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The sine-Gordon equation, used as the representative nonlinear wave equation, presents a bistable behavior
resulting from nonlinearity and generating hysteresis properties. We show that the process can be understood
in a comprehensive analytical formulation and that it is a generic property of nonlinear systems possessing a
natural band gap. The approach allows one to discover that the sine-Gordon equation can work as anideal
switchby reaching a transmissive regime with vanishing driving amplitude.
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I. INTRODUCTION

A nonlinear medium submitted to wave irradiation at a
frequency in a forbidden band gap can undergo bistable be-
havior and present hysteresis properties. This bistability has
attracted much attention, e.g., in nonlinear optics as a means
for a medium to switch from total reflection to partialssome-
times totald transmissionf1g or in superconducting junction
devices as a means to conceive amplifiers that “remain effi-
cient in the quantum limit”f2g. We attempt to give a com-
prehensive interpretation of this phenomenon in terms of
both analytical description and numerical simulations, in or-
der to unveil a particular stationary regime presenting a non-
zero output for vanishing input, which we call the ideal
switch and which allows for detection ofsalmostd vanishing
signal.

To that end we consider the sine-Gordon equation on the
finite intervalxP f0,Lg

utt − uxx + sinu = 0, s1d

associated to the boundary value problem

us0,td = fstd, uxsL,td = 0, s2d

on a vanishing initial statefwith fs0d=0 and f ts0d=0 for
compatibility of the initial and boundary valuesg.

This is a quite standard problem in physics of a wave
equation with a forced extremitysDirichlet boundary condi-
tion in x=0d and a free endsNeumann boundary condition in
x=Ld, associated to Cauchy initial data att=0. A related
physical situation is, for instance, a long Josephson junction
f3,4g or an array of coupled short junctionssJosephson su-
perlatticed f5,6g. Note that, depending on the used external
driving, the boundarys2d possibly has to be replaced with
uxs0,td.

An important subclass of boundaryfstd is constant ampli-
tude periodic driving at a frequency in the natural band gap
of the system, namely,

fstd = B0 cossVtd, V , 1, s3d

after a convenient transient sequence wherefstd grows from
a vanishing amplitude to the valueB0 to avoid initial shock.
While for a linear system this boundary excitation does not
flow through, nonlinearity allows for energy transmission

above the threshold amplitude which readssin the semi-
infinite caseL→`d

Bs = 4 arctansbsd, bs
2 =

1 − V2

V2 . s4d

This is called nonlinear supratransmissionf7g and happens
by emission of solitonssmoving breathersd that propagate in
the nonlinear medium.

This process, quite generic, has been experimentally real-
ized on a chain of coupled pendulaf8g, and applies, for in-
stance, in discrete systems of coupled waveguide arraysf9g
where the forbidden gap results from discreteness, or else in
Bragg mediasperiodic dielectric structuresd under constant
microwave irradiation in the photonic band gapf10g. In Jo-
sephson junctions arrays, submitted to microwave excitation,
the boundaryuxs0,td= fstd induces the thresholdBs=2s1
−V2d f8g.

In the finite line case considered here, we shall again find
a nonlinear supratransmission threshold which tends to the
values4d for largeL. But a property far less understood is the
hysteresis loop obtained by decreasing the amplitude excita-
tion B0 from the thresholdBs. This property has been for
instance observed on numerical simulationsf5,6g in the con-
text of Josephson superlattices, but both the analytical ex-
pression of the threshold and the very nonlinear mechanism
involved have not been clarified.

We shall establish a general procedure to determine the
threshold by studying the standing periodic solutions of the
sine-Gordon equation which synchronize to the driving fre-
quencyV and adapts to the driving amplitudeB0. Although
these two conditions are sufficient to determine the solution
completely, it is not uniquely defined. Indeed we shall prove
that a fixed set of physical parametershL ,V ,B0j may be
related to more than one solution. This is the principle that
leads to bistability whenB0,Bs.

As an interesting consequence we obtain that there exists
a regime where a vanishing input amplitudeB0 produces a
nonvanishing output amplitude. This process shows that the
sine-Gordon equation can be thought of as an ideal switch
along the hysteresis loop from zero to zero input amplitudes.

The paper is organized as follows. In the next section we
display the set of explicit solutions to the sine-Gordon equa-
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tion on a lengthL submitted to the only requirements that the
input boundary amplitude beB0 and the period of the solu-
tion be 2p /V. The following section is devoted to the ana-
lytical definition and evaluation of the threshold of bistabil-
ity. Then we show by numerical simulations in Sec. IV that
those explicit solution are indeed produced by the boundary
driving s3d and we check bistability predictions. In particular
we compute, for a more realistic damped sine-Gordon
model, the power released by the boundary driver to the
medium and find that after having switched, this power is 2
to 3 orders of magnitude larger than before the switch.

II. EXPLICIT SOLUTIONS

A. General expressions

Under boundary conditions3d, in order to describe the
periodic asymptotic regime reached in numerical simula-
tions, we follow Ref.f11g and seek a solution

usx,td = 4 arctanfXsxdTstdg. s5d

The boundary condition inuxsL ,td=0 then reads

X8sLd = 0, XsLd = A, s6d

where we have defined the amplitude parameterA such as to
scaleTstd to unity. In other words

∃t0: T8st0d = 0, Tst0d = 1. s7d

By inserting expressions5d in the sine-Gordon equations1d
and by use of constraintss6d and s7d, we obtain differential
equations with a unique free parametera:

sX8d2 = aGsA2 − X2dSX2 +
1

GA2D , s8d

sT8d2 = as1 − T2dsT2 + Gd, s9d

where a prime denotes differentiation and where

G =
1

A2 +
1

as1 + A2d
. s10d

Thanks to Eqs.s6d ands7d the equation forXsxd is integrated
on fx,Lg and the one forTstd on ft ,t0g. The solution is then
completely definedsin terms of elliptic integralsd by the val-
ues of the two parametersA anda, determined as follows.

Our first fundamental hypothesis is to assume, accord-
ingly with numerical simulations, that the solutionsynchro-
nizesto the boundary driving, namely, that the functionTstd
is periodic with the period of the driver

TSt +
2p

V
D = Tstd. s11d

The second fundamental hypothesis consists in expressing
that the solution adapts to the driving amplitude B0
=4 arctansad, which gives

Xs0d = a. s12d

The two relationss11d ands12d constitute a closed system of
equations for the two unknownsA and a in terms of the
physical constantsa, V, andL.

The point is that bistability occurs because the solution of
Eqs. s8d, s9d drastically depends on the sign ofa. We shall
indeed discover that there may exist different solutions that
do synchronize toV and adapts toa. In other words, for any
fixed V andL, a given input amplitudea may correspond to
more than one value of the output amplitudeA as depicted in
Fig. 1.

B. Type I solutions

We call type I solutions those obtained fora.0 simply-
ing G.0d for which we obtainf12g

Tstd = cn„vst − t0d,n…, s13d

Xsxd = A cn„ksx − Ld,m…, s14d

v2 = as1 + Gd, n2 =
1

1 + G
,

k2 = aGSA2 +
1

GA2D, m2 =
GA4

1 + GA4 . s15d

where cns… ,md is the cosine-amplitude Jacobi elliptic func-
tion of modulusm. According to Ref.f11g, the resulting so-
lution usx,td is called plasma oscillation and we have from
Eq. s15d

v2 = k2 +
1 − A2

1 + A2 . s16d

This relation between the nonlinear wave parametersv andk
is often called a nonlinear dišpersion relation but we shall

FIG. 1. Plot of the curvesuAsadu in the three cases forL=5 and
V=0.6. The crosses indicate the points where the solution changes
from one type to the other. The vertical line shows the threshold
amplitudeas snext sectiond above which supratransmission occurs
by emission of solitons.
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reserve such a denomination to the true dispersion relation
which relates the actual period 4Ksmd /k of Xsxd to the period
4Ksnd /v of Tstd.

The parametersa andA are now determined by requiring
synchronizations11d and input datums12d, namely, here by
solving for unknownsa andA the system

VKsnd =
p

2
v, a = A cnskL,md. s17d

fNote that the complete elliptic integralKsnd is well defined
as forG.0 we have 0,n2,1.g

It is useful to express the above solution in terms of the
two wave parametersv andk. This is done by using Eq.s16d
to eliminateA anda from the definitions ofm andn. We get

A2 =
1 − v2 + k2

1 + v2 − k2 ,

n2 =
k4 − sv2 − 1d2

4v2 ,

m2 =
4k2

s1 + k2d2 − v4 . s18d

Systems17d appears then as an equation for the determina-
tion of the parametersv andk from the data of the lengthL,
the boundary driver’s frequencyV, and amplitudea.

C. Type II solutions

New types of solutions are obtained fora,0 for which
the evolutions9d of Tstd requiresG,0 in order to guarantee
the constraints7d. Defining

b = − a, L = − G =
1

bs1 + A2d
−

1

A2 , s19d

the basic equationss8d and s9d become

sT8d2 = bs1 − T2dsL − T2d, s20d

sX8d2 = bLsA2 − X2dSX2 −
1

LA2D . s21d

It appears that the constraints7d which states thatTst0d=1,
requiresL.1, namely,

b ,
A2

s1 + A2d2 , s22d

a condition that must be checkeda posterioriwhen comput-
ing b from the synchronization constraint.

The structure of Eq.s1d implies two classes of solutions
depending on the relative values ofA2 and 1/sLA2d. Type II
solutions are obtained forLA4.1 which, together with con-
straint s22d, reads

A2 . 1: 0, b , A2/s1 + A2d2, s23d

A2 , 1: 0, b , A4/s1 + A2d2. s24d

The solution of Eqs.s20d, s21d can now be obtained as

Tstd = sn„vst − t1d,n…, t1 = t0 + Ksnd/v, s25d

Xsxd = A dn„ksx − Ld,m…, s26d

v2 = bL, n2 =
1

L
,

k2 = bLA2, m2 = 1 −
1

LA4 , s27d

and we have the relation

v2 =
k2

A2 s28d

between the wave parametersk and v for the type II solu-
tion.

The parametersb andA are determined as before by re-
quiring synchronizations11d and input datums12d, namely,

VKsnd =
p

2
v, a = A dnskL,md. s29d

Although the above equation, for real valued parameters, has
two sets of solutionshb ,Aj, only one set verifies the con-
straintLA4.1.

As before, we express the type II solution in terms of the
wave parametersv andk, by means of Eq.s28d to eliminate
A andb in m andn. We obtain

A2 =
k2

v2 ,

n2 =
k2

v2

1 − v2 − k2

v2 + k2 ,

m2 = 1 −
v2

k2

1 − v2 − k2

v2 + k2 . s30d

Systems29d determines then the parametersv andk from the
data ofL , V, anda.

D. Type III solutions

The type III solution is obtained still fora,0 when
LA4,1. Such can be realized only in the caseA2,1 by
requiring

A4/s1 + A2d2 , b , A2/s1 + A2d2. s31d

The solution of Eqs.s20d, s21d now reads

Tstd = sn„vst − t1d,n…, t1 = t0 + Ksnd/v s32d

Xsxd = A dn−1
„ksx − Ld,m…, s33d

v2 = bL, n2 =
1

L
, k2 =

b

A2, m2 = 1 −LA4, s34d

and the wave parameters obey
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v2 =
1

1 + A2 − k2. s35d

The synchronization conditions11d and input datums12d fur-
nish the system

V Ksnd =
p

2
v, a =

A

dnskL,md
s36d

for the unknowns parametersb andA. The same remark as
for the type II solution holds here, namely, that the system
s36d has two sets of solutionshb ,Aj but only one verifies the
constraintLA4,1.

Again the type III solution can be expressed entirely in
terms of the two parametersv and k by means of Eq.s35d
which gives

A2 =
1 − v2 − k2

v2 + k2 ,

n2 =
k2

v2

1 − v2 − k2

v2 + k2 ,

m2 = 1 −
v2

k2

1 − v2 − k2

v2 + k2 . s37d

Then Eq.s36d is a system for the parametersv andk in terms
of the dataL , V, anda.

III. BISTABILITY THRESHOLDS

The above three solutions are now used to describe ana-
lytically bistability properties of the sine-Gordon equation.
The first step is to define and calculate, at given lengthL, the
thresholdas as functions of the driving frequencyV. Last,
decreasing the input amplitude fromas, once a transmission
regime has been reached, the system locks to the type-I so-
lution which holds down to a vanishing driving amplitude.
This is a property that makes the sine-Gordon equation an
ideal switch and allows one to understand how it can be used
to detect weaksvanishingd signals.

A. Transmission threshold

As shown in Fig. 1, increasing the input amplitude from
a=0 generates the type III solution. This solution has, for
sufficient length, an approximate maximum input valueas
resulting from Eq.s36d as the point where dnskL,md reaches
its minimum valueÎ1−m2, namely,

as
2 =

A2

1 − m2 . s38d

Such a definition of the thresholdas is more conveniently
written in terms ofv andk through Eq.s37d as

as
2 =

k2

v2 . s39d

In this equation, the parametersv and k are determined
through Eq.s36d which, at the threshold, can also be written
as the system

V Ksnd =
p

2
v, kL = Ksmd, s40d

with n andm given by Eq.s37d.
Figure 2 shows that the thresholdas is quite close to the

expression ofbs in Eq. s4d. This property is demonstrated in
general by studying the limitL→` in the type III solution.
At threshold amplitude, the relations40d betweenL and m
gives the necessary condition

L → ` ⇒ m → 1 ⇒ v2 → 1 − k2, s41d

with which the synchronization condition provides

L → ` ⇒ n → 0 ⇒ v → V. s42d

With this in hands, the expressions39d of the threshold
readily gives the expressions4d, namely,

L → ` ⇒ as
2 → bs

2 =
1 − V2

V2 . s43d

Remark. it is instructive to compute also the limitL→`
on the solution itself at the threshold where from Eqs.s37d
and s41d obviously A→0. In that case we rewrite the solu-
tion Xsxd of Eq. s33d as

Xsxd =
a dnskL,md

dn„ksx − Ld,m…
, s44d

expand the denominator, take the limitL→` first, and then
makem→1. We obtainXsxd of Eq. s33d as

Xsxd →
L→`

as sechskxd. s45d

The same procedure applied toTstd in Eq. s32d, with n→0,
provides

FIG. 2. Input amplitude 4 arctansasd at the threshold, solution of
Eqs.s39d, s40d as a function ofV for L=5 scrossesd and compared
to its limit value 4 arctansbsd asL→`, given by Eq.s43d sfull lined.
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Tstd →
L→`

cosfvst − t0dg, s46d

and the resulting solutionusx,td of sine-Gordon on the semi-
line is the stationnary breather centered inx=0 accordingly
with Ref. f7g.

B. Ideal switch

Considering the type I solution, expressions17d that links
the inputa to the outputA can producea=0 with AÞ0, such
as to generate a regime of nonvanishing output value with a
vanishing input amplitude, the ideal switching regime. This
is the case when

kL = Ksmd, VKsnd =
p

2
v, s47d

whereA, m, andn are related tov andk through Eq.s18d.
Note the formal analogy with Eq.s40d where the parameters
A, m, andn are different.

This is a system of equations forhv ,kj whose solution
then produces the seeked output amplitude by

A2 =
1 − v2 + k2

1 + v2 − k2 , s48d

defined by Eq.s47d in terms of the physical entriesL andV.
We have plotted in Fig. 3 the output amplitude 4 arctanA in
the ideal switching casesa=0d as a function ofV for length
L=5.

We observe that, for a given length, there exists a thresh-
old in frequency below which no ideal switching is allowed.
This is understood by observing thatA2 diverges whenv2

→k2−1, for whichm→1 fa limit threshold that has exactly
the same origin as in Eq.s41d whenL→`g. Conversely, at
given driver frequencyV, there exists a minimum lengthL
of the medium to obtain an ideal switch, it is displayed in

Fig. 4. Let us remark that the notion of nonlinear dispersion
relation is not useful to predict, at given driving frequency
V, the minimum driver amplitude that generates transmis-
sion, as indeed we have here an example where this mini-
mum is simply vanishing.

IV. NUMERICAL SIMULATIONS

A. Damping and boundary driving

Bistable properties, and in particular ideal switching, have
been analytically described in the integrable cases1d. How-
ever, any realistic physical situation must take into account
the damping inherent to the medium. The simplest way to
include damping is to assume the model

utt + gut − uxx + sin u = 0, s49d

associated with the initial-boundary value problems2d in the
particular subclasss3d. We study here the bistable properties

FIG. 3. Output amplitude 4 arctansAd when a=0 as a function
of V for L=5 obtained from Eq.s48d by solving Eq.s47d.

FIG. 4. Minimal length of the system below which one does not
have ideal switchfthe solution of Eq.s47d ceases to existg.

FIG. 5. Two different paths for driving the sine-Gordon system.
B0 is the driving amplitude in the stationary regime andBs is a
supratransmission threshold.
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of Eq. s49d by numerical simulations and compare the results
to the analytical predictions.

To that end the system is driven at the input boundaryx
=0 with a bandgap frequency and time-dependent amplitude
as follows: in a first numerical simulation, the amplitude is
smoothly increased up to the valueB0 smaller than the su-
pratransmission thresholdBs. In a second simulation, the am-
plitude is increased up to a value exceeding the supratrans-
mission threshold and then, after a time sufficient to generate
moving breathers, it is decreased to the same valueB0 as in
the first case. Figure 5 displays the two time variations of the
driving amplitude that we have used in the numerical simu-
lations. After having reached a stationary regime, although
the driving amplitudesB0 are equal in both cases, the dynam-
ics drastically differ in those two cases as it is expected from
the analytical consideration presented above and described
hereafter.

B. Evidence of bistability

In most of our numerical simulations we choose the driv-
ing frequency in the middle of the band gapV=0.5, use

damping parameterg=0.01 and lengthL=4.1. For the driv-
ing amplitude along path 1 in Fig. 5, we always observe a
stationary regime with decaying profile of the standing wave,
very well described by the exact analytical solution of type
III s32d, s33d. Instead, when driving along path 2, we get the
picture corresponding to the exact type I solutions13d, s14d.
Those two drastically different behaviors of the system are
displayed as three-dimensional plots in Fig. 6.

It is remarkable on the second picture of Fig. 6 that the
system has locked to a stationary solution with a small driv-
ing amplitudeshere B0=0.3d and a large output amplitude
sevaluated atB=4.35d. Let us mention that we can drive the
system with amplitudes down toB0=0.1 and still have the
type I solutionslarge output amplituded despite presence of
damping in the system, getting thus a regime of almost ideal
switch, or almost perfect detector.

Another remark is that the system never locks to the exact
solution of type IIs25d, s26d, simply because this solution is
unstable. For instance, if that exact solution is used as an
initial condition in the sine-Gordon equation, it eventually
breaks down.

To be complete, we compare the analytical expressions of
the standing waves profiles of Eqs.s14d, s26d, ands33d to the
results of numerical simulations in the case of the two dif-
ferent driving paths in the context of Fig. 6. The result is
displayed in Fig. 7, where the obtained perfect matching
shows that indeed the system locks to the analytical solution
obtained by assuming frequency synchronization and ampli-
tude matching. This is completed by plotting in Fig. 8 the
input-output amplitude dependence obtained from numerical
simulations and its comparison with analytical curves de-
rived from formulass17d, s29d, ands36d.

C. Energetic considerations

The physically useful bistable nature of the system mani-
fests in large difference between the energy dissipation in the

FIG. 6. Three-dimensional plots of the sine-Gordon system dy-
namics after having reached stationary regime. Upper plot corre-
sponds to the driving path 1 of Fig. 5 and lower plot to path 2. In
both cases driving frequency isV=0.5, stationary driving amplitude
B0=0.3, damping coefficientg=0.01, and system lengthL=4.1.

FIG. 7. Comparison of analytical expressionsssolid linesd for
the profiles of standing wavess14d, s26d, s33d, corresponding to
solutions of types III, II, and I, respectively, and numerical simula-
tions scirclesd. The type III solution is reached along path 1 of Fig.
5 while the type I results from path 2. The type II solution, unstable,
is never reproduced by the system.
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two stationary regimes. The averaged energy released from
the driver in unit time, can be expressed as

P =
V

2p
E

0

2p/V

dtE
0

L

dx gut
2. s50d

Indeed one can easily obtain

]

]t
E

0

L

dxH = −E
0

L

dx gut
2 − usuxutdux=0,

H =
1

2
ut

2 +
1

2
ux

2 + 1 − cosu, s51d

which by averaging on one period furnishes Eq.s50d as the
boundary value inx=0 is periodic.

Although the analytical solution of the sine-Gordon equa-
tion s1d are not solutions of the damped versions49d, we may
compare the power defined above obtained by numerical
simulations of Eq.s49d to the expressions50d, whereu is
simply replaced by the exact solutionstype III before the
switch, type I afterd. The result of this comparison is dis-
played in Fig. 9 where we see that expressions50d with
analytical solutions fit strikingly well the numerical simula-
tions, and that the powerP after the switch is 2 to 3 orders of
magnitude greater than before the switch.

V. COMMENTS AND CONCLUSION

It is worth mentioning that while the analytical solution of
type I holds for any lengthL, in a realistic physical system

snonzero dampingd, the situation is different. In particular,
for largeL and low driving amplitudes, when several nodes
of the type I standing wave solution are present, the solution
cannot survive and decays to a type III solution. This is
understood by the following simple argument: all of the ex-
act solutions derived in the previous sections are standing
waves, i.e., they do not generate energy flux. Thus, regions
of the system far from the boundary cannot gain energy from
the driver and the oscillations will eventually fade away.

We have essentially demonstrated, both by analytical and
numerical treatment, that the bistable property on the sine-
Gordon system allows one to generate a particular regime
that works as an ideal switch: nonzero output for vanishing
input. In a realistic physical systemsincluding dampingd the
property is conserved but for smallsnonvanishingd input.
This nonlinear hysteresis has been shown to correspond to
quite determinant differences in the power released by the
driver to the system.
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FIG. 8. Comparison of input-output amplitude dependence ob-
tained from numerical simulationsscirclesd with analytical curves
derived from formulass17d, s29d, s36d.

FIG. 9. PowerP of Eq. s50d in terms of the driving amplitude in
lin-log smain plotd and lin-lin sinsetd scales. Solid linefsolutions
s13d and s14dg and circlesssimulationsd correspond to driving re-
gime 1 of Fig. 5. Dashed linefsolutionss32d ands33dg and asterisks
ssimulationsd result from driving regime 2. Length isL=4.1, driving
frequencyV=0.5, and damping coefficientg=0.01.
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