+). HereS;(\) is the area insidé; as a function
of A andA is a value of the parameter at this moment. After
crossing, there are two possibilitie$) the phase point can
continue its motion inGy, during a time interval of order at
leaste™? (this corresponds to capture into the resonance and
OFX.0N) gro_wth of the eccentric_iw (ii) without making a fu_II turn
e - AR 2+ R =0. (19)  inside G, the phase point can crogsand continue its mo-
X tion in G, (this corresponds to passage through the resonance
5 without capturg The area ofG, also monotonically grows
At A\=\., introduce F;=F.(\)=F;(X;,0,\) and F(x,y,\)  Wwith time [s:e below(22) andd (23)], hence such a point
- _ v ; = cannot cros$, once more and return tG,.
=F,Y, M) =Fcld). In. Giz we haveF <0, in G, andG, 7 It is shown in[12] that the scenario of motion after cross-
>0, on the separatrice5=0. _ ing |, strongly depends on initial conditior(x(0),y(0)): a
As parametei slowly grows with time \ ~ ¢, curvesl,, small, of ordere, variation of initial conditions can result in
|, defined with 7=0 slowly move on the phase plane. On gualitatively different evolution. If the initial conditions are
time intervals of ordee™" their position on the phase plane d€fined with a final accuracy, & <5<1, it is impossible to,
essentially changes, together with the areagf G,. On predicta priori the scenario of e_volut|on. Therefore, it is
the other hand, area surrounded by a closed phase trajectorl‘:‘s\/ﬁsonablg o cgnsmer: gaptuLe t')flfﬁiz or G, as random
at a frozen value of is an approximate integrhdiabatic ~ © SNt and introduce their probabilities. o
invariany of the system with slowly varying paramet&r Following [24], c_;o_n_5|der a circle of small rad|uS_\_N|th
Therefore. a phase point dssl, leavi f1h the center at the initial poinM,. Then the probability of
: »ap point can cragsl; leaving one oT the o4 hture intoG,, is defined as
regionsG; and entering another region.
Denote with[x(t),y(t)] a phase point moving according to D= lim li Si2
X i =lim lim , (20
(18). Without loss of generality assume that\. at t=0. 50 £—0 ﬁo
The initial point (x(0),y(0)) can be either inside; [Fy
=F(x(0),y(0),\+)<0] or out ofl; [Fy>0]. The following
assertion is valid. All points lying insidg at A=\« except,

the portrait. AtA>\. (Fig. 3 there are two elliptic stable
points A and B, and one saddle point C. Separatriggs
divide the phase plane into three regidBgG;,,G,. In Fig.
2(b), the portrait at\=\. is shown.

The coordinates of point C are=x;, y=0, wherex;
=X.(\) is the largest root of equation

Where$IO is the measure of the circle of radidand S, is

the measure of the set of points inside this circle that are
captured finally intaG;,.

maybe, of those belonging to a narrow strif; %< F, Let A=A be the parameter value at the moment of cross-
<0, wherek; is a positive constant, stay iG;, at least ingl; in the adiabatic approximation. The following formula
during time intervals of ordes™™. for probability P is valid:
This result is due to the fact that the area®f, mono- ~
tonically grows with time[see below(22) and (23)], and P l1—1> wherel;(\) = - Edt
conservation of the adiabatic invariant makes a phase point I, ! LON
go deeper and deeper into this region. A point captured in !
G, rotates around point A&,,0), wherex, is the smallest oF
root of Eq.(19). As time grows |x,| also grows and point A l2(0) == th' (21)
on the portrait slowly moves along axis in the negative 2

direction. Therefore, the motion is a composition of two and the integral$,, |, are calculated at=A. Calculating the
components: fast rotation along a banana-shaped curve suntegrals, one find§12]
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FIG. 4. Passage through the resonancéxgg) plane and corresponding variation of eccentri¢lipttom plots; .=0.001;e=0.0001.
(a) Passage with capture into the resonaribgpassage without capture; initial conditions in the casgsind (b) are different.

1 0 A in the sense that two initially close captured phase points
11(A) = 5(277— 0), Ip= > 0= arccoéy - 2) : stay close to each other in the process of further evolution. In
¢ Fig. 4b), all the parameter values are the same as in Fig.
(22)  4(a), but initial conditions are slightly different. In this case,
after crossingl;, the phase point crosses and gets into
region G,. This is a passage through the resonance without
capture. Variation of eccentricity in this case is due to tran-
sition from G, into G,. For numerics, we used=\q+et.

We have tested formulé21) for probability of capture
numerically. We considered a square of sizelR@0C on
(x,y) plane centered at the poif¥,,y,) where the formula is
tested, and took 100 initial points for the system with Hamil-
tonian (18) in this square. The numerical value of capture
probability at the central poir®,,, is the ratio of captured
trajectories to the total number of trajectories. The results of
numerical test show considerably good agreement with the
formula. A part of these results fgt=0.001,£=0.0001 are
0presented in Table I.

At the end of this section, we comment on the parameters’
ofange appropriate for the methods used. First of all, it must
be n<1 ande<1, otherwise it is not possible to use the

Here ® is the angle between the tangenciesltat C, 0O
<0 <. Note that

dS,  dSi,

a =1y, a =l =1, (23
Geometrically, formuld21) can be interpreted as follows. In
a Hamiltonian system, phase volume is invariant. As param
eter\ changes byA\, a phase volumAV,, enters the region
G1o. At the same time, a volum&V, leaves this region and
entersG,. The relative measure of points captureddyy, is
(AV1,—AV,)/AV,. The integrall, in (21) is the flow of the
phase volume acrods, andl, is the flow across,. There-
fore, P gives the relative measure of points captured int
Glz.

Note that, rigorously speaking, there also exists a set
initial conditions that should be excluded from consideration.
Phase trajectories with initial conditions in this set pass very TABLE I. Numerical value of capture probabilit§,,, Vs the-
close to saddle point C, and the asymptotic result§1@  oretical valuePy,
cannot be applied to them. However, this exclusive set is

small: it can be shown that its relative measure tends to zero Yo Prum P
faster than any positive power ef

In Fig. 4(a), capture into the resonance is shown. First, the ~ 0-255 0.105 0.14 0.146
phase point rotates around the origin in regi®p then it 0.225 0.115 0.12 0.130
crossed,, enters regior,, and continues its motion in this 0.275 0.085 0.10 0.120
region. In the course of this motion, the average distance (.295 0.115 0.09 0.101
from the origin grows, corresponding to the growth of the 0.305 0.125 0.11 0.096

eccentricity. The motion of captured phase points is regulas
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perturbation theory methods. One can also give some addi-

tional restrictions. Consider Hamiltonidh8). A typical scale

on the corresponding phase portrait can be found using th&
condition that the first and the last terms in the Hamiltonian;

are of the same order. Thus, we find that typical values of
andy on the portrait are of order qi'/3. Hence we find that

typical frequency of motion on this portrait i€,~ ¢

~ u?3. The adiabaticity conditioffi.e., that variation of the
driving frequency during a period of motion is much smaller
than the frequency of motigrcan be written ag <Q2  or
e<u*3. Therefore, of the two small parametetsshould

PHYSICAL REVIEW E 71, 056623(20095

IV. CONCLUSIONS

Summarizing the results, we can say the followirig.

in growth of the eccentricity of the electron’s orbiii) On
the phase plane around the origex 0), there exists a region
of size of orderz!® such that all phase trajectories with
initial conditions (i.e., at A\=\«) in this region undergo a
capture into the resonance with necessfgutomatic cap-
ture”). (iii ) If initial eccentricity is larger, and the initial point
on the phase plane is out of the region mentioned above,
there is a finite probability that the phase trajectory will be

always be the smallest. Also, it is necessary for applicatiorgaptured into the resonance. This probability is given by
of the time averaging that the driving frequency is much(21).

larger than the typical frequency of motion on the phase

portrait: w> Q. Thus, we obtainu < w*?. Essentially, this
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