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A broad class of exact self-similar solutions to the nonlinear Schrödinger equationsNLSEd with distributed
dispersion, nonlinearity, and gain or loss has been found describing both periodic and solitary waves. Appro-
priate solitary wave solutions applying to propagation in optical fibers and optical fiber amplifiers with these
distributed parameters have also been studied in detail. These solutions exist for physically realistic dispersion
and nonlinearity profiles. They correspond either to compressing or spreading solitary pulses which maintain a
linear chirp or to chirped oscillatory solutions. The stability of these solutions has been confirmed by numerical
simulations of the NLSE with perturbed initial conditions. These self-similar propagation regimes are expected
to find practical application in both optical fiber amplifier systems and in fiber compressors.
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I. INTRODUCTION

Studies of self-similar solutions of the relevant nonlinear
differential equations have been of great value in understand-
ing widely different nonlinear physical phenomenaf1g. Al-
though self-similar solutions have been extensively studied
in fields such as hydrodynamics and quantum field theory,
their application in optics has not been widespread. Some
important results have, however, been obtained, with previ-
ous theoretical studies considering self-similar behavior in
radial pattern formationf2g, the self-similar regime of col-
lapse for spiral laser beams in nonlinear mediaf3g, stimu-
lated Raman scatteringf4g, the evolution of self-written
waveguidesf5g, the formation of Cantor set fractals in soli-
ton systemsf6g, the nonlinear propagation of pulses with
parabolic intensity profiles in optical fibers with normal dis-
persion f7g, and nonlinear compression of chirped solitary
wavesf8,9g.

In this paper, we present the discovery of a broad class of
exact self-similar solutions to the nonlinear Schrödinger
equation with gain or losssthe generalized NLSEd where all
parameters are functions of the distance variable. This class
also encloses the set of solitary wave solutions which de-
scribes, for example, such physically important applications
as the amplification and compression of pulses in optical
fiber amplifiersf10g. These linearly chirped solitary wave
solutions apply in the anomalous dispersion regimespro-
vided the nonlinearity coefficient is positived, and may be
contrasted with the asymptotic solutions appropriate in the
normal dispersion regimef11,12g. The importance of the re-
sults reported here is twofold. First, the approach leads to a
broad class of exact solutions to the nonlinear differential
equation in a systematic and transparent way. Some of these
solutions have been obtained in the past, either serendipi-
tously f8g or more recently by means of an extension to the
widely used inverse-scattering technique which applies to the
simple NLSEf15,16g, but we emphasize the importance of
the use of self-similarity techniques which are broadly appli-
cable for finding solutions to a range of nonlinear partial
differential equations, having applications in a variety of
other physical situations. The second and more specific sig-
nificance of these results lies in their potential application to

the design of fiber optic amplifiers, optical pulse compres-
sors, and solitary wave based communications links.

II. THE GENERAL CLASS OF SELF-SIMILAR
AUTONOMOUS SOLUTIONS

The main feature of our treatment of the generalized
NLSE with distributed coefficients is the separation of solu-
tions into definite classes and then the search for a full family
of solutions belonging to the appropriate defined class. In
this section, we search for solutions which are self-similar
and belong to the autonomous class, which yields the qua-
dratic phase with respect to the variablet. We give appro-
priate definitions for self-similar solutions and the autono-
mous class in this section and in more detail in Appendixes
A and B. The nonlinear Schrödinger equation with gain in
the form used in nonlinear fiber optics is given by

icz =
bszd

2
ctt − gszducu2c + i

gszd
2

c, s1d

where we suppose that all parametersb, g, and g are the
functions of the propagation distancez. This equation de-
scribes the amplification or attenuationfwhen gszd is nega-
tiveg of pulses propagating nonlinearly in a single-mode op-
tical fiber wherecsz,td is the complex envelope of the
electrical field in a comoving frame,t is the retarded time,
bszd is the group velocity dispersionsGVDd parameter,gszd
is the nonlinearity parameter, andgszd is the distributed gain
function.

The complex functioncsz,td can be written as

csz,td = Usz,tdexpfiFsz,tdg, s2d

where U and F are real functions ofz and t. Using this
ansatz, we find the system of two equations for phaseFsz,td
and amplitudeUsz,td,

UFz =
bszd

2
sUFt

2 − Uttd + gszdU3, s3d
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Uz =
bszd

2
sUFtt + 2UtFtd +

gszd
2

U. s4d

In Appendix A, it is shown that in the general case when the
coefficients of the NLSE with gain are the functions of the
distancez, the amplitudeUsz,td of the self-similar solutions
has the form

Usz,td =
1

ÎGszd
FsTdexpS1

2
GszdD , s5d

where the scaling variableT and the functionGszd are

T =
t − tc

Gszd
, Gszd =E

0

z

gsz8ddz8. s6d

Here Gszd and FsTd are some functions which we seek,
where without loss of generality we can assume that
Gs0d=1.

In Appendix B, we introduce the class of “autonomous”
solutions with the polynomial form of phase,

Fsz,td = o
n=0

N

fnszdtn. s7d

This class of “autonomous” solutions has a special form of
the functionsfnszd providing the reduction of Eq.s3d to the
set of equations which do not have the explicit dependence
on the variablet. To demonstrate this “autonomous” prin-
ciple, let us consider the particular case when the phase has
the quadratic form

Fsz,td = aszd + cszdst − tcd2, s8d

wheretc is an arbitrary real constant. Thus we consider the
class of self-similar solutions with the phase given by Eq.
s8d. Then Eq.s3d with the phases8d can be written

USda

dz
+

dc

dz
st − tcd2D = 2bUc2st − tcd2 −

b

2
Utt + gU3.

s9d

This equation contains an explicit dependence on the vari-
able st−tcd which disappears when the terms at monomial
st−tcd2 are equals, hence we find the pair of equations

dcszd
dz

= 2bszdcszd2, s10d

U
daszd

dz
= −

bszd
2

Utt + gszdU3. s11d

In Appendix B, it is also proved that the “autonomous” prin-
ciple yieldsN=2 in Eq. s7d, which is actually equivalent to
the phase in the forms8d. Thus the pair of Eqs.s10d ands11d
follows from the “autonomous” principle in the general case
when the phase is given by Eq.s7d. We note that the “au-
tonomous” principle is not equivalent to the quadratic phase
requirementssee Appendix Bd since the phase in the forms8d
does not yield the system of Eqs.s10d and s11d.

Combining Eqs.s4d and s8d, we find a third equation for
our general class of self-similar autonomous solutions with
quadratic phase,

Uz = bszdcszdU + 2bszdcszdst − tcdUt +
gszd
2

U. s12d

Taking into account Eq.s5d, we find that Eq.s12d will be
satisfied if and only if the functionGszd is defined as

1

Gszd
dGszd

dz
= − 2bszdcszd. s13d

The solutions of Eqs.s10d and s13d are

cszd =
c0

1 − c0Dszd
, s14d

Gszd = 1 −c0Dszd, s15d

wherec0=cs0dÞ0 because the phase should be a quadratic
function of variablest−tcd and the functionDszd is

Dszd = 2E
0

z

bsz8ddz8. s16d

Taking into account Eqs.s5d and s11d, we find

d2F

dT2 +
2G2

b

da

dz
F −

2gG

b
expfGszdgF3 = 0. s17d

In the general case, the coefficients in Eq.s17d are the func-
tions of variablez but the functionFsTd depends only on the
scaling variableT, hence this equation has nontrivial solu-
tions fFsTdÞ0g if and only if the coefficients in Eq.s17d are
constants,

−
2Gszd2

bszd
da

dz
= l, s18d

gszdGszd
bszd

expfGszdg = a. s19d

Herel=const,a=const, hence Eqs.s18d and s19d yield

l = U −
2

bs0d
da

dz
U

z=0
, a =

gs0d
bs0d

, s20d

becauseGs0d=1 andGs0d=0. Thus, in the nontrivial case
Eq. s17d can be written as

d2F

dT2 − lF − 2aF3 = 0. s21d

The solution of Eq.s18d is

aszd = a0 −
l

2
E

0

z bsz8ddz8

f1 − c0Dsz8dg2 , s22d

where we have used an explicit form for the functionGszd
given by Eq.s15d. Herea0 is an integration constant. We can,
however, calculate the integral in this equation to yield the
function aszd,
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aszd = a0 −
lDszd

4f1 − c0Dszdg
. s23d

Hence combining Eqs.s8d, s14d, and s23d we can represent
the phase for our solutions in the explicit form

Fsz,td = a0 −
lDszd

4f1 − c0Dszdg
+

c0st − tcd2

1 − c0Dszd
. s24d

It is useful to write Eq.s19d in the form

rszd = rs0df1 − c0DszdgexpfGszdg, s25d

where we define the functionrszd as

rszd ;
bszd
gszd

, rs0d =
bs0d
gs0d

=
1

a
. s26d

One may differentiate this equation and find

gszd =
1

rszd
drszd

dz
+

2c0bszd
1 − c0Dszd

. s27d

Evidently, Eqs.s25d ands27d are equivalent and they give the
condition for the functionsbszd, gszd, andgszd, which is the
necessary and sufficient condition for the existence of the
self-similar solutions of the generalized NLSEs1d with dis-
tributed coefficients. These self-similar solutions have the
amplitude in the form

Usz,td =
1

Î1 − c0Dszd
FS t − tc

1 − c0DszdDexpS1

2
GszdD ,

s28d

where the functionFsTd is defined by Eq.s21d and the phase
Fsz,td is given by Eq.s24d. Using these results, we find in
Sec. III the set of exact bounded self-similar solutions of Eq.
s1d.

III. EXACT BOUNDED SELF-SIMILAR SOLUTIONS
OF THE GENERALIZED NLSE

WITH DISTRIBUTED COEFFICIENTS

In Sec. II it was shown that the phase and the amplitude
of self-similar solutions of the generalized Schrödinger equa-
tion with distributed coefficients are given by expressions
s24d ands28d, where the functionFsTd is the solution of Eq.
s21d. Integrating Eq.s21d, we find the first-order differential
equation,

SdF

dT
D2

= m + lF2 + aF4, s29d

which is integrable in explicit form. Herem is the integration

constant. We also introduce the functionF̃sud=FsTd, where
the new variableu is

u =
T

t0
=

t − tc

t0f1 − c0Dszdg
. s30d

Then Eq.s29d will reduce to the form

SdF̃

du
D2

= mt0
2 + lt0

2F̃2 + at0
2F̃4. s31d

Using Eqs.s25d and s28d, one may find the amplitude of
self-similar solutions as

Usz,td =
Îuarszdu

1 − c0Dszd
F̃sud. s32d

We suppose below that sgnbszd=sgnbs0d and sgngszd
=sgngs0d for 0øz,z0, hencearszd.0. Integrating Eq.
s31d for the casel=t0

−2 and m=0 when bszdgszd,0 sa
,0d and using Eq.s32d, we find the amplitude of the solitary
wave solution,

Usz,td =
Îurszdu

t0f1 − c0Dszdg
sechS t − tc

t0f1 − c0DszdgD , s33d

where t0 is the initial pulse width,tc is the center of the
pulse position, andc0 is the chirp parameter. These three
parameters are arbitrary. Another so-called kink solution fol-
lows from Eqs.s31d ands32d to the conditionsl=−2t0

−2 and
m=a−1t0

−4 when bszdgszd.0 sa.0d and yields the ampli-
tude in the form

Usz,td =
Îurszdu

t0f1 − c0Dszdg
tanhS t − tc

t0f1 − c0DszdgD , s34d

wheret0, tc, andc0 are also arbitrary parameters. The homo-
geneous solutionsunder variabletd follows in the case
l=−2q2sgna and m=q4a−1 for either sign of the product
bszdgszd or a and is

Usz,td =
qÎurszdu

1 − c0Dszd
, s35d

whereq andc0 are the arbitrary real parameters.
A set of six bounded periodic solutions, depending on

four arbitrary real parametersst0.0, tc, 0,k,1, andc0d
also follows from Eqs.s31d and s32d. We use here the stan-
dard notations for Jacobian elliptic functions. In Appendix C,
the equations for bounded Jacobian elliptic functions are pre-
sented in the form as Eq.s31d, which yield the following
exact periodic solutionsf10g.

Case 1fa.0, m=k2a−1t0
−4, andl=−s1+k2dt0

−2g. Periodic
solution whenbszdgszd.0 is

Usz,td =
kÎurszdu

t0f1 − c0Dszdg
snS t − tc

t0f1 − c0Dszdg
,kD , s36d

where 0,k,1 is a free parameter. As k→0, the function
snsu,kd→sinu, hence Eq. s36d also yields the exact
asymptotic solution

Usz,td =
kÎurszdu

t0f1 − c0Dszdg
sinS t − tc

t0f1 − c0DszdgD , s37d

where k!1 is a free parameter.
Case 2fa,0, m=−k2s1−k2da−1t0

−4, andl=s2k2−1dt0
−2g.

Periodic solution whenbszdgszd,0 is
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Usz,td =
kÎurszdu

t0f1 − c0Dszdg
cnS t − tc

t0f1 − c0Dszdg
,kD , s38d

where 0,k,1 is a free parameter. As k→0, the function
cnsu,kd→cosu, hence Eq.s38d also yields the exact asymp-
totical solution,

Usz,td =
kÎurszdu

t0f1 − c0Dszdg
cosS t − tc

t0f1 − c0DszdgD , s39d

where k!1 is a free parameter.
Case 3fa,0, m=s1−k2da−1t0

−4, andl=s2−k2dt0
−2g. Pe-

riodic solution whenbszdgszd,0 is

Usz,td =
Îurszdu

t0f1 − c0Dszdg
dnS t − tc

t0f1 − c0Dszdg
,kD , s40d

where 0,k,1 is a free parameter. As k→0, the function
dnsu,kd→1− 1

2k2 sin2 u, hence Eq.s40d also yields the exact
asymptotic solution,

Usz,td =
Îurszdu

t0f1 − c0Dszdg

3FS1 −
k2

4
D +

k2

4
cosS 2st − tcd

t0f1 − c0DszdgDG , s41d

where k!1 is a free parameter.
Case 4fa,0, m=−k2s1−k2da−1t0

−4, andl=s2k2−1dt0
−2g.

Periodic solution whenbszdgszd,0 is

Usz,td =
kÎ1 − k2Îurszdu
t0f1 − c0Dszdg

sdS t − tc

t0f1 − c0Dszdg
,kD , s42d

where 0,k,1 is a free parameter. As k→0, the function
sdsu,kd→sinu, hence Eq.s42d also yields the exact asymp-
totical solution,

Usz,td =
kÎ1 − k2Îurszdu
t0f1 − c0Dszdg

sinS t − tc

t0f1 − c0DszdgD , s43d

where k!1 is a free parameter.
Case 5fa.0, m=k2a−1t0

−4, andl=−s1+k2dt0
−2g. Periodic

solution whenbszdgszd.0 is

Usz,td =
kÎurszdu

t0f1 − c0Dszdg
cdS t − tc

t0f1 − c0Dszdg
,kD , s44d

where 0,k,1 is a free parameter. As k→0, the function
cdsu,kd→cosu, hence Eq. s44d also yields the exact
asymptotic solution,

Usz,td =
kÎurszdu

t0f1 − c0Dszdg
cosS t − tc

t0f1 − c0DszdgD , s45d

where k!1 is a free parameter.
Case 6fa,0, m=s1−k2da−1t0

−4, andl=s2−k2dt0
−2g. Pe-

riodic solution whenbszdgszd,0 is

Usz,td =
Î1 − k2Îurszdu
t0f1 − c0Dszdg

ndS t − tc

t0f1 − c0Dszdg
,kD , s46d

where 0,k,1 is a free parameter. As k→0, the function
ndsu,kd→ s1− 1

2k2 sin2 ud−1, hence Eq.s46d also yields the
exact asymptotic solution,

Usz,td =
Î1 − k2Îurszdu
t0f1 − c0Dszdg

3FS1 +
k2

4
D −

k2

4
cosS 2st − tcd

t0f1 − c0DszdgDG , s47d

where k!1 is a free parameter.
We note that six unbounded periodic solutions have the

same form as bounded periodic solutions withl=nskdt0
−2

andm=hskda−1t0
−4,

Usz,td =
pskdÎurszdu

t0f1 − c0Dszdg
fS t − tc

t0f1 − c0Dszdg
,kD , s48d

where the function fsu,kd is given by Jacobian elliptic func-
tions as nssu,kd, ncsu,kd, dssu,kd, dcsu,kd, scsu,kd, and
cssu,kd. Here the constants pskd, nskd, andhskd depending
on k are also defined by Eq.s31d and one may find them.

We consider the generalization of the solutions found
above using some transformation to traveling solutions

c̃ssdsz,td which also satisfy the generalized nonlinear
Schrödinger equations1d, where indexs indicates some defi-
nite solution derived in this section. We seek these traveling
solutions in the form

c̃ssdsz,td = cssdsz,t8dexpfifsz,tdg, s49d

where the new variablet8 is

t8 = t −E
0

z

vsz8ddz8. s50d

Here vszd is some real function ofz, cssdsz,td denote some
particular solution found in this section, and the phasefsz,td
is an unknown real function. We note that Eq.s50d yields

] st − t 8d
]z

= vszd,

hence, if we consider variablez in Eq. s1d as the time and
variablet as the propagating distance, then the function vszd
is the velocity of generalized traveling wave solution

c̃ssdsz,td.
Substitution of the traveling wave solutions49d in Eq. s1d

yields the equation

ifbszdft + vszdgct8
ssd + Sfz −

bszd
2

ft
2Dcssd + i

bszd
2

fttc
ssd = 0,

s51d

wherecssd=cssdsz,t8d andf=fsz,td. We note that in deriv-
ing this equation, we take into account that the function
cssdsz,td also satisfies Eq.s1d.
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Equations51d can be satisfied if we suppose that the first
and second terms in this equation are identically equal to
zero, which means

ft = −
vszd
bszd

, fz =
bszd

2
ft

2 =
v2szd
2bszd

. s52d

It is clear from the first equation of the systems52d that
ftt=0, hence in this case the last term in Eq.s51d is equal to
zero automatically. Integration of the first equation of the
systems52d leads to the solution

fsz,td = −
vszd
bszd

t + xszd. s53d

Then the second equation of the systems52d can be written

− t
d

dz
S vszd

bszd
D =

v2szd
2bszd

−
d

dz
xszd, s54d

wherexszd is an arbitrary function ofz. Since the right-hand
side of Eq.s54d is a function ofz, the left-hand side of this
equation must be equal to zero, which yields

vszd = vbszd, s55d

wherev is an arbitrary real parameter. Combining Eqs.s54d
and s55d and integrating, we find the functionxszd,

xszd =
v2

2
E

0

z

bsz8ddz8 + k, s56d

where k is an arbitrary real parameter. Hence, using Eqs.
s53d and s56d, we find the phasefsz,td as

fsz,td = k +
v2

4
Dszd − vt. s57d

This phase yields the generalized traveling solutionss49d in
the form

c̃ssdsz,td = cssdSz,t −
v

2
DszdDexpFiSk +

v2

4
Dszd − vtDG .

s58d

We note that in the particular casebszd=b=const the trans-
formation s58d reduces to the Galileian transformation,

c̃ssdsz,td = cssdsz,t − vzdexpFiSk +
v2

2b
z−

v

b
tDG .

Here v=vb=const is the velocityfif z is the time andt is the
propagating distance in Eq.s1dg.

In conclusion, we note that the transformationss58d form
a one-parameter Abelian Lie group. In fact, without loss of
generality we can putk=0 and write the transformations58d
as cv

ssd=Tvc0
ssd, where c̃ssd;cv

ssd and cssd;c0
ssd. Then one

may find

cv1+v2

ssd = Tv2
Tv1

c0
ssd,

hence the operatorsstransformationsd Tv are the elements of
Abelian Lie group withvPR1: Tv1+v2

=Tv2
Tv1

=Tv1
Tv2

.
Thus, applying the transformations58d to the exact solutions

found in this sectionfwith phase given by Eq.s24dg, we get
the generalized traveling solutions depending on the arbitrary
frequency parameterv.

IV. APPLICATIONS FOR FIBER AMPLIFIER SYSTEMS
AND FIBER COMPRESSORS

In Sec. II it was shown that exact self-similar solutions of
Eq. s1d take place only when three functionsbszd, gszd, and
gszd satisfy Eq.s25d or equivalent Eq.s27d. Thus we have
three different cases.

sid The differentiable functionsbszd and gszd are given,
and then the functiongszd is defined by Eq.s27d.

sii d The functionsbszd and gszd are given, and then the
function gszd follows from Eq.s25d,

gszd = Sg0

b0
D bszd

1 − c0Dszd
expf− Gszdg, s59d

whereb0=bs0d andg0=gs0d.
siii d The functionsgszd and gszd are given and the func-

tion bszd needs to be defined. We solve this problems using
the ansatz

1 − c0Dszd = expf− fszdg, s60d

where, as follows from this ansatz, the new functionfszd
satisfies the conditionfs0d=0. We note that the solitary wave
solution s33d and ansatzs60d yield the width of the pulse as

Wszd ; t0f1 − c0Dszdg = t0 expf− fszdg. s61d

Combining Eqs.s27d and s60d, one may find

d2

dz2 fszd − Sgszd +
1

gszd
dgszd

dz
D d

dz
fszd = 0. s62d

We also find that ansatzs60d yields the functionbszd in the
form

bszd =
1

2c0

dfszd
dz

expf− fszdg. s63d

Taking into account the conditionfs0d=0 and Eq.s63d, one
may find the boundary conditions for Eq.s62d,

uf uz=0 = 0, Udf

dz
U

z=0
= 2c0b0, s64d

hence the solution of Eq.s62d is

fszd =
2c0b0

g0
E

0

z

gsz8dexpfGsz8dgdz8. s65d

Combining Eqs.s63d and s65d, we find the functionbszd in
the casesiii d when the functionsgszd andgszd are given,

bszd =
b0gszd

g0
expSGszd −

2c0b0

g0
E

0

z

gsz8dexpfGsz8dgdz8D .

s66d

Using Eqs.s61d and s65d, one may also find in this case the
width as
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Wszd = t0 expS−
2c0b0

g0
E

0

z

gsz8dexpfGsz8dgdz8D . s67d

Let us consider some particular cases whengszd=const.
In the casegszd=0, Eqs.s66d ands67d yield desired functions
as

bszd = b0 exps− 2c0b0zd, s68d

Wszd = t0 exps− 2c0b0zd. s69d

Let us assumegszd=g0=constÞ0. Then the functionsbszd
andWszd are

bszd = b0 expFg0z−
2c0b0

g0
fexpsg0zd − 1gG , s70d

Wszd = t0 expF−
2c0b0

g0
fexpsg0zd − 1gG . s71d

In the more general case,gszd=g0 expsLzd, Eqs. s66d and
s67d yield required functions as

bszd = b0 expFsfexpsLzd − 1g −
2c0b0

Les E
s

s expsLzd expstd
t

dtG ,

s72d

Wszd = t0 expF−
2c0b0

Les E
s

s expsLzd expstd
t

dtG , s73d

wheres=g0L−1.

V. STABILITY OF THE EXACT SOLUTIONS
AND CORRESPONDENCE WITH THE

INVERSE SCATTERING METHOD

We have proved numerically the stability of the evolution
of these self-similar solutions under initial small perturba-
tions and also under nonideal parameter profiles. Typical re-
sults of numerical simulations are shown in Fig. 1. These
numerical simulations show that the evolution is more sen-
sitive to the initial chirp than to perturbations of the ampli-
tude, but in both cases the addition of small amounts of
random noise to the input pulse amplitude and phase did not
significantly affect the evolution. Indeed, in both cases the
pulses evolved towards the ideal form, indicating the stabil-
ity of the solutions. This result is to be expected in light of
the inverse-scattering technique, which can be applied to this
problemssee below in this sectiond.

Let us consider the influence of small deviations of the
solutions from the ideal form when the functionsbszd, gszd,
andgszd do not satisfy to the condition given by Eq.s27d. We
suppose that the functiondsszd in the equation

dsszd =
1

rszd
drszd

dz
+

2c0bszd
1 − c0Dszd

− gszd s74d

is not zero. Then integrating this equation, we find

rszd = rs0df1 − c0DszdgexpfGszd + dSszdg, s75d

where

dSszd =E
0

z

dssz8ddz8.

The requirement of small deviations of the self-similar solu-
tions follows from this equation and can be written as

FIG. 1. Stability of the solu-
tions under the influence of pertur-
bations. Upper panel-input pulse,
lower panel-output pulse.sad In-
put power 95% of ideal power,sbd
chirp 95% of ideal chirp,scd 5%
random noise on amplitude and
phase. These simulations were for
the case of a hyperbolic gain pro-
file with 9 m of fiber which gen-
erated 10 dB of gain with constant
dispersion and nonlinearity. The
circles indicate the ideal input and
output pulses si.e., the exact
solutiond and the solid lines are
the numerically generated
simulations.
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uexpfdSszdg − 1u ! 1. s76d

It is evident that this equation will be satisfied only when
udSszdu!1. Combining Eqs.s75d and s76d, we find the de-
sired criterion

U rszd
rs0d

expf− Gszdg
1 − c0Dszd

− 1U ! 1. s77d

We note that this simple criterion is very useful for the de-
sign of an amplifying pulse compressor, as the self-similar
solutions will be compressed whilesfor suchzd this criterion
holds.

Let us suppose below thatbszd=b0szd+dbszd, gszd
=g0szd+dgszd, and gszd=g0szd+dgszd, where the functions
b0szd, g0szd, andg0szd satisfy the condition

r0szd = r0s0df1 − c0D0szdgexpfG0szdg,

where r0szd=b0szd /g0szd, D0szd=2e0
zb0sz8ddz8, and G0szd

=e0
zg0sz8ddz8. This means that the generalized NLSE with

the parametersb0szd ,g0szd, and g0szd has self-similar solu-
tions classified in this paper and the functionsdbszd, dgszd,
and dgszd we will consider as some deviations which take
place in the optical compressor. We also suppose that
dbs0d=0, dgs0d=0, udbszd /b0szdu!1, andudgszd /g0szdu!1.
Then Eq.s77d has the form

U1 − c0D0szd
1 − c0Dszd

S1 +
dbszd
b0szd

−
dgszd
g0szd

De−dGszd − 1U ! 1.

s78d

Here Dszd=D0szd+dDszd, dDszd, and dGszd are given by
equations

dDszd = 2E
0

z

dbsz8ddz8, dGszd =E
0

z

dgsz8ddz8.

In our case,c0D0szd→1 with increasingz because the width
in the optical compressor decreases whenz is increasing.
Hence, ifdbszdÞ0, the first term in Eq.s78d tends to zero
with increasingz and the inequalitys78d is broken. Thus to
avoid this problem, we may putdbszd=0. Then the inequal-
ity s78d reduces as

US1 −
dgszd
g0szd

De−dGszd − 1U ! 1. s79d

This inequality will be satisfied whenudGszdu!1, and hence
the best approach is to design the optical compressor under
the conditionsbszd=b0szd fdbszd=0g and

Udgszd
g0szd

U ! 1, UE
0

z

dgsz8ddz8U ! 1. s80d

The distancez=z0 where these conditions fail is the critical
distance for the self-similar solutions, but numerical simula-
tions have shown that the pulse can be compressed forz
.z0 with some nonideal form provided the gain increases
rapidly.

Finally, we consider the correspondence between the so-
lutions obtained for the generalized NLSE and the standard

NLSE which is integrable by inverse-scattering techniques.
We define new dimensionless variablest ,s and dimension-
less functionwss,td as

t = usz,td ;
t − tc

t0f1 − c0Dszdg
, s= sszd ;

uDszdu
2t0

2f1 − c0Dszdg
,

s81d

csz,td = NszdexpS ic0st − tcd2

1 − c0Dszd Dwss,td, s82d

wheret0, tc, andc0 are the arbitrary real constants andNszd
is an arbitrary real function ofz fIm Nszd=0g. We note that
the variablet=usz,td was defined abovefsee Eq.s30dg and
the functionsszd can be written assszd=1/LDszd, where the
function LDszd is introduced in the paperf17g. The function
LDszd is a generalization of the dispersion length in dimen-
sionless form, appropriate for the propagation of chirped
pulsessseef17gd. The transformation given by Eq.s82d is
connected with the main part of the phase functionFsz,td
flast term in Eq.s24dg. One may find that the transformations
Eqs. s81d and s82d reduce the generalized NLSE Eq.s1d to
the dimensionless form

iws =
bszd

2ubszdu
wtt − t0

2f1 − c0Dszdg2 gszd
ubszdu

3 Nszd2uwu2w + i
1

2
sssdw, s83d

where the gain functionsssd is

sssd =
t0

2f1 − c0Dszdg2

ubszdu Sgszd +
2c0bszd

1 − c0Dszd
−

2

Nszd
dNszd

dz
D .

s84d

BecauseNszd is an arbitrary function, it is helpful to define
this function from the condition that the coefficient at the
nonlinear term in Eq.s83d is a constant. This yields the func-
tion Nszd as

Nszd =
Îurszdu

t0f1 − c0Dszdg
, s85d

whererszd=bszd /gszd. It is easy to see that this normalizing
function Nszd in Eq. s82d is proportional to the normalizing
function in Eq.s32d fsee also the exact solutions given by
Eqs.s33d–s48dg. Hence in this particular case Eq.s83d takes
the form

iws =
bszd

2ubszdu
wtt −

gszd
ugszdu

uwu2w + i
1

2
sssdw, s86d

where the gain functionsssd is defined as

sssd =
t0

2f1 − c0Dszdg2

ubszdu Sgszd −
2c0bszd

1 − c0Dszd
−

1

rszd
drszd

dz
D .

s87d

We assume here that the functions=sszd is defined by Eq.
s81d. Note that Eq.s87d can be written also in the form
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sssd =
1

u„zssd…
du„zssd…

ds
, s88d

where the functionuszd is

uszd =
1 − c0Dszd

rszd
expfGszdg, s89d

andz=zssd is the inverse of the functions=sszd given by Eq.
s81d. Considering the case when the functionsbszd andgszd
do not change the sign on the some intervalzP s0,z0d and
assuming that Eq.s27d holds, we find that Eq.s86d is the
standard NLSE with constant coefficients because in this
caseb / ubu=sgnb=const,g / ugu=sgng=const, andsssd=0.

Thus the transformation given by Eqs.s81d and s82d and
Eq. s85d yields one-to-one correspondence between the stan-
dard NLSE with constant coefficients and generalized NLSE
when Eq. s27d holds. Hence all solutions of the standard
NLSE have their counterparts in Eq.s1d. Because the stan-
dard NLSE can be solved exactly by using the inverse-
scattering methodf13,14g, we can find all exact solutions of
the generalized NLSE with distributed coefficients when the
condition Eq.s27d holds. In particular, one can write all mul-
tiple soliton solutions of Eq.s1d when Eq.s27d holds. Finally,
we note that the nontrivial transformation found herefEqs.
s81d, s82d, and s85d subject to Eq.s27dg together with the
inverse-scattering methodf13,14g generalizes the treatment
developed in the above sections to include higher-order so-
lutions analogous to the well known higher-order solitons.

VI. THE OSCILLATORY SOLUTIONS

While the solitary hyperbolic secant shaped pulses have
also been discovered using different mathematical techniques
f10,15g, the oscillatory solutions which are based on elliptic
Jacobean functions seem at first sight to be more of a curi-
osity than an experimentally applicable solution. This is be-
cause the solutions are not localized in time and hence the
linear chirp involves in principle an unbounded range of fre-
quencies. One important characteristic of these exact solu-
tions, however, is their stability, and this characteristic also
applies to a linearly chirped burst of amplitude modulated
light. We have analyzed this situation numerically using an
amplitude modulated pulse generated by windowing the ex-
act solutions with a range of pulse envelopes. The oscillatory
amplitudes can be either close to sinusoidal in shapeswhich
is a limiting case of the elliptic Jacobean functionsd or exact
elliptic Jacobean functions, and in all cases the amplitude
modulated pulse evolves self-similarly in the same way as
the solitary wave solutions.

The exact solitary solutions have a hyperbolic secant
shape but differ from fundamental soliton solutions by their
linear chirp and their continuously increasing amplitude and
decreasing pulse width. An example is shown in Fig. 2,
where the input and output pulse shapes and chirps are dis-
played in the two left-hand panels, for the case of hyperbolic
gain, with constant dispersion and nonlinearity. Propagation
through this amplifying fiber leads to an order of magnitude
compression and amplification of the pulse, together with a

correspondingly increased frequency chirp. The two remain-
ing panels show the self-similar evolution of a chirped oscil-
latory pulse generated by windowing the exact oscillatory
solution with a super-Gaussian envelope as it passes through
the same amplifying fiber. The amplitude modulated pulse
and its associated chirp scale in exactly the same way as the
hyperbolic secant solution, but the frequency of the ampli-
tude modulation has now increased by an order of magni-
tude. The modulated pulse simply scales to preserve the re-
lationship between the amplitude oscillations and the width
of the envelope. All of these similariton solutions arise as a
result of the interplay between dispersion and nonlinearity,
and the use of these pulses avoids the deleterious effect of
wave breaking which can otherwise disrupt high-power op-
tical pulses in single-mode amplifying fibers. The experi-
mental realization of these new chirped oscillatory solutions
could lead to new applications, for example in the generation
of tunable THz radiation by electro-optic conversion.

VII. DISCUSSION

The techniques used to search for self-similar solutions to
nonlinear differential equations have not previously been ap-
plied extensively in optics research, but they have been
shown here to lead straightforwardly to the development of a
broad class of solutions to the generalized nonlinear
Schrödinger equation. These include propagating chirped os-
cillatory solutions, “kink” solutions, and solitary wave solu-
tions. Of these, the solitary wave solutions and the oscilla-
tory solutions are likely to find the most practical
applications. The solitary wave solutions have also been
found recently using an extension to the inverse scattering
techniquef15,16g, but we wish here to emphasize the self-

FIG. 2. Compression of a solitary hyperbolic secant chirped
pulsesad and an amplitude modulated super-Gaussian chirped pulse
sbd through the same region of distributed gain fiber. Note the order
of magnitude compression of both pulses and the corresponding
increase in frequency of the modulation for the amplitude modu-
lated pulse. The overall gain in this example is 10 dB. The circles
indicate the exact solution and the solid lines are the numerically
generated simulations.
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similar nature of these solitary solutions, which continually
compress or expand while propagating with a developing
chirp in the presence of gain or loss, respectively. In the case
of propagation in the presence of gain, the solitary waves
evolve towards ad function, although naturally, other higher-
order termsswhich are not taken into account in the NLSE as
written hered would preclude such an ultimate fate for an
optical pulse in a single-mode fiber. We also note that all
appropriate solutions of the generalized NLSE may be found
by transformation given by Eqs.s81d and s82d and Eq.s85d
together with the standard inverse-scattering methodf13,14g
and the additional condition Eq.s27d.

The chirped solitary wave solutions have been called soli-
tonsf15,16g in view of their behavior during collisions, after
which they are able to regain their original form. Indeed
there has been a tendency recently to use the term “soliton”
for all solitary waves in optics. The word soliton was first
introduced, however, for a particular kind of solitary wave
solution to emphasize that the behavior of these solutions is
particlelike, implying that the energy propagates in the form
of localized “packets” with constant energy. Since this is
clearly not the case in the context of these solutions which
describe propagation in the presence of dissipation or gain,
we have avoided the use of the term soliton to describe the
solitary wave self- similar solutions. In the case of propaga-
tion in the normal dispersion regime, where the use of self-
similar techniques shows that the asymptotic solitary wave
solution is a parabolic pulsef12g, we have introduced the
term similariton to describe self-similar solitary parabolic so-
lution. Progress has also been made recently in developing
similariton lasers utilizing these solitary wave solutions
f18,19g, and we feel that this term is also more appropriate to
describe the linearly chirped self-similar hyperbolic secant
pulses in the anomalous dispersion regime, and to reserve the
term soliton for constant energy pulses.

The chirped oscillatory solutions have both a chirped un-
derlying carrier wave and a chirped oscillatory envelope, and
may find application as a new way to generate very high
frequency amplitude modulated light waves. These self-
similar solutions are exact solutions for allz sunlike the as-
ymptotically exact parabolic solutionsd and may well find
new applications in fiber optic amplifiers and compressors,
particularly in view of their stability under perturbations
which may well lead to reduced noise in generated pulse
stream. In general, the full experimental exploitation of these
solutions requires optical fibers with tailor-made dispersion
profiles and nonlinearity profiles. While this is clearly a tech-
nical challenge, such fibers may well become available, en-
abling the development of new types of pulsed and oscilla-
tory light sources in the future.

APPENDIX A: THE AMPLITUDE FORM
OF SELF-SIMILAR SOLUTIONS

In the general case, the amplitude of self-similar solutions
depends on the scaling variableT which is a combination of
variablesst−tcd and some functionGszd of variablez. How-
ever, in the case of the generalized NLSE with distributed
coefficients, the amplitude depends on two independent vari-

ables which are appropriately chosen asT andz. Evidently,
one may choose other variables. Since we search for self-
similar solutions, in the general case the amplitude is the
product of two functions where one of them depends on
variable T and another one is the function of variablez.
Really, the self-similar solutions have scaling structuref1g,
hence we can represent the amplitudeUsz,td in the form

Usz,td = SszdFsTd, T =
t − tc

Gszd
, sA1d

where without loss of generality we can suppose that

Ss0d = 1, Gs0d = 1. sA2d

It is easy to show that the generalized NLSE has the energy
integral of motionf20g, which is

Iszd = Is0dexpSE
0

z

gsz8ddz8D , sA3d

where the functionIszd yields the energy of the pulse at the
distancez and it is given by

Iszd =E
−`

+`

ucsz,tdu2dt. sA4d

Combining Eqs.sA1d and sA4d, we find

Iszd = Sszd2E
−`

+`

FS t − tc

Gszd
D2

dt = Sszd2GszdE
−`

+`

FsTd2dT.

sA5d

Using Eqs.sA3d andsA5d, and taking into account Eq.sA2d,
we have

Sszd2Gszd = expSE
0

z

gsz8ddz8D . sA6d

Hence, substitution of the functionSszd from Eq.sA6d to Eq.
sA1d yields the form of the amplitude as

Usz,td =
1

ÎGszd
FsTdexpS1

2
GszdD . sA7d

Thus, we have found the general structure of the amplitude
of the generalized NLSE with distributed coefficients.

APPENDIX B: THE AUTONOMOUS PRINCIPLE

We define the class of autonomous solutions as the class
of solutions which reduce Eq.s3d to the set of equations that
have no explicit dependence on the variablet. At first, as an
example, let us consider some generalization of Eq.s8d sup-
posing that the phase has the form

Fsz,td = aszd + cszdst − tcdn. sB1d

Then Eqs.s3d and sB1d yield the equation
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USda

dz
+

dc

dz
st − tcdnD =

b

2
Un2c2st − tcd2n−2 −

b

2
Utt + gU3.

sB2d

Using our autonomous principle, we find that the exponents
at st−tcd in the left- and right-hand sides of Eq.sB2d should
be the same, hencen=2n−2 or n=2. So we find Eqs.s10d
ands11d in this more general case too. Let us suppose that in
the general case, the phase has the polynomial form given by

Fsz,td = o
n=0

N

fnszdtn. sB3d

Then combining Eqs.s3d andsB3d and using the autonomous
principle, one may find the pair of equations

U
df0

dz
=

b

2
Uf1

2 −
b

2
Utt + gU3, sB4d

o
n=1

N
dfn

dz
tn = bf1o

n=2

N

nfntn−1 +
b

2
So

n=2

N

nfntn−1D2

. sB5d

For an exampleN=2, Eq.sB5d yields

df1

dz
= 2bf1f2,

df2

dz
= 2bf2

2. sB6d

It is easy to find that forN=3, Eq.sB5d yields Eqs.sB6d and
f3=0. Now we can prove that for any integerNù3, Eq.
sB5d leads to Eqs.sB6d andfn=0 for n.2. Really, we can
assume this statement forN=M .3. Then forN=M +1, Eq.
sB5d yields

o
n=1

M
dfn

dz
tn +

dfM+1

dz
tM+1 = bf1o

n=2

M

nfn
n−1tn−1

+ bf1sM + 1dfM+1t
M +

b

2
So

n=2

M

nfntn−1D2

+ bsM + 1dfM+1t
Mo

n=2

M

nfntn−1 +
b

2
sM + 1d2fM+1

2 t2M .

sB7d

Evidently, the last term in this equation is equal to zero be-
cause no other term in Eq.sB7d is proportional tot2M for
M .3, hencefM+1=0. Due tofM+1=0, Eq.sB7d reduces to
Eq. sB5d for N=M, but above we have assumed that forN
=M .3, Eq. sB5d leads to Eqs.sB6d and fn=0 for n.2,
hence we have proved this statement for any integerNù3. It
is clear that this result is valid also whenN=`.

Moreover, one may perform the full treatment which we
have developed in Sec. II using the phase in the formsB3d
for N=2. Then in this case we have Eqs.sB4d and sB6d
instead of Eqs.s10d and s11d. Evidently in this case we
should also use the equation

Uz = bszdf2szdU + bszdff1szd + 2f2szdtgUt +
gszd
2

U sB8d

instead Eq.s12d. The final result of such a treatment is the
same as we obtained in Sec. II, and as an example the func-
tions fnszd for n=0,1,2 inthis case are

f0szd = aszd + tc
2cszd, f1szd = − 2tccszd, f2szd = cszd.

sB9d

Thus we have proved that for the class of polynomial
form of the phase given by Eq.sB3d, only the quadratic case
swith N=2d or equivalently the phasesB1d for n=2 is com-
patible with the our autonomous principle.

It is important to understand that the autonomous require-
ment is not equivalent to the quadratic phase requirement,
since the quadratic phase given by Eq.s8d does not lead to
Eqs.s10d and s11d.

The autonomous principle is important because the
classes of autonomous and nonautonomous solutions give
the proper classification of exact solutions of the generalized
NLSE with distributed coefficients. We note, for example,
that in the casegszd=0 the exact solutions with quadratic
phase are not autonomous.

APPENDIX C: BOUNDED JACOBIAN
ELLIPTIC FUNCTIONS

We present in this section the equations for bounded Jaco-
bian elliptic functions in the same form as Eq.s31d. Though
Eq. s31d may be integrated directly, to avoid complicated
transformations one can use the differential equations.

sid F̃sud=A snsu,kd:

SdF̃

du
D2

= A2 − s1 + k2dF̃2 + A−2k2F̃4. sC1d

sii d F̃sud=A cnsu,kd:

SdF̃

du
D2

= A2s1 − k2d + s2k2 − 1dF̃2 − A−2k2F̃4. sC2d

siii d F̃sud=A dnsu,kd:

SdF̃

du
D2

= − A2s1 − k2d + s2 − k2dF̃2 − A−2F̃4. sC3d

sivd F̃sud=A sdsu,kd:

SdF̃

du
D2

= A2 + s2k2 − 1dF̃2 − A−2k2s1 − k2dF̃4. sC4d

svd F̃sud=A cdsu,kd:

SdF̃

du
D2

= A2 − s1 + k2dF̃2 + A−2k2F̃4. sC5d

svid F̃sud=A ndsu,kd:

SdF̃

du
D2

= − A2 + s2 − k2dF̃2 − A−2s1 − k2dF̃4. sC6d
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