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Variational approach to spatial optical solitons in bulk cubic-quintic media stabilized
by self-induced multiphoton ionization
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Propagation of an optical high-power cylindrically symmetric beam in a material characterized by cubic-
quintic nonlinearity is studied both analytically and numerically. In this case we have to consider the self-
defocusing effect caused by the presence of free electrons produced due to plasma formation. The variational
method is used to study the system analytically. The finite-difference beam propagation method is used for the
numerical analysis. Stabl@ +1)D spatial solitons are observed. The analytical results are found to be in very
good agreement with the numerical results.
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I. INTRODUCTION A simple model for the stable propagation @+1)D

A spatial soliton results from the balance between lineagClitons may be based on cubic-quintic nonlineaf&y6].
diffraction and nonlinear self-focusing, usually with a Kerr- 11iS model has attracted considerable attention. It has been
type ultrafast nonlinearity. This effect was discovered inshowp that.the cubic-quintic nonlmeanty correctly describes
1964[1]. It was Askaryan in 19602] who first suggested the the dielectric response of _the polydlacetqume)luene suI—.
idea that an optical beam can induce a waveguide and guid@nate (PTS crystal[7]. This type of nonlinear response is
itself in it. A light beam traveling either in vacuum or in a Xnown for semiconductor-doped glasses and various
medium always broadens because of the light's natural wav&-conjugated polymerg8—10. In these types of materials
property of diffraction. But if the beam is shone into a bulk the refractive indesx is of the form
nonlinear material, such as silica glass, it changes the mate-
rial’'s refractive index. The consequent variation of the veloc-
ity of light across the beam’s wave front focuses the beam as

e ) . . herel is the beam intensity) is the linear refractive index,
if it were passing through a lens. The earliest experimenta ; g :
: : : .~and n, and n, are nonlinear coefficients with,>0 andn,
observation of the self-focusing of optical beams was in_ . " . . Lo .
<0; i.e., the higher-order nonlinearity is of the saturating

1964(3]. If the beam’s diffraction can be compensated bykind. The propagation of spatial solitons in a PTS like me-

beam’s self-focusing, we get the so-called spatial solitons,;. ; :
The perfect balance between diffraction and self-focusingdlum ha_s been StUd.'ed by_vanous grofips-13
Now, if we are using a high-power laser beam, we have to

that exists in spatial solitons has been found to occur in one - !
ca‘m&der the phenomenon of plasma generation through mul-

?ff 1’[)ng Otrr?givf;gzgé?r?j?ﬁ'?ns+ﬁgsdetgeazglllt;;isto?]f k?;i/rg%photon absorption. For an extreme high-power laser pulse
gy P of the order of 10 TW relativistic self-channeling in an un-

be_en found to oceur in a variety of_ma_lterlals like Kerr M- jerdense plasma has been predicted and experimentally ob-
terials, photorefractive materials, liquid crystals, etc. Re-

cently, Pecciantét al. [4] set up an experiment to demon- served over a plasma length of 3 mm. In this regime nearly
Y . e P Xp . all molecules of the medium are ionized and relativistic self-
strate all-optical switching and logic gate blocks using

spatial solitons in liquid crystals focuging develops from an increase of electrpn inertia under
The (1+1)D spatial solitons a.continuous wave beam Iin_the influence of the intense electrom{:\gnetw wave. When
, : ' . . ., _such pulses are propagated through air, they can propagate
garly confined in one tra}nsver'se dimension and Se'f'gu"?'e ver considerable distances because of the formation of fila-
in the other transverse dimension, are stable to perturbatio

. . Ments after the plasma has been generated through multipho-
and have been observed experimentally24 1)D soliton ton ionization of aif14]. The dispersive effects are less im-

that is self-guided in both transverse dimensions is not Stablﬁortant in this case. The main mechanism behind the filament
with a Kerr-type nonlinearity. Additional mechanisms suchy, mation is related to a dynamic balance between the Kerr
as index satu_r_ation or inclusiqn of higher-order ”0”"”earityself-focusing and the defocusing induced by the plaktsa
helps to stabilize the propagation of such beams. The idea of controlling light with light by taking advan-
tages of nonlinear optical effects is a topic of interest to
many researchers and scientists. The fundamental benefit is

N=ng+ Nyl +nyl?, (1)

*Electronic address: jisha@cusat.ac.in in the possibility of avoiding any optoelectronic conversion
"Electronic address: vck@cusat.ac.in process and hence increasing the device speed and efficiency.
*Electronic address: ponzsol@yahoo.com It is in this scenario, the self-guided beams called “spatial
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solitons” find importance. The areas of application includeequation can be simplified to obtain the cubic-quintic nonlin-
all-optical switching device§16], optical computing, all- ear Schrodinger equation. Hence the dynamics of the ampli-
optical polarization modulatorgl7], logic gates, etc. The tudeA of a laser beam in a PTS-like medium is governed by
prospect of forming all-optical switches and logic gates pre-a cubic-quintic nonlinear Schrédinger equation of the form
sents promise for generations of novel optical interconnects A
for computing and communications. _ 2k 2= + V2A + 2kkon, |AlA + 2kkon | APA= 0. (4)

In the present work, we have studied the propagation of 0z
an optical high-power beam through a PTS-like medium. In
this high-energy regime, we have to consider the phenomﬁ

[18]. M_ultiphoton absorption is a n_onlinear process, in Con'PIitudeA now takes the form
trast with the one-photon absorption process. It has a self-

defocusing effect on the material. The counteracting self- A, , 4
defocusing effect of both photoionized free electrons and the e A A 2kkono Al “A + 2Kkgny| A *A
quintic nonlinearity restricts the unbounded growth of the
Kerr nonlinearity. The study of spatial solitons in a bulk Kerr
medium with multiphoton ionization has been carried out by
Henz and Herrmanfil9]. Couairon[20] has studied the dy-
namics of light filaments formed when a femtosecond lasewhere N is the number of quanta necessary to ionize the
pulse propagates in air, taking into consideration the plasmenolecules,p=t-z/v is the time of the moving frame of the

7
- paAf |A(t")[MNdt’ =0, (5)

generated using photoionization. pulse maximum, ang anda are constants.

The refractive index now takes the form=ny+n,l Here, we are considering the propagation of the beam
+ny12=No/2noN,,, WhereN, is the number density of free along thez direction and variation along the radial direction.
electrons and\,, is the critical plasma density. So we will use cylindrical coordinates for our analysis.

The beam evolution is studied using the cubic-quinticHence Eq.(5) takes the form
nonlinear Schrédinger equation with the effect of multipho-

ton ionization. We analyzed the problem using both numeri- iZK% =— }i<r%> + 2kNq|AJPA + 2K\, Al A
cal and analytical methods. Jz rar\ or
We used the variational meth¢@1] with a Gaussian an- n
satz for the analytical analysis. Approximate solutions can be + paA f |A(t")[2Ndt. (6)

found using this method. The solutions obtained using the -
variational method were used as initial conditions for the

) ; : . . . . ere\;=—kgh, andA,=-Kkgn
direct integration to obtain a numerical solution. The finite- 1= koM, 2= ~kolls
difference beam propagation methd@dD-BPM) was used
for the numerical analysig22].

The time dependence of the beam is taken into account by
the ansat?A(z,r, 7)=B(z,r)T(%). T(%) is the normalized in-

ut shape.
Il. ANALYTICAL ANALYSIS USING THE VARIATIONAL ’ Equa%on(fi) can be obtained from the Lagrangian
METHOD r{ oB" B r 9B B’ N
An electric field E(r,t) in a dielectric medium satisfies L:'§<BE B E) E(E?THE'BWG
Maxwell’'s equation in the form . )\2|B|6T4+ pa B|2N+2T - -
VZE—é%:V(V-E), @ "3 "k N+1 97
where

whereD =¢E is the displacement vector in the dielectric me-

dium, with € being the dielectric constant relative to vacuum (7) = 7 T2Ngt

and it is approximately equal to?, n being the refractive 9t = Y '

index. For a medium characterized by cubic nonlineaby,

can be written asD=[ny(w)+ny(w)|E|’]’E where, E  For a solution of this problem, let us assume a trial solution
:%[A(r,t)expi(wt—kz)+c.c.]. Using this we can reduce Of the form

Maxwell’s equation to 2

r
2w(2)?

A B(zr) = C(z)exp[— + ib(z)rz] , (8)
2ik— + VA + 2kkon,|A2A=0 (3
dz whereC(z) is the maximum amplitudey(z) is the curvature
for a cubic medium wher&=w/c, ky=n¢k, and A is the parameter, andv(z) is the beam radius. Ideally, the trial
amplitude of the beam. This is the cubic nonlinearfunction should include a possibility to model the dynami-
Schrédinger equation. cally varying radial shape function of the beam. But that will
There are many materials which show quintic nonlinearmake the variational analysis more complicated.

effect in addition to the cubic one. In this case Maxwell's The reduced Lagrangian is then given by
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<L>=Jw Lrdr, (9)
0

—

(Ly= |I<c£ - C*E)V\ﬁ— + bZ|C|2T\A/5—

L cPT
2k

{ i 4b2}vv5\; )‘1|c|4T3w3—

|2N+2

| a |C
|C|6T4vv3\ Ll

e
12V3 2k(N+1)5’2 9(7) 4

(10
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ALy 3 Cl’T
ALy |T(CCZ CCZ)+5bZ|C|2T—+|4|k
w4 3\
+1QC|2Tb2 l|c|4T3w2 %|C|6T4W2
\J
3pa | |2N+2
———Tg(n)w? 15
and

L) d 6b

— =00 —(W°|C]?) = —|C]Aw>. 16

=00 (wicP)=—-c] (16)

From this and considering the fact that|C|? is a con-

Now we can find the variation dfL) with respect to the stant, we can write

various Gaussian paramete®éz), C(2)", w(z), andb(2):

|C]?T o wP
2k w4 +4b 2

A A
+ —/1_|C|4T3w3+ 3—25|C|6T4W3
r V

c&g_ Tecws bZ|C|2T—

pa | |2N+2
————Ty(PwW* 11
2k(N 1)5/2 g("]) ( )
and
L) _ wP |C|2T 1 w5
we + 2T— + — +4b?
o C C, b,|C] W4 b
A A
+ —1F|C|4T3vv3 + —=|CloTw?
Y 3\!’3
pa | |2N+2
——=To(pw’. 12
Subtracting Eq(12) from Eq. (11), we get
iT . iT .
Deew+Scemd=0
2 2
0 |C|?=y (a constant
0 w(0)4C(0)* =w(2)4C(2)|* = Eo. (13
Adding Egs.(11) and(12) we obtain
i(CC*—C*CZ)=—2b|C|2w2—£|2 + 407 (WP
z z ok |wi "
2)\ 4\
1|c|4T2 T2 |C|6T3
4 C 2N+2
ﬁg(ﬂﬂ | (14)

2k (N+ 1)5/2 :

Now, the variation of L) with respect ton(z) andb gives

dw _ 4bw w
dz 2k’
This implies
kdInw
b(z) == 18
@=5" (18
Comparing Egs(14) and(15) we obtain
5 4b w2 O\ 10\
bw? + LicleT2 + =221
2ka ok 2 2| | | |
6(2N+1 c/N
( )pa_ |C| 19

2k(N+1) (N+ 1)5’2 9(7) =0.

Now, combining Eq(19) with the derivative form of Eq.
(17), we obtain

dw_ 20 36MTE, 40N, T3E2
dZ (2K2w? 4k\J'EW3 GKVEW5
_ 242N+ 1)pag(7Ey 20)
(2K)2(N + 1)%an2Nt

Here |C|? has been eliminated by using the fact ta&tC|?
=E0.

On integrating the above equation, we get an equation for
the variation ofw(z) as

2
}(d_vv) +1I(w)=0. (21)

2\ dz

This is analogous to the equation of a particle moving in a
potential well. The potentidll(w) is given by

100, T°E2
6k\r’§v\/4

10 18\T°E,
(2k)2w? 4k\EW2

_ 242N+ 1)pag(7)Ey
2N(2K)X(N + 1)5/2n2N

IT(w) =-

(22)

The phaseap(z) of C(2) (C(2)=|C(z)|exdi#(2)]) is obtained
from Eq.(14), and also using Eq19) we find
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FIG. 1 Ql_Jintative plot of the_ potential functidii(y) when all FIG. 3. Qualitative plot of the potential functioH(y) when
the nonlinearities are of defocusing natiie+v)/¢>0]. The dot- third-order nonlinearity is of focusing nature and all other nonlin-
ted line represents the linear case.

earities are of defocusing natufstrong fifth order [-2.5<(u
+v)/ £<-1]. The dotted line represents the linear case.

dp_ 4 Ty 228)\243
a2 ok’ 2 |C| T+ |C| T Now, let us assume that the beamzat0 hasw(0)=w,
and[dw(z)/dz],—,=0. This givesK=—(u+v+§).
2(7N + 4)pa 9(77|C|2N) 03 Depending on the values @f, v, and ¢ we can identify
(N+1)2k (N+1)%% (23 four different regimes.
_ (1) (u+v)/£>0. This condition implies defocusing due
Introducingw(z)/wo=y(2), Eq. (21) becomes to both third- and fifth-order nonlinearities as well as the
1{dy\? nonlinearity due to the multiphoton effect. We can clearly see
§<d_z) +11(y) =0, (24)  from Fig. 1 that the beam diffracts faster than in the purely
linear case.
where (2) 1< (u+v)/£<0. This condition implies focusing
due to the third-order nonlinearity and defocusing due to a
I(y) = ﬁz — i +K, weak fifth-order nonlinearity. The multiphoton effect is also
y“ of defocusing nature. We can s@gg. 2) that the nonlinear-
ity is trying to focus the beam.
- 10 18\MT%E (3) —2.5< (u+v)/£<~-1. In this case the third-order non-

4k2w31 - 4k\x’§wg ’ linearity is of the focusing case and there is a strong fifth-

order nonlinearity. A potential well has been created. The

10)\2T3E§ spreading of the beam is stopped at the zeros of the potential
v=- W function (Fig. 3).
Voo (4) (u+v)l€=-2.5. This is the limit case. The potential
N well has degenerated into a single point. The diffraction of
_ 24(2N + 1)pag(7/)ENoz, the beam is exactly compensated by the focusing effect of
2N(20)2(N + 1)>awg* the nonlinearity and beam propagates without any change in
its shapdFig. 4). The collapse of the beam has been arrested
c and we get a stabl@+1)D spatial soliton which propagates
K=—;. (25)
W5
L+ Vv
n[y] g 20
nly] *1<“§V<0 e "-.
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FIG. 4. Qualitative plot of the potential functioH(y) when
FIG. 2. Qualitative plot of the potential functioH(y) when i

focusing due to the third-order nonlinearity is completely balanced
third-order nonlinearity is of focusing nature and all other nonlin- by the defocusing due to the fifth-order nonlinearity and multipho-
earities are of defocusing natufeeak fifth ordey [-1<(u+v)/& ton ionization[(u+v)/£é=-2.5]. This is the limit case. The dotted
<0]. The dotted line represents the linear case. line represents the linear case.
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FIG. 5. Three-dimensional plot of the normalized soliton inten- E s
sity vs the timey and the radial variable. ]
through the medium without any shape change. 0.
A three-dimensional plot of the normalized soliton inten- 0

sity vs the timexn and the radial variableis plotted(Fig. 5). 50 _ beam profile
Distance 100 -100

Il NUMERICAL ANALYSIS FIG. 6. Numerically computed beam profile after it propagates a
Equation(5) is numerically studied using the FD-BPM. It distance of 1 mm through the medium. Here intensity is in \&//m
is a cylindrical partial differential equation that can be “inte- and distance and transverse beam profile are in micrometers.
grated” forward inz by a number of standard techniques. In
this approach, the field in the transverse plane is represent@) agrees very well with that obtained from the variational

only at discrete points on a grid and at discrete planes alongpproach. The beam propagates without any change in shape.
the propagation direction Given the field at one plane, we

can find the field at the nextplane. This is then repeated to IV. RESULTS AND DISCUSSION
determine the field throughout the structure. _ _ _
Let w$** denote the field at transverse grid poinand In this work we have studied, both analytically and nu-

longitudinal planes, and assume that the grid points andmerically, the propagation of a high-energy laser beam
p|anes are equa”y Spaced by and AZ apart' respective'y. through a PTS“ke med|um Characte”zed by bOth th"’d.' and
The radial and longitudinal dimensions are discretized by thdifth-order nonlinearities. The energy of the beam considered

valuesr; andz according to the relations in the present problem is sufficiently high enough to produce
. multiphoton ionization. Solutions are obtained using the
ri=iAr and z=sAz variational formulation. It is found that multiphoton ioniza-

tion helps in containing the catastrophic breakdown of the
beam and helps in forming stable solitons. We could also
— WS+ WS — WSt = 0 WS + oW+ Wl . show analytically the formation of stable solitons. This solu-

tion was taken as the initial condition for the numerical

This can be easily solved using the Thomas algorithmymjation. The soliton is found to propagate without any
[23]. Once the field a$ is known, we can determine the field shape change.

ats+1 and so on.

We integrated Eq(5) using the result obtained from the
variational analysis as initial condition. The numerical pa-
rameters of the simulation has been chosen so as to fit the The authors acknowledge UGC, New Delhi for providing
usual experimental configurations. Here, we have chosecomputer facility through DSAPhase Il program. J.C.P.
no=1.6755, n,=2.2x10*2cn?/W and n,=-8x1022  wishes to thank Cochin University of Science and Technol-
cm*/W?2 which are the nonlinear coefficients of PTS atogy for providing financial assistance. V.C.K. wishes to ac-
wavelength 1600 nnji24]. Similarly, for AlGaAs, withny,  knowledge DST, Government of India for financial support
=3, n,=15x10¥cm?/W, n,=-5x10Z2cm*/W? at in the form of a research grant. K.P wishes to thank DST,
wavelength 1550 nni24]. The beam intensity is chosen as CSIR, and UGQResearch Awardfor financial help through
1.1x 10° W/m?. The outcome of these simulatiofsee Fig.  projects.

We get a tridiagonal matrix of the form
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