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Exact solutions of the generalized nonlinear Schrédinger equation with distributed coefficients

V. I. Kruglov, A. C. Peacock, and J. D. Harvey
Physics Department, The University of Auckland, Private Bag 92019, Auckland, New Zealand
(Received 2 May 2004; revised manuscript received 7 March 2005; published 27 May 2005

A broad class of exact self-similar solutions to the nonlinear Schrédinger eqUBltic8E) with distributed
dispersion, nonlinearity, and gain or loss has been found describing both periodic and solitary waves. Appro-
priate solitary wave solutions applying to propagation in optical fibers and optical fiber amplifiers with these
distributed parameters have also been studied in detail. These solutions exist for physically realistic dispersion
and nonlinearity profiles. They correspond either to compressing or spreading solitary pulses which maintain a
linear chirp or to chirped oscillatory solutions. The stability of these solutions has been confirmed by numerical
simulations of the NLSE with perturbed initial conditions. These self-similar propagation regimes are expected
to find practical application in both optical fiber amplifier systems and in fiber compressors.
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I. INTRODUCTION the design of fiber optic amplifiers, optical pulse compres-

Studies of self-similar solutions of the relevant nonlinearSCrs, and solitary wave based communications links.
differential equations have been of great value in understand-
ing widely different nonlinear physical phenomelid. Al- Il. THE GENERAL CLASS OF SELE-SIMILAR
though self-similar solutions have been extensively studied ' AUTONOMOUS SOLUTIONS
in fields such as hydrodynamics and quantum field theory,
their application in optics has not been widespread. Some The main feature of our treatment of the generalized
important results have, however, been obtained, with previy| SE with distributed coefficients is the separation of solu-
ous theoretical studies considering self-similar behavior iRjons into definite classes and then the search for a full family
radial pattern formation2], the self-similar regime of col-  of solutions belonging to the appropriate defined class. In
lapse for spiral laser beams in nonlinear mefda stimu-  this section, we search for solutions which are self-similar
lated Raman scatterinfd], the evolution of self-written 54 belong to the autonomous class, which yields the qua
waveguided5], the forma_tion of Cantor set fractals in so_Ii- dratic phase with respect to the variableWe give appro-
ton systemg6], the nonlinear propagation of pulses with priate definitions for self-similar solutions and the autono-
parabolic intensity profiles in optical fibers with normal dis- j,ous class in this section and in more detail in Appendixes
persion[7], and nonlinear compression of chirped solitary o and B. The nonlinear Schrodinger equation with gain in

waves[8,9]. _ the form used in nonlinear fiber optics is given by
In this paper, we present the discovery of a broad class of
exact self-similar solutions to the nonlinear Schrodinger _ B(2) 9(2)
equation with gain or loséhe generalized NLSEwhere all L Y|P+ s (1)

parameters are functions of the distance variable. This class
alsp encloses the set of solitary wave solutions Which_ de\'/vhere we suppose that all parametg@sy, andg are the
scribes, for e.>§am.ple, such physmally important appl'cat'qniunctions of the propagation distanee This equation de-
as the amphﬁcaﬂon and compression of pulsgs In opticayqjnes the amplification or attenuatipwhen g(z) is nega-
flber.ampllﬁers[l_O]. These linearly c_hlrpeq solltary wave tive] of pulses propagating nonlinearly in a single-mode op-
solutions apply in the anomalous dispersion regifpeo-

) 4 ) L . ; tical fiber wherey(z,7) is the complex envelope of the
vided the nonlinearity coefficient is positiveand may be electrical field in a comoving frame; is the retarded time
contrasted with the asymptotic solutions appropriate in th%(z) is the group velocity digpersioﬁéVD) parametery(2) '
normal dispersion regimel1,12. The importance of the re- ¢ the nonlinearity parameter, a(z) is the distributed gain

sults reported here is twofold. First, the approach leads to F .
broad class of exact solutions to the nonlinear differentiafunction- _ .

equation in a systematic and transparent way. Some of these '€ Complex functionj(z, 7) can be written as
solutions have been obtained in the past, either serendipi- i

tously [8] or more recently by means of an extension to the #z,7)=U(z nexdid(z 7], (2)
widely used inverse-scattering technique which applies to the . : .
simple NLSE[15,16, but we emphasize the importance of where U an(_jq) are real functions of "?‘”d 7. Using this
the use of self-similarity techniques which are broadly appli-2nSaiz, we find the system of two equations for plbg 7)
cable for finding solutions to a range of nonlinear partial2nd amplitudel(z, 7),

differential equations, having applications in a variety of

other physical situations. The second and more specific sig- Ud. = @(UCDZ— U.)+ »2)U3 (3)
nificance of these results lies in their potential application to 2 T '
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z z Combining Egs(4) and(8), we find a third equation for
= ?(U‘I’rﬁ 2U.0,) + %U- (4 our general class of self-similar autonomous solutions with
quadratic phase,
In Appendix A, it is shown that in the general case when the
coefficients of the NLSE with gain are the functions of the U,= B(2)c(2U + 2B(2)c(2)(1— 1)U, + @U. (12)
distancez, the amplitudelJ(z, ) of the self-similar solutions 2
has the form

U,

Taking into account Eq(5), we find that Eq.(12) will be

1 1 satisfied if and only if the functiom'(z) is defined as
U(z,7) = F(T)exp<—G(Z)), (5
\I'(2) 2 1 dl'@ _ 28(2)c(2) 13
Iz dz A2l

where the scaling variabl€ and the functionG(z) are
The solutions of Eqs(10) and (13) are

_ z
T= % @)= J 9(z)dz". (6) .
(2 0 c(2) = 1-cD@ —cOD(z) , (14
Here I'(z) and F(T) are some functions which we seek, 0
\liv(kuoir_el without loss of generality we can assume that I'(2)=1-cD(2), (15)
In Appendix B, we introduce the class of “autonomous” wherec,=c(0) # 0 because the phase should be a quadratic
solutions with the polynomial form of phase, function of variable(7—7;) and the functiorD(z) is
N z
D(z,7) =D, (27" (7) D(2)=2 J B(z')dz". (16)
0

n=0

This class of “autonomous” solutions has a special form off@king into account Eqg5) and(11), we find
the functions¢,(2) providing the reduction of Eq3) to the d?F 2I2da_ 290 .
set of equations which do not have the explicit dependence =+t F-——exdG(z]F°=0. (17)
- o . daT B dz B
on the variabler. To demonstrate this “autonomous” prin-
ciple, let us consider the particular case when the phase h#s the general case, the coefficients in ELyZ) are the func-
the quadratic form tions of variablez but the function(T) depends only on the
scaling variableT, hence this equation has nontrivial solu-

_ _ 2
Pz =a2) +c()(1- 7o), ®) tions[F(T) # 0] if and only if the coefficients in Eq17) are
where 7, is an arbitrary real constant. Thus we consider theconstants,
class of self-similar solutions with the phase given by Eq. oT'(2)%da
(8). Then Eq.(3) with the phasd8) can be written - — =\, (19
B(z) dz
da dc 2) = 2 2_B 3
U(dz + dZ(T 7o) )—ZEUC (1= 7) 2UTT+ yU°. AT .
exdG(2)] = a. (19
(9) B(2)
This equation contains an explicit dependence on the variiereA=const,a=const, hence Eq¢18) and(19) yield
able (7—7;) which disappears when the terms at monomial 2 da %(0)
-7.)? are equals, hence we find the pair of equations A= ————| , a=——, (20)
(=) are eq pair ot eq pO dz| - 7 pO)
M = 28(2)c(2)?, (10) becausd'(0)=1 aqd G(0)=0. Thus, in the nontrivial case
dz Eqg. (17) can be written as
da(z B2 &F AF-2aF3=0 (21
U= == Ut f2U (11) dT? am

. - _ The solution of Eq(18) is
In Appendix B, it is also proved that the “autonomous” prin-

ciple yieldsN=2 in Eq.(7), which is actually equivalent to N (* B(Z)dz
the phase in the forr(8). Thus the pair of Eq410) and(11) a(z)=ao- EL [1-cDZ) ]’
follows from the “autonomous” principle in the general case

when the phase is given by E({). We note that the “au- where we have used an explicit form for the functib(z)
tonomous” principle is not equivalent to the quadratic phaseyiven by Eq.(15). Herea, is an integration constant. We can,
requirementsee Appendix Bsince the phase in the for(8)  however, calculate the integral in this equation to yield the
does not yield the system of Eq4.0) and(11). function a(z),

(22)
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\D(2)

41 -c,D(2)] @3

a(2) =ap-

Hence combining Eq98), (14), and(23) we can represent
the phase for our solutions in the explicit form

— AD(2) Co(7— 7'c)z
@D b 1-ep 2V
It is useful to write Eq(19) in the form
p(2) = p(0)[1 - c,D(2) Jexd G(2)], (25
where we define the functiop(z) as
B(2) BO) _1
=—, 0)=——=— 26
p(2) A2 p(0) A0« (26)
One may differentiate this equation and find
_ 1 dp(2) 2cB(2)
9= dz T 1-cp@ @

Evidently, Eqs(25) and(27) are equivalent and they give the
condition for the functiong3(z), y(z), andg(z), which is the

necessary and sufficient condition for the existence of th

self-similar solutions of the generalized NLSE with dis-

tributed coefficients. These self-similar solutions have the

amplitude in the form

! F( T )exp(EG(z))
V1-coD(2) \1-¢coD(2) 2 '
(28)

where the functiorF(T) is defined by Eq(21) and the phase
®(z,7) is given by Eq.(24). Using these results, we find in

U(z,7) =

PHYSICAL REVIEW E 71, 056619(2005

~\ 2
(d_F> = p+ N2 + argt, (3D

du

Using Egs.(25 and (28), one may find the amplitude of
self-similar solutions as

V]ap(2)| ~

U(z,7) = F(u).

T1- coD(2) (32)

We suppose below that sgiz)=sgnB(0) and sgny(z)
=sgny(0) for 0=<z<Zz, henceap(z)>0. Integrating Eq.
(31) for the casen=7,2 and u=0 when B(2%(2) <0 (a
< 0) and using Eq(32), we find the amplitude of the solitary

-,

wave solution,
ec’< ol —%D(z)])' 3

where 7y is the initial pulse width,r, is the center of the
pulse position, ana, is the chirp parameter. These three
parameters are arbitrary. Another so-called kink solution fol-
lows from Eqgs.(31) and(32) to the conditions}\:—2752 and
wu=at7;* when B(2)y(2) >0 (a>0) and yields the ampli-

o

wherer,, 7., andc, are also arbitrary parameters. The homo-
geneous solutionunder variabler) follows in the case
N=-2¢?sgna and u=q*a! for either sign of the product
B(2)v(2) or « and is

lo@]

—_ \’
Ve - cp@]

éude in the form

@
Tol1 — CoD(2)]

T— Tc

7ol 1 —coD(2)]

U(z,7) = ) , (39

Uz = aV|p(2)|

T 1-c,D(2)’ (35)

Sec. Il the set of exact bounded self-similar solutions of Eq.

).

IIl. EXACT BOUNDED SELF-SIMILAR SOLUTIONS
OF THE GENERALIZED NLSE
WITH DISTRIBUTED COEFFICIENTS

whereq andc, are the arbitrary real parameters.

A set of six bounded periodic solutions, depending on
four arbitrary real parametefsy>0, 7,, 0<k<1, andcy)
also follows from Eqgs(31) and (32). We use here the stan-
dard notations for Jacobian elliptic functions. In Appendix C,
the equations for bounded Jacobian elliptic functions are pre-

In Sec. Il it was shown that the phase and the amplitudsented in the form as Ed31), which yield the following
of self-similar solutions of the generalized Schrédinger equaexact periodic solutiongl0].

tion with distributed coefficients are given by expressions Case >0, u=k*a17?,

(24) and(28), where the functior-(T) is the solution of Eq.
(21). Integrating Eq{(21), we find the first-order differential
equation,

drF\?
( ) :M+)\F2+a{F4, (29

dr

which is integrable in explicit form. Herg is the integration

constant. We also introduce the functibfu)=F(T), where
the new variablau is

T

u=—
70

T— Tc

" H1-cD@] (30

Then Eq.(29) will reduce to the form

17,4, and\=—(1+k?) 7,2]. Periodic

solution whengB(z)y(z2) >0 is

ke
Ve = - ep@]

T— Tc

7o[1 -coD(2)]’

k) , (36

where 0<k<1 is a free parameter. As-kO0, the function
snu,k) —sinu, hence Eq.(36) also yields the exact
asymptotic solution

—_—

U= kv|p(2) i(

sin T
Tol1 —CoD(2)]

Tl 1 —CoD(2)]

) . (37

where k<1 is a free parameter.
Case Za<0, u=-kK(1-k)a 7% and\=(2k?- 1) 7,7
Periodic solution wherB(z)y(z) <0 is
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/ _
Uz = kylp(2)| Cn( =1

7l1 -cD(2)]  \ 7[1-¢coD(2)]
where 0<k<1 is a free parameter. As+kO0, the function

cn(u, k) — cosu, hence Eq(38) also yields the exact asymp-
totical solution,

,k> ., (39

B k\"m < T— T, )
Ven = i -ep@] ““\rl-co@l) 39

where k<1 is a free parameter.
Case Ja<0, u=(1- kz)a'1704,
riodic solution whenB(z)y(z) <0 is

\/M dn( T Tc
7ol 1 —CoD(2)] 7ol 1 —coD(2)]

where 0<k<1 is a free parameter. As+0, the function
dn(u, k) — 1-k?sir? u, hence Eq(40) also yields the exact
asymptotic solution,

and\=(2-k?7,%]. Pe-

U(z,7) = , k) , (40

Vlp(2)|
VD= - cp2]
20— 1)

k? k2
XKl"Z)*ZC‘”(Ml—%D(z)])]’ 4y

where k<1 is a free parameter.
Case 4a<0, M:—kz(l—kz)a_lro4,
Periodic solution wheB(z) y(z) <0 is

andA=(2k?*-1)7,2].

kvl -k |p(2)] T—
7o[1 = CoD(2)]

Tc
7o[1-coD(2)]’

U(z,7) = k) , (42

where 0<k<1 is a free parameter. As-k0, the function
sdu, k) —sinu, hence Eq(42) also yields the exact asymp-
totical solution,

T— Tc

7ol 1 —coD(2)]

kV1-K\p(2)| . (

o[1-cD(@] ) 43

U(z,7) =

where k<1 is a free parameter
Case Ja>0, u=k?a™17;* and\=-(1+k?)7,%]. Periodic
solution whengB(z)y(2) >0 is

k\*'m d( T— T
Tl1 —¢oD(2)] 7ol 1 -¢oD(2)]

where 0<k<1 is a free parameter. As+0, the function
cd(u,k)—cosu, hence Eq.(44) also yields the exact
asymptotic solution,

U(z,7) = , k) , (44

: k\r'm S( T— T, )
Ve = @ i -cp@))

where k<1 is a free parameter
Case qa<0, u=(1-k)atr% and\=(2-k?) 7,2]. Pe-
riodic solution whenB(z) y(z) <0 is

PHYSICAL REVIEW E71, 056619(2005

U(z,7) =

V1-Kp(@)| ( T

nd
7ol1 —coD(2)] 7ol1 —¢oD(2)]
where 0<k<1 is a free parameter. Ask0, the function

nd(u,k)—>(1—%k2 sifu)™}, hence Eq.(46) also yields the
exact asymptotic solution,

,k> . (46)

1-14\e(@)]
7ol 1 —CoD(2)]
2(7- 1)

k2 k2
X{(l ’ Z) T2 C°< o1 —coD(z)]” - 47

where k<1 is a free parameter.

We note that six unbounded periodic solutions have the
same form as bounded periodic solutions with v(k)7-52
and u=n(k)a g%,

p(k) \*"m f( T— 7
Tl1 = CoD(2)] \ 79[1 - coD(2)]

where the function(iu, k) is given by Jacobian elliptic func-
tions as n&u,k), ndu,k), dqu,k), ddu,k), sdu,k), and
cqu, k). Here the constants(lp, v(k), and n(k) depending
on k are also defined by E¢B1) and one may find them.

We consider the generalization of the solutions found
above using some transformation to traveling solutions
T%S)(z,r) which also satisfy the generalized nonlinear
Schrédinger equatiofl), where indexs indicates some defi-
nite solution derived in this section. We seek these traveling
solutions in the form

U(z,7) =

U(z,7) = ,k) , (48

W(z,7) = Yz )exdi gz, 7], (49)
where the new variable’ is
r’:r—f v(z')dz'. (50)
0

Here \(2) is some real function of, ¢/¥(z,7) denote some
particular solution found in this section, and the phatg 7)
is an unknown real function. We note that EfO) yields

d(r—11)

V@

hence, if we consider variablein Eq. (1) as the time and
variabler as the propagating distance, then the functi@) v
is the velocity of generalized traveling wave solution
Yoz, 7).

Substitution of the traveling wave solutiga9) in Eq. (1)
yields the equation

B(Z) B2

=9 =0

(51)

where y/9=y{9(z,7') and ¢=¢(z, 7). We note that in deriv-
ing this equation, we take into account that the function
9(z,7) also satisfies Eq(1).

i[B(2)b,+ V()] +( =g )w
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Equation(51) can be satisfied if we suppose that the firstfound in this sectiofjwith phase given by Eq24)], we get
and second terms in this equation are identically equal téhe generalized traveling solutions depending on the arbitrary

zero, which means frequency parameten.
2
b= v(2) = B2 g2= 2 (529 IV APPLICATIONS FOR FIBER AMPLIFIER SYSTEMS
B T 27T 282 AND FIBER COMPRESSORS
It is clear from the first equation of the systef®2) that In Sec. Il it was shown that exact self-similar solutions of

¢.,=0, hence in this case the last term in E8fl) is equal to  Eq. (1) take place only when three functiop$z), v(z), and
zero automatically. Integration of the first equation of theg(z) satisfy Eq.(25) or equivalent Eq(27). Thus we have

system(52) leads to the solution three different cases.
v(2) (i) The differentiable functiong(z) and y(z) are given,
d(z,7)=———71+ x(2). (53 and then the functiog(z) is defined by Eq(27).
A2 (i) The functionsB(z) and g(z) are given, and then the
Then the second equation of the syst&f) can be written  function () follows from Eq.(25),
v\ V20 d 70) B(2)
dz(,B(z)) 252 aX?" (54 "= (BO 1-cD(g) A C@] 59

wherex(2) is an arbitrary function of. Since the right-hand where 8,=(0) and y,=(0).
side of Eq.(54) is a function ofz, the left-hand side of this (iii) The functionsy(z) andg(z) are given and the func-

equation must be equal to zero, which yields tion B(z) needs to be defined. We solve this problems using
V(2) = 0B(2), (55) the ansatz
wherew is an arbitrary real parameter. Combining E(s?) 1-cD(2) =exfd-f(2)], (60)
and (55) and integrating, we find the functiop(z), where, as follows from this ansatz, the new functit{m)
o2 (? satisfies the conditiof(0) =0. We note that the solitary wave
x(2 = ?f B(Z')dz' + k, (56) solution (33) and ansatZ£60) yield the width of the pulse as
0
. . . W(2) = 7o[1 -coD(2)] = g exd - f(2)]. (61)
where k is an arbitrary real parameter. Hence, using Egs. o _
(53) and (56), we find the phase(z, 7) as Combining Egs(27) and (60), one may find
w? d? ( 1 dy( ))
= — - —f(2) - f 2
d(z,7) =K+ 2 D(2) - . (57) 02 (2-{9@+ 22 dz (2=0. (62)
This phase yields the generalized traveling soluti¥® in ~ We also find that ansai®0) yields the function3(z) in the
the form form
2
1 df
Pz, 1) =y (z = —D(z))exp[ <K+ %D(z) - w7>]. B(2) = o d(Z) xd- f(2)]. (63
O

(58) Taking into account the conditiof{0)=0 and Eq.(63), one
We note that in the particular cagéz)=g=const the trans- May find the boundary conditions for E@2),

formation (58) reduces to the Galileian transformation, df
5 Vv fl=0=0, el 2o (64)
Pz, 7) = ¢(S)(z,r—vz)exp{i<x+ —z- —7)]. z=0
26 B hence the solution of Eq62) is
Here v=wB=const is the velocityif zis the time andris the 28
propagating distance in EL)]. f(z) = =2 Of W2 )exd G(z')]dz'. (65)
In conclusion, we note that the transformatigh8) form Yo

a one-parameter Abelian Lie group. In fact, without loss of
generality we can put=0 and write the transformatiai®8)

as ¢9=T 4, where y/9=y/¥ and y9=y. Then one

may find ) B(2) ='30L() p(G( 2)- Oﬁof YZ)exdG(Z')]dz )
lpﬂ’lﬂ’z = Tszwl‘ﬁ S Yo Yo

hence the operatofsransformationsT , are the elements of (66)
Abelian Lie group withw e R;: Toro, =TT, =T, Toy Using Egs.(61) and(65), one may also find in this case the
Thus, applying the transformatidB8) to the exact solutions width as

Combining Egqs(63) and (65), we find the functionB(z) in
the casdiii ) when the functiongy/(z) andg(z) are given,
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0.06

0.03F

Power (W)

o

Chirp (THz)

FIG. 1. Stability of the solu-
tions under the influence of pertur-
bations. Upper panel-input pulse,
lower panel-output pulse@) In-
put power 95% of ideal powe(b)
chirp 95% of ideal chirp(c) 5%

-10 0 10
Time (ps)

-10 0 10
Time (ps)

random noise on amplitude and
phase. These simulations were for
the case of a hyperbolic gain pro-

; ; -~ ' ' o7 ' wll2s file with 9 m of fiber which gen-
MMQ; M 10 = erated 10 dB of gain with constant
1.50 0 . o . {-25 £ dispersion and nonlinearity. The
. e circles indicate the ideal input and

=3 output pulses (i.e., the exact
& 0.75F L R solution and the solid lines are
§ the numerically generated

simulations.
O 1 1 1

-5 0 5 -5 0 5
Time (ps) Time (ps)

W(2) =7 exp(— @fz y(z’)exp:G(z’)]dz’) . (67
0

0

Let us consider some particular cases whér) =const.
In the casey(z)=0, Eqs.(66) and(67) yield desired functions
as

B(2) = By expl(— 2CoBp2) , (68)

W(2) = 79 exp(— 2¢o8p2) . (69

Let us assumeg(z)=gy=const* 0. Then the functiong(z)
andW(z) are

2CoPo
Jo

B(2) = Bo EXP{QOZ_ [exp(go2) — 1]} , (70

2CoPo
Jo

W(2) = 7y exp[— [exp(g2) - 1]} . (71)

In the more general caseg(z)=g,exp(Az), Egs. (66) and
(67) yield required functions as

2¢oBy J 7 A2 exp(t) dt]

Ae” ), t

B(2) = Bo expl olexp(Az) - 1] -

(72

2¢ 7 XA gyt
W(2) = 7y exp{— Aﬁo f —f(

dt} , (73

(o

whereo=goA™%

Time (ps)

V. STABILITY OF THE EXACT SOLUTIONS
AND CORRESPONDENCE WITH THE
INVERSE SCATTERING METHOD

We have proved numerically the stability of the evolution
of these self-similar solutions under initial small perturba-
tions and also under nonideal parameter profiles. Typical re-
sults of numerical simulations are shown in Fig. 1. These
numerical simulations show that the evolution is more sen-
sitive to the initial chirp than to perturbations of the ampli-
tude, but in both cases the addition of small amounts of
random noise to the input pulse amplitude and phase did not
significantly affect the evolution. Indeed, in both cases the
pulses evolved towards the ideal form, indicating the stabil-
ity of the solutions. This result is to be expected in light of
the inverse-scattering technique, which can be applied to this
problem(see below in this section

Let us consider the influence of small deviations of the
solutions from the ideal form when the functiog&z), y(2),
andg(z) do not satisfy to the condition given by EQ7). We
suppose that the functiofs(z) in the equation

2¢oB(2)

__1 dp(2)
() * 1-¢c4D(2)

- p(z) dz

-9(2 (74)
is not zero. Then integrating this equation, we find

p(2) =p(0)[1 -coD(2)JlexdG(2) + 5S(2)],  (79)

where
69(2) = f 88(z')dz' .
0

The requirement of small deviations of the self-similar solu-
tions follows from this equation and can be written as

056619-6



EXACT SOLUTIONS OF THE GENERALIZED.. PHYSICAL REVIEW E 71, 056619(2005

lexd 8S(2)]- 1| < 1. (76) NLSE which is integrable by inverse-scattering techniques.

. . _ _ _ . We define new dimensionless variables and dimension-
It is evident that this equation will be satisfied only when o functionw(s, t) as

|63(z)| < 1. Combining Eqs(75) and (76), we find the de-
sired criterion t=u(z7) = T T s=5(2) = ID(2)]
p(2) exti- G(2)] " w1 -cD@)] 27(1-coD(2)]’

p(0) 1-c,D(2) <1 77 (81)

We note that this simple criterion is very useful for the de- ico(T— 70)?

sign of an amplifying pulse compressor, as the self-similar Wz, 1) = N(Z)eXP<TD(Z)>W(S,t), (82
solutions will be compressed whiléor suchz) this criterion 0

holds. where,, 7, andc, are the arbitrary real constants aN()

Let us suppose below thaB(z)=8y(2)+8(2), (2 is an arbitrary real function af [Im N(z)=0]. We note that
=vo(2)+6¥(2), and g(2) =gy(2) + 8g(2), where the functions the variablet=u(z,7) was defined abovgsee Eq.(30)] and
Bo(2), vo(2), andgy(2) satisfy the condition the functions(z) can be written as(z)=1/Lp(z), where the

_ function £Lp(2) is introduced in the papdd 7]. The function

Po(2) = po(O)L1 = CoDo(2) JexH Co(2) ] Lp(2) is a generalization of the dispersion length in dimen-
where po(2)=Bo(2)/ %(2), Do(2)=2[5B0(z')dz’, and Gy(2) sionless form, appropriate for the propagation of chirped
=[%00(z')dz’. This means that the generalized NLSE with pulses(see[17]). The transformation given by Eq82) is
the parametergy(2),y,(2), andgy(2) has self-similar solu- connected with the main part of the phase functib(z, 7)
tions classified in this paper and the functio®®z), 5y(z),  [last term in Eq(24)]. One may find that the transformations
and 59(z) we will consider as some deviations which take Egs.(81) and (82) reduce the generalized NLSE Ed) to
place in the optical compressor. We also suppose thdhe dimensionless form

5B(0)=0, 5(0)=0,|88(2)/ fo(2) <1, and| 5Y(2)/ (2)| <. @ e
Then Eq.(77) Ta)s the for(m) ) iwg = 2|,3(Z)|th - 71 -¢c,D(2)] e
1 -cyDy(z oB(z _5yz _5G(2) 3 1
‘ 1-cD(2) <1 * Bo2d (2 >e Y=t X N(2)°|w[?w + iE‘T(S)W’ (83
(78) . . .
Here D(z)=Dy(2) +D(z), 6D(z), and 5G(z) are given by where the gain functioer(s) is
equations o e ‘CoD(Z)]Z( s 2B 2 dN(z))
z z |B(Z)| 1 _COD(Z) N(Z) dz
oD(z) = 2[ oB(z')dz', 68G(2) :f 89(z')dz'. (84)
0 0

o ) ) BecauseN(z) is an arbitrary function, it is helpful to define
In our casegyDo(2) — 1 with increasingz because the width s fnction from the condition that the coefficient at the

in the optical compressor decreases wieis increasing.  nonlinear term in Eq(83) is a constant. This yields the func-
Hence, if 58(2) # 0, the first term in Eq(78) tends to zero g N(2) as

with increasingz and the inequality(78) is broken. Thus to R
avoid this problem, we may puiB(z2)=0. Then the inequal- _ V|p(2)]

ity (78) reduces as N(2) = [l -¢c,D(2)]’ (85)
(1 _ 57(Z)>e_3e(z) 1l <1 (79 wherep(z)=B(2)/ y(2). It is easy to see that this normalizing
v(2) function N(z) in Eq. (82) is proportional to the normalizing

function in Eq.(32) [see also the exact solutions given by

This inequality will be satisfied whej#G(z)| <1, and hence A ,
the best approach is to design the optical compressor und%%sl;é?%)_ma]' Hence in this particular case B@3) takes

the conditionsB(z) =By(2) [8B(2)=0] and

M2
Y(2)

. B2 A2
<1, (80) o= 208" 2]

. N o ~where the gain functiowr(s) is defined as
The distancez=z, where these conditions fail is the critical

1
2W+i=a(s)w, 86
-1 WA +izo(sw,  (86)

f 89(z')dz'
0

distance for the self-similar solutions, but numerical simula- o 71 ‘COD(Z)]2< ) - 2c0B(2) idP(Z))
tions have shown that the pulse can be compressea for |8(2)| 1-¢cD(20 p(20 dz

>7, with some nonideal form provided the gain increases (87)
rapidly.

Finally, we consider the correspondence between the sdAfe assume here that the functiers(z) is defined by Eq.
lutions obtained for the generalized NLSE and the standaré81). Note that Eq(87) can be written also in the form
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1 dé(z(s) @ ] ) 2200

"(S):a(z(s)) ds (88) ] 0

1.0F { 025 1-200
where the functiord(z) is
(2 . oL . .
10 0 10

-5 0 5 -

Chirp (THz)

Power (W)

o

andz=z(s) is the inverse of the functios=s(z) given by Eq. . : : 200 T
(81). Considering the case when the functig(g) and y(z) M 0 =
do not change the sign on the some interxal(0,z)) and 100t ] ] 2oo§

assuming that Eq(27) holds, we find that Eq(86) is the
standard NLSE with constant coefficients because in thisy
caseg/|B|=sgnB=const,y/|y|=sgny=const, andr(s)=0.

Thus the transformation given by Eq81) and(82) and )
Eq. (85) yields one-to-one correspondence between the stan  -0.5 0 _
dard NLSE with constant coefficients and generalized NLSE Time (ps) Time (ps)
when Eg.(27) hOIdS' Hence al_l solutions of the standard FIG. 2. Compression of a solitary hyperbolic secant chirped
NLSE have their counterparts in E(). Bece_luse the_stan- pulse(a) and an amplitude modulated super-Gaussian chirped pulse
dard NLSE can be solved exactly by using the inverseqp) through the same region of distributed gain fiber. Note the order
scattering methofi13,14], we can find all exact solutions of of magnitude compression of both pulses and the corresponding
the generalized NLSE with distributed coefficients when thencrease in frequency of the modulation for the amplitude modu-
condition Eq.(27) holds. In particular, one can write all mul- |ated pulse. The overall gain in this example is 10 dB. The circles
tiple soliton solutions of Eq(1) when Eq.(27) holds. Finally, indicate the exact solution and the solid lines are the numerically
we note that the nontrivial transformation found héEgs.  generated simulations.

(81), (82), and (85) subject to Eq.(27)] together with the

inverse-scattering methdd 3,14 generalizes the treatment ¢qrespondingly increased frequency chirp. The two remain-
developed in the above sections to include higher-order sqpg panels show the self-similar evolution of a chirped oscil-
lutions analogous to the well known higher-order solitons. latory pulse generated by windowing the exact oscillatory
solution with a super-Gaussian envelope as it passes through
the same amplifying fiber. The amplitude modulated pulse
VI. THE OSCILLATORY SOLUTIONS and its associated chirp scale in exactly the same way as the

While the solitary hyperbolic secant shaped pulses havByperbolic secant solution, but the frequency of the ampli-
also been discovered using different mathematical techniquégde modulation has now increased by an order of magni-
[10,15|, the oscillatory solutions which are based on elliptic tude. The modulated pulse simply scales to preserve the re-
Jacobean functions seem at first sight to be more of a curfationship between the amplitude oscillations and the width
osity than an experimentally applicable solution. This is pe-Of the envelope. All of these similariton solutions arise as a
cause the solutions are not localized in time and hence thé@sult of the interplay between dispersion and nonlinearity,
linear chirp involves in principle an unbounded range of fre-and the use of these pulses avoids the deleterious effect of
guencies. One important characteristic of these exact solivave breaking which can otherwise disrupt high-power op-
tions, however, is their stability, and this characteristic alsdical pulses in single-mode amplifying fibers. The experi-
applies to a linearly chirped burst of amplitude modulategmental realization of thesg new chirped osqlllatory soluno_ns
light. We have analyzed this situation numerically using ancould lead to new applications, for example in the generation
amplitude modulated pulse generated by windowing the ex0f tunable THz radiation by electro-optic conversion.
act solutions with a range of pulse envelopes. The oscillatory
amplitudes can be either close to sinusoidal in sHagech
is a limiting case of the elliptic Jacobean functipis exact
elliptic Jacobean functions, and in all cases the amplitude The techniques used to search for self-similar solutions to
modulated pulse evolves self-similarly in the same way asonlinear differential equations have not previously been ap-
the solitary wave solutions. plied extensively in optics research, but they have been

The exact solitary solutions have a hyperbolic secanshown here to lead straightforwardly to the development of a
shape but differ from fundamental soliton solutions by theirbroad class of solutions to the generalized nonlinear
linear chirp and their continuously increasing amplitude andSchrédinger equation. These include propagating chirped os-
decreasing pulse width. An example is shown in Fig. 2cillatory solutions, “kink” solutions, and solitary wave solu-
where the input and output pulse shapes and chirps are ditens. Of these, the solitary wave solutions and the oscilla-
played in the two left-hand panels, for the case of hyperbolidory solutions are likely to find the most practical
gain, with constant dispersion and nonlinearity. Propagatiompplications. The solitary wave solutions have also been
through this amplifying fiber leads to an order of magnitudefound recently using an extension to the inverse scattering
compression and amplification of the pulse, together with aechnique[15,16, but we wish here to emphasize the self-
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VII. DISCUSSION
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similar nature of these solitary solutions, which continuallyables which are appropriately chosenTaand z. Evidently,
compress or expand while propagating with a developingpne may choose other variables. Since we search for self-
chirp in the presence of gain or loss, respectively. In the cassimilar solutions, in the general case the amplitude is the
of propagation in the presence of gain, the solitary wavegroduct of two functions where one of them depends on
evolve towards & function, although naturally, other higher- variable T and another one is the function of varialte
order termgwhich are not taken into account in the NLSE asReally, the self-similar solutions have scaling structitg
written herg would preclude such an ultimate fate for an hence we can represent the amplitudig, 7) in the form

optical pulse in a single-mode fiber. We also note that all

appropriate solutions of the generalized NLSE may be found _ _TT T

by transformation given by Eq$81) and(82) and Eq.(85) Uz 7 =S2FM, T= NG (A1)

together with the standard inverse-scattering mefi&l14

and the additional condition E427). where without loss of generality we can suppose that
The chirped solitary wave solutions have been called soli-

tons[15,1€ in view of their behavior during collisions, after S0)=1, I'(0)=1. (A2)

which they are able to regain their original form. Indeed, . .
there has been a tendency recently to use the term “solitor{’t Is easy to Sh.OW that thg ge_nerahzed NLSE has the energy
for all solitary waves in optics. The word soliton was first integral of motion{ 20, which is
introduced, however, for a particular kind of solitary wave z
solution to emphasize that the behavior of these solutions is 1(2) = I(O)exp<f g(zr)dz,),
particlelike, implying that the energy propagates in the form 0
of localized “packets” with constant energy. Since this is ) .
clearly not the case in the context of these solutions whichvhere the functiori(z) yields the energy of the pulse at the
describe propagation in the presence of dissipation or gairflistancez and it is given by
we have avoided the use of the term soliton to describe the o
solitary wave self- similar solutions. In the case of propaga- 1(2) :f |z, 7)|dr. (A4)
tion in the normal dispersion regime, where the use of self- —
similar techniques shows that the asymptotic solitary wave
solution is a parabolic pulsgl?], we have introduced the Combining Egs(Al) and(A4), we find
term similariton to describe self-similar solitary parabolic so- - 5 o
Iupqn. .Progress has 'a}ls.o been made.recently in deve!opmg 1(2) :S(z)zf F<T_Tc) dT:S(Z)ZF(Z)f F(T)%dT.
similariton lasers utilizing these solitary wave solutions . I'(2) o
[18,19, and we feel that this term is also more appropriate to
describe the linearly chirped self-similar hyperbolic secant (AS)
pulses ir) the anomalous dispersion regime, and to reserve trﬂfsmg Eqgs(A3) and(A5), and taking into account EGA2),
term soliton for constant energy pulses. we have

The chirped oscillatory solutions have both a chirped un-

derlying carrier wave and a chirped oscillatory envelope, and z
S(2)’T'(2) = ex f g(z')dz' |.
0

(A3)

may find application as a new way to generate very high (AB)

frequency amplitude modulated light waves. These self-

similar solutions are exact solutions for al{unlike the as- Hence, substitution of the functicz) from Eq. (A6) to Eq
ymptotically exact parabolic solutionsand may well find Al ! Ids the f £ th litud ' '
new applications in fiber optic amplifiers and compressorsg ) vields the form of the amplitude as
particularly in view of their stability under perturbations 1 1
which may well lead to reduced noise in generated pulse U(z r):,=F(T)ex;<§G(z)>. (A7)

stream. In general, the full experimental exploitation of these I'(2)

solutions requires optical fibers with tailor-made dispersiorLI_hus we have found the general structure of the amplitude
profiles and nonlinearity profiles. While this is clearly a tech-Of thé generalized NLSE with distributed coefficients

nical challenge, such fibers may well become available, en-
abling the development of new types of pulsed and oscilla-

tory light sources in the future. APPENDIX B: THE AUTONOMOUS PRINCIPLE
We define the class of autonomous solutions as the class
APPENDIX A: THE AMPLITUDE FORM of solutions which reduce E@3) to the set of equations that
OF SELF-SIMILAR SOLUTIONS have no explicit dependence on the variahlét first, as an

example, let us consider some generalization of (Bgsup-

In the general case, the amplitude of self-similar solutionsposing that the phase has the form

depends on the scaling varialllevhich is a combination of
variables(7—7,) and some functioti'(z) of variablez. How- d(z,7) = a2) +c(2) (- 7)". (B1)
ever, in the case of the generalized NLSE with distributed

coefficients, the amplitude depends on two independent varifFhen Eqgs(3) and(B1) yield the equation
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da dc
U(—z + —Z(T— Tc)n> = gUHZCZ(T— 7?2 - gUTT+ Y3,

(B2)

PHYSICAL REVIEW E71, 056619(2005

U= B2 (U + B2 ¢1(2) + 2¢5(2) 7]U . + %U (B8)

instead Eq(12). The final result of such a treatment is the
same as we obtained in Sec. Il, and as an example the func-

Using our autonomous principle, we find that the exponentsions ¢,(z) for n=0,1,2 inthis case are

at (7— 1) in the left- and right-hand sides of E@2) should
be the same, henae=2n-2 orn=2. So we find Eqs(10)

oD =a@ +7c(2), ¢1(2)=-270(2), @2 =c2).

and(11) in this more general case too. Let us suppose that in (B9)
the general case, the phase has the polynomial form given by

N
D(z,7) =2 dn(D7. (B3)
n=0

Then combining Eqg.3) and(B3) and using the autonomous
principle, one may find the pair of equations

B

deo _ B B
Uz 2

dz Eud)i_ U+ 7U3' (B4)

N

N N 2
> %7“=B¢1E n¢nr”‘l+§(2 n¢nr“‘1> . (B5)
n=2

n=1 dz n=2
For an exampldN=2, Eq.(B5) yields

d¢1 _ d¢2 _ 2

L = 2Pbids Z=2B6 (B6)
It is easy to find that foN=3, Eq.(B5) yields Eqs.(B6) and
¢3=0. Now we can prove that for any integbr=3, Eq.
(B5) leads to Eqs(B6) and ¢,=0 for n>2. Really, we can
assume this statement fbi=M > 3. Then forN=M+1, Eq.
(B5) yields

M M
2 %TH‘F%W”:,&ME nd)ﬂ_lT”_l
n=2

1 0z
8 M 2
+ Bhr(M + 1) a7 + E(E n‘i’nf]_l)
n=2

B

M
+BM + Dpyya™ 2 o7+ (M + D%ty P
n=2

(B7)

Evidently, the last term in this equation is equal to zero be-

cause no other term in E@B7) is proportional to7?™ for
M >3, hencegy,1=0. Due togy,1=0, Eq.(B7) reduces to
Eq. (B5) for N=M, but above we have assumed that for
=M >3, Eq. (B5) leads to Eqs(B6) and ¢,=0 for n>2,
hence we have proved this statement for any intéger3. It
is clear that this result is valid also whéi=o.

Moreover, one may perform the full treatment which we

have developed in Sec. Il using the phase in the f(B®)
for N=2. Then in this case we have Eq&4) and (B6)
instead of Eqgs.(10) and (11). Evidently in this case we
should also use the equation

Thus we have proved that for the class of polynomial
form of the phase given by E¢B3), only the quadratic case
(with N=2) or equivalently the phas@1) for n=2 is com-
patible with the our autonomous principle.

It is important to understand that the autonomous require-
ment is not equivalent to the quadratic phase requirement,
since the quadratic phase given by E8). does not lead to
Eqgs.(10) and(11).

The autonomous principle is important because the
classes of autonomous and nonautonomous solutions give
the proper classification of exact solutions of the generalized
NLSE with distributed coefficients. We note, for example,
that in the casey(z)=0 the exact solutions with quadratic
phase are not autonomous.

APPENDIX C: BOUNDED JACOBIAN
ELLIPTIC FUNCTIONS

We present in this section the equations for bounded Jaco-
bian elliptic functions in the same form as E1). Though
Eqg. (31) may be integrated directly, to avoid complicated
transformations one can use the differential equations.

(i) F(u)=A sn(u,k):

~ \ 2
(d_F) = A% = (L+IO)F? + AR, (C1)
du
(i) F(u)=A cn(u, k):
dF o
<$) =A(1-K)+ (K- DF2-A%FL. (C2)

(i ) F(u)=A dn(u,k):

~ \ 2
<Z_E) =-A(1-1) +(2-KOF2-AF. (C3

(iv) F(u)=A sdu,k):

(3—5) = A2+ (2K - DF2 - A A1 - KFY. (CH)
(v) F(u)=A cd(u,k):
~\ 2
(g—i) = A2 (1+KF2+ A2KF, (CH

(vi) F(U)=A nd(u, k):

~\ 2
(3—5) =-A2+(2-KOF2-AA(1-KAF.  (CH)
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