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Bistability in the sine-Gordon equation: The ideal switch

R. Khomeriki? and J. Leoh
! aboratoire de Physique Théorique et Astroparticules CNRS-UMR5207, Université Montpellier 2, 34095 Montpellier, France
2physics Department, Thilisi State University, 0128 Thilisi, Georgia
(Received 25 January 2005; published 27 May 2005

The sine-Gordon equation, used as the representative nonlinear wave equation, presents a bistable behavior
resulting from nonlinearity and generating hysteresis properties. We show that the process can be understood
in a comprehensive analytical formulation and that it is a generic property of nonlinear systems possessing a
natural band gap. The approach allows one to discover that the sine-Gordon equation can woitteas an
switchby reaching a transmissive regime with vanishing driving amplitude.
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I. INTRODUCTION above the threshold amplitude which reails the semi-

A nonlinear medium submitted to wave irradiation at aInflnlte casel. — )

frequency in a forbidden band gap can undergo bistable be- 1-02
havior and present hysteresis properties. This bistability has B, =4 arctariby), b§: >
attracted much attention, e.g., in nonlinear optics as a means Q

for a medium to switch from total reflection to partigbme- This is called nonlinear supratransmissigh and happens

time_s tota) transmissior{1] or _in super_cpnducting junct_ion by emission of solitongmoving breathepsthat propagate in
devices as a means to conceive amplifiers that “remain efflt—

cient in the quantum limitT2]. We attempt to give a com- he nonlinear medium.
the g . T P give This process, quite generic, has been experimentally real-
prehensive interpretation of this phenomenon in terms or

both analytical description and numerical simulations, in or-zed on a chain of coupled pendul, and applies, for in-
yu crip . ) L stance, in discrete systems of coupled waveguide af@ys
der to unveil a particular stationary regime presenting a NONhere the forbidden gap results from discreteness, or else in

z\(/avri?cr? l;tr?(;jt/vﬁji::hvglrlf\‘:/"sn?orlrc]i[()altjé’ct\ilﬁc()r:{il:nvgs;:?/gr:igiirlldeal Bragg media(periodic dielectric structurgsunder constant
9 microwave irradiation in the photonic band ggi®]. In Jo-

signal. sephson junctions arrays, submitted to microwave excitation,

To that end we consider the sine-Gordon equation on th _ : _
finite intervalx < [0,L] %Sz)b[o;]ndaryux(o,t)—f(t) induces the threshold,=2(1

Uy — Uy, + SiNU=0, (1) In the finite line case considered here, we shall again find
a nonlinear supratransmission threshold which tends to the
value(4) for largeL. But a property far less understood is the
u(0,t) = f(t), uL,H)=0, (2)  hysteresis loop obtained by decreasing the amplitude excita-
S ) tion By from the thresholdBg. This property has been for

on a vanishing initial statwith f(0)=0 and f(0)=0 for  jystance observed on numerical simulatiss] in the con-
compatibility of the initial and boundary values text of Josephson superlattices, but both the analytical ex-

This is a quite standard problem in physics of a wavepression of the threshold and the very nonlinear mechanism
equation with a forced extremit§Dirichlet boundary condi- jnhvolved have not been clarified.
tion in x=0) and a free endNeumann boundary conditionin e shall establish a general procedure to determine the
x=L), associated to Cauchy initial data &t0. A related threshold by studying the standing periodic solutions of the
physical situation is, for instance, a long Josephson junctiojne-Gordon equation which synchronize to the driving fre-
[3,4] or an array of coupled short junctioridosephson su- quency( and adapts to the driving amplitud. Although
perlattice [5,6]. Note that, depending on the used externakhese two conditions are sufficient to determine the solution
driving, the boundary(2) possibly has to be replaced with completely, it is not uniquely defined. Indeed we shall prove
u,(0,1). that a fixed set of physical parametdis,{),B,} may be

An important subclass of boundafit) is constant ampli-  related to more than one solution. This is the principle that
tude periodic driving at a frequency in the natural band gapeads to bistability wheB,< Bs.
of the system, namely, As an interesting consequence we obtain that there exists

— a regime where a vanishing input amplituBg produces a
f()=BycodQr), <1, ® nonvanishing output amplitude. This process shows that the

after a convenient transient sequence wHegtegrows from  sine-Gordon equation can be thought of as an ideal switch
a vanishing amplitude to the valug to avoid initial shock. along the hysteresis loop from zero to zero input amplitudes.
While for a linear system this boundary excitation does not The paper is organized as follows. In the next section we
flow through, nonlinearity allows for energy transmissiondisplay the set of explicit solutions to the sine-Gordon equa-

(4)

associated to the boundary value problem
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tion on a length. submitted to the only requirements that the
input boundary amplitude bB, and the period of the solu-
tion be 27/(). The following section is devoted to the ana-
lytical definition and evaluation of the threshold of bistabil-
ity. Then we show by numerical simulations in Sec. IV that
those explicit solution are indeed produced by the boundary
driving (3) and we check bhistability predictions. In particular
we compute, for a more realistic damped sine-Gordon
model, the power released by the boundary driver to theE?
medium and find that after having switched, this power is 2

to 3 orders of magnitude larger than before the switch.
II. EXPLICIT SOLUTIONS

A. General expressions

Under boundary conditiort3), in order to describe the

periodic asymptotic regime reached in numerical simula-

tions, we follow Ref[11] and seek a solution

u(x,t) = 4 arctafX(x)T(t)]. (5)
The boundary condition imn,(L,t)=0 then reads
X'(L)=0, X(L)=A, (6)

where we have defined the amplitude paramAtsuch as to
scaleT(t) to unity. In other words

Dto: T/(to) = 0, T(to) =1. (7)

By inserting expressiolb) in the sine-Gordon equatiofi)
and by use of constraint®) and (7), we obtain differential
equations with a unique free parameter

, 1
(X')?= al (A2 - x2>(x2 + m) ®
(T)?=a(l-T*)(T?+1), 9
where a prime denotes differentiation and where
P=sp— T (10
TA? (1+A?)°

Thanks to Eqs(6) and(7) the equation foiX(x) is integrated
on[x,L] and the one foil(t) on[t,t,]. The solution is then
completely definedin terms of elliptic integralsby the val-
ues of the two parametefsand «, determined as follows.

Our first fundamental hypothesis is to assume, accord-

ingly with numerical simulations, that the solutiegynchro-
nizesto the boundary driving, namely, that the functi(t)
is periodic with the period of the driver

2
T<t+6> =T(t). (11

2
INPUT a

FIG. 1. Plot of the curveA(a)| in the three cases fdr=5 and
(=0.6. The crosses indicate the points where the solution changes
from one type to the other. The vertical line shows the threshold
amplitudeag (next sectioh above which supratransmission occurs
by emission of solitons.

The point is that bistability occurs because the solution of
Egs.(8), (9) drastically depends on the sign af We shall
indeed discover that there may exist different solutions that
do synchronize td) and adapts ta. In other words, for any
fixed Q) andL, a given input amplituda may correspond to
more than one value of the output amplitudlas depicted in
Fig. 1.

B. Type | solutions

We calll type | solutions those obtained fer>0 (imply-
ing I"'>0) for which we obtain12]

T(t) = Cr(w(t - tO)! V), (13)
X(x) =Acn(k(x=L),u), (14)
o’ =a(1+1), V2=1_:|I_-1_,,
1 rA*
kzzaF<A2+m>, ,LLZZ m (15)

where cif...,m) is the cosine-amplitude Jacobi elliptic func-

The second fundamental hypothesis consists in expressifpn of modulusm. According to Ref{11], the resulting so-

that the solution adapts to the driving amplitude B,
=4 arctarta), which gives

X(0) = a. (12)

The two relationg11) and(12) constitute a closed system of
equations for the two unknown& and « in terms of the
physical constanta, 2, andL.

[ution u(x,t) is called plasma oscillation and we have from
Eq. (15

(16)

This relation between the nonlinear wave parameateasdk
is often called a nonlinear diSpersion relation but we shall
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reserve such a denomination to the true dispersion relation Tt) =snw(t—ty),v), t;=tg+K(v)/w, (25)
which relates the actual period&k4w)/k of X(x) to the period
4K (v)/ w of T(t). X(x) = A dn(k(x = L), x), (26)

The parametera andA are now determined by requiring
synchronization11) and input datum(12), namely, here by

solving for unknownsy andA the system w?=BA, 1P= %
QK (v) = gw, a=Acn(kL, w). (17) .
K2=pBAA?, uP=1-—f, (27)
[Note that the complete elliptic integrél(v) is well defined AN
as forl'>0 we have 6<1*<1] o and we have the relation
It is useful to express the above solution in terms of the
two wave parameters andk. This is done by using Eq16) - k_2 28
to eliminateA and « from the definitions ofu and». We get @ N2 (28)
2_ 1-o?+K between the wave parametdrsand w for the type Il solu-
1+w?-K' tion.
The parameter@ and A are determined as before by re-
) K- (w? - 1)? quiring synchronizatiorf11) and input datun{12), namely,
- 4e? ' -
QK(v) = PLe a=Adn(kL,u). (29
aK?

2 (18) Although the above equation, for real valued parameters, has

B a+d2- o _ P
two sets of solutiong3,A}, only one set verifies the con-
System(17) appears then as an equation for the determinastraint AA*> 1.
tion of the parameters andk from the data of the length, As before, we express the type Il solution in terms of the
the boundary driver’s frequendy, and amplitudea. wave parameters andk, by means of Eq(28) to eliminate
. A andpBin p andv. We obtain
C. Type Il solutions
New types of solutions are obtained far< 0 for which A2 = k_z
the evolution(9) of T(t) requiresl’<0 in order to guarantee w?’
the constraint7). Defining
219 _,.2_12
_ A=-T= 1 _ i (19) VZZK_Z%’
B— a, - _B(1+A2) A21 w w +k
the basic equation@) and (9) become ) 021 —w?—K2
"2 2 2 w=l-m a2 (30)
(TY*=BA-THA-T9, (20 ke o +k
System(29) determines then the parameterandk from the
(X')2= BA(A? - XZ)(XZ - ﬁ) ) (21) dataofL, O, anda.
It appears that the constraifif) which states thaf(ty)=1, D. Type Il solutions
requiresA >1, namely, The type 1l solution is obtained still for<<O when
A2 AA*<1. Such can be realized only in the casg<1 by
B< (1+A2)2" (22 requiring
a condition that must be checkadposterioriwhen comput- AY(L+A?)? < B< AI(L+AD2, (3
ing B from the synchronization constraint. The solution of Eqs(20), (21) now reads
The structure of Eq(l) implies two classes of solutions
depending on the relative values &t and 1{AA?). Type Il Tt) =snw(t-ty),v), t=tg+K@)/w (32
solutions are obtained foxA*> 1 which, together with con-
straint(22), reads X(x) = A dni(k(x— L), w), (33
A2>1:0< B< A%(1+A%?, (23) L 5
P=pA, V=, K=-5, uP=1-AAY (34
A2<1:0< B< AY(1+AD2, (24) w'=pA =R A M (34
The solution of Eqs(20), (21) can now be obtained as and the wave parameters obey
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1
2_ — 12
1) Yy ke. (35)
6 L=5
The synchronization conditiofi1) and input datuni12) fur- +3
nish the system
w
48]
T A a
QK =—-w, a=—— 36 E
=2 2= kL (36 =4
=
for the unknowns parametefsand A. The same remark as ;
for the type Il solution holds here, namely, that the system 2
(36) has two sets of solutiog3, A} but only one verifies the (Z,
constraintAA*< 1. %, Y
Again the type Il solution can be expressed entirely in a
terms of the two parameters and k by means of Eq(35)
which gives \
|
2_ 12
peo 1m0 K 0 S —
W2+ K 0.2 0.4 0.6 0.8 1
DRIVING FREQUENCY
2 2_ 12
2= k_ 1-0°—k FIG. 2. Input amplitude 4 arctéa) at the threshold, solution of
0 ?+kE Egs.(39), (40) as a function of) for L=5 (crossesand compared
to its limit value 4 arctafby) asL — o, given by Eq.(43) (full line).
2 1- 2 _ k2
pr=1-2= 2 T (37)

2 2 2
k2 w?+k (mnggw,kLﬂﬁm, (40)

Then Eq.(36) is a system for the parametessandk in terms
of the dataL, (2, anda. with » and » given by Eq.(37).

Figure 2 shows that the threshad is quite close to the
expression obg in Eq. (4). This property is demonstrated in
The above three solutions are now used to describe angeneral by studying the limit — c in the type I solution.

lytically bistability properties of the sine-Gordon equation. At threshold amplitude, the relatio@0) betweenL and u
The first step is to define and calculate, at given lehgtthe  gives the necessary condition

thresholdag as functions of the driving frequendy. Last,
decreasing the input amplitude fromy once a transmission LoD p—10 o —1-K, (4D
regime has been reached, the system locks to the type-l s@jith which the synchronization condition provides
lution which holds down to a vanishing driving amplitude.

This is a property that makes the sine-Gordon equation an Loowdvrv—00 w—Q. (42

ideal switch and allows one to understand how it can be used . L. .
to detect weakvanishing signals. With this in hands, the expressiof39) of the threshold

readily gives the expressigd), namely,

IIl. BISTABILITY THRESHOLDS

A. Transmission threshold

1-0?

As shown in Fig. 1, increasing the input amplitude from L—wO al—bi= hE (43)
a=0 generates the type lll solution. This solution has, for
sufficient length, an approximate maximum input vake Remark it is instructive to compute also the limit— oo
resulting from Eq(36) as the point where dkL, 1) reaches on the solution itself at the threshold where from E@)
its minimum valuey1-u?, namely, and (41) obviously A— 0. In that case we rewrite the solu-

) tion X(x) of Eq. (33) as
2. A (38)
&= 2 a dn(kL

Such a definition of the thresholal, is more conveniently dn(k(x- L), )
written in terms ofw andk through Eq.(37) as expand the denominator, take the lirhit> o first, and then

12 make u— 1. We obtainX(x) of Eq. (33) as
2
as=—. (39
) X(x) — a5 sechkx). (45)
L—o

In this equation, the parametets and k are determined _ . .
through Eq.(36) which, at the threshold, can also be written The same procedure applied T@) in Eg. (32), with v—0,
as the system provides
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IDEAL SWITCH (L=5) 12
61 10F
=
T 8f
%
e z
E 44 - 6
5 &
z b
= > 4f
= »
[« W)
F
=
(@) 7 s}
0 ‘ . . .
0 0.2 0.4 0.6 0.8 1
DRIVING FREQUENCY [Q]
0 ; ; ,
0.2 04 0.6 0.8 | FIG. 4. Minimal length of the system below which one does not
DRIVING FREQUENCY have ideal switchithe solution of Eq(47) ceases to exi$t

FIG. 3. Output amplitude 4 arctéd) whena=0 as a function ] . ] ) )
of Q for L=5 obtained from Eq(48) by solving Eq.(47). Fig. 4. Let us remark that the notion of nonlinear dispersion

relation is not useful to predict, at given driving frequency
), the minimum driver amplitude that generates transmis-
sion, as indeed we have here an example where this mini-
] ] ) ~mum is simply vanishing.

and the resulting solution(x,t) of sine-Gordon on the semi-

line is the stationnary breather centeredkinO accordingly IV. NUMERICAL SIMULATIONS

with Ref. [7].

T(t) L::QCOS{w(t -t], (46)

A. Damping and boundary driving

Bistable properties, and in particular ideal switching, have
o ) ) _ been analytically described in the integrable célge How-
Considering the type | solution, expressidr) that links  eyer, any realistic physical situation must take into account

the inputa to the outpu® can produc@=0 with A+ 0, such  the damping inherent to the medium. The simplest way to
as to generate a regime of nonvanishing output value with fclude damping is to assume the model

vanishing input amplitude, the ideal switching regime. This

B. Ideal switch

is the case when Ug + YUy = Ug + Sinu=0, (49
- associated with the initial-boundary value probl&nin the
kL=K(w), QK(v)= Ew’ (47) particular subclasg3). We study here the bistable properties
whereA, u, andv are related tas andk through Eq.(18). 4.5
Note the formal analogy with Eq40) where the parameters aF 1 By
A, u, andv are different.
This is a system of equations féw,k} whose solution 3.5
then produces the seeked output amplitude by w 3l
[m]
,_1-0?+K 49 E 25}
1+ w?-K? g
< 2
defined by Eq(47) in terms of the physical entridsand (). g
We have plotted in Fig. 3 the output amplitude 4 arctaim S 19
the ideal switching cas@=0) as a function of) for length &
L=5.
We observe that, for a given length, there exists a thresh: 05 i B,
old in frequency below which no ideal switching is allowed. 0 - ‘ ‘ ‘ s
0 50 100 150 200 250 300

This is understood by observing that diverges whernw?
—k2-1, for which u— 1 [a limit threshold that has exactly
the same origin as in Eq41) whenL —c]. Conversely, at FIG. 5. Two different paths for driving the sine-Gordon system.
given driver frequency), there exists a minimum length By is the driving amplitude in the stationary regime aBglis a

of the medium to obtain an ideal switch, it is displayed insupratransmission threshold.

TIME
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DISPLACEMENT AMPLITUDE

- TIME [t] o5

%0 0.5 1 1.5 2 25 3 35 4

DISTANCE [X]

FIG. 7. Comparison of analytical expressiofs®lid lineg for
the profiles of standing waved4), (26), (33), corresponding to
solutions of types lll, Il, and I, respectively, and numerical simula-
tions (circles. The type Il solution is reached along path 1 of Fig.
5 while the type | results from path 2. The type Il solution, unstable,
is never reproduced by the system.

u(x,t)

damping parametey=0.01 and length.=4.1. For the driv-

: : ing amplitude along path 1 in Fig. 5, we always observe a

1000 o < ) j _ 4 stationary regime with decaying profile of the standing wave,

990 ' S : very well described by the exact analytical solution of type

Il (32), (33). Instead, when driving along path 2, we get the

$ picture corresponding to the exact type | soluti@s), (14).
DISTANCE [X] Those two drastically different behaviors of the system are

displayed as three-dimensional plots in Fig. 6.

FIG. 6. Three-dimensional plots of the sine-Gordon system dy- It is remarkable on the second picture of Fig. 6 that the

. . . . system has locked to a stationary solution with a small driv-
namics after having reached stationary regime. Upper plot corre-

o ) ing amplitude (here B,=0.3) and a large output amplitude
Zponds {0 the driving path 1 of Fig. 5 and lower plot to path 2. In(e%/alua?ed aB:4.35).0Let us mention t?ﬂat wepcan drliave the
oth cases driving frequencys=0.5, stationary driving amplitude - - _ :
Bo=0.3, damping coefficieny=0.01, and system length=4.1. system Wlth amplitudes down B‘?_O'l anq still have the
type | solution(large output amplitudedespite presence of
of Eq. (49 by numeric_al .simulations and compare the resuItsg\zlivri?cpr:r,]%rlnamf(;ssty ;;er?;,cgzt;ré%tt:#s aregime of aimost ideal
to the analytical predictions. _ Another remark is that the system never locks to the exact
To that end the system is driven at the input boundary s|ytion of type 11(25), (26), simply because this solution is
=0 with a bandgap frequency and time-dependent amplitudgnstable. For instance, if that exact solution is used as an
as follows: in a first numerical simulation, the amplitude isjnitial condition in the sine-Gordon equation, it eventually
smoothly increased up to the vallg smaller than the su- preaks down.
pratransmission threshoRl. In a second simulation, the am-  To be complete, we compare the analytical expressions of
plitude is increased up to a value exceeding the supratrangie standing waves profiles of Eq44), (26), and(33) to the
mission threshold and then, after a time sufficient to generateesults of numerical simulations in the case of the two dif-
moving breathers, it is decreased to the same vBjuas in  ferent driving paths in the context of Fig. 6. The result is
the first case. Figure 5 displays the two time variations of thalisplayed in Fig. 7, where the obtained perfect matching
driving amplitude that we have used in the numerical simushows that indeed the system locks to the analytical solution
lations. After having reached a stationary regime, althouglobtained by assuming frequency synchronization and ampli-
the driving amplitude8, are equal in both cases, the dynam-tude matching. This is completed by plotting in Fig. 8 the
ics drastically differ in those two cases as it is expected fromnput-output amplitude dependence obtained from numerical
the analytical consideration presented above and describeimulations and its comparison with analytical curves de-
hereafter. rived from formulas(17), (29), and(36).

980
TIME [

970
960
(b) 950 0

B. Evidence of bistability C. Energetic considerations

In most of our numerical simulations we choose the driv- The physically useful bistable nature of the system mani-
ing frequency in the middle of the band g&p=0.5, use fests in large difference between the energy dissipation in the
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0 0.5 1 1.5 2 25 3 35 4 4.5
INPUT AMPLITUDE
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---.---..--.--_-.---..----.-_-...--_..---.

DRIVING AMPLITUDE

FIG. 9. PowerP of Eq. (50) in terms of the driving amplitude in
lin-log (main ploy and lin-lin (insey scales. Solid lindsolutions

FIG. 8. Comparison of input-output amplitude dependence obyy3) and (14)] and circles(simulations correspond to driving re-

tained from numerical simulationgircles with analytical curves
derived from formulag17), (29), (36).

gime 1 of Fig. 5. Dashed lingsolutions(32) and(33)] and asterisks
(simulation$ result from driving regime 2. Length Is=4.1, driving
frequencyQ=0.5, and damping coefficient=0.01.

two stationary regimes. The averaged energy released from

the driver in unit time, can be expressed as

2m/Q) L
P=— dt f dx Uz (50)
27T 0 0

Indeed one can easily obtain

9 L L 5
—| dxH=- f dx yup - (uxut)|x:01
atly 0

1 1
Hzéut2+§u§+1—cosu, (512)

which by averaging on one period furnishes Esp) as the
boundary value ix=0 is periodic.

Although the analytical solution of the sine-Gordon equa-

tion (1) are not solutions of the damped versidg), we may

compare the power defined above obtained by numeric

simulations of Eq.(49) to the expressiort50), whereu is
simply replaced by the exact solutigtype Il before the
switch, type | after. The result of this comparison is dis-
played in Fig. 9 where we see that express{&0) with
analytical solutions fit strikingly well the numerical simula-
tions, and that the powét after the switch is 2 to 3 orders of
magnitude greater than before the switch.

V. COMMENTS AND CONCLUSION

It is worth mentioning that while the analytical solution of
type | holds for any lengtlv, in a realistic physical system

(nonzero damping the situation is different. In particular,
for large L and low driving amplitudes, when several nodes
of the type | standing wave solution are present, the solution
cannot survive and decays to a type lll solution. This is
understood by the following simple argument: all of the ex-
act solutions derived in the previous sections are standing
waves, i.e., they do not generate energy flux. Thus, regions
of the system far from the boundary cannot gain energy from
the driver and the oscillations will eventually fade away.

We have essentially demonstrated, both by analytical and
numerical treatment, that the bistable property on the sine-
Gordon system allows one to generate a particular regime
that works as an ideal switch: nonzero output for vanishing
input. In a realistic physical systefincluding damping the
property is conserved but for smalhonvanishing input.

Jhis nonlinear hysteresis has been shown to correspond to

quite determinant differences in the power released by the
driver to the system.
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