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Propagation of an optical high-power cylindrically symmetric beam in a material characterized by cubic-
quintic nonlinearity is studied both analytically and numerically. In this case we have to consider the self-
defocusing effect caused by the presence of free electrons produced due to plasma formation. The variational
method is used to study the system analytically. The finite-difference beam propagation method is used for the
numerical analysis. Stables2+1dD spatial solitons are observed. The analytical results are found to be in very
good agreement with the numerical results.
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I. INTRODUCTION

A spatial soliton results from the balance between linear
diffraction and nonlinear self-focusing, usually with a Kerr-
type ultrafast nonlinearity. This effect was discovered in
1964f1g. It was Askaryan in 1962f2g who first suggested the
idea that an optical beam can induce a waveguide and guide
itself in it. A light beam traveling either in vacuum or in a
medium always broadens because of the light’s natural wave
property of diffraction. But if the beam is shone into a bulk
nonlinear material, such as silica glass, it changes the mate-
rial’s refractive index. The consequent variation of the veloc-
ity of light across the beam’s wave front focuses the beam as
if it were passing through a lens. The earliest experimental
observation of the self-focusing of optical beams was in
1964 f3g. If the beam’s diffraction can be compensated by
beam’s self-focusing, we get the so-called spatial solitons.
The perfect balance between diffraction and self-focusing
that exists in spatial solitons has been found to occur in one
and two transverse dimensions, and the solitons are named
s1+1dD or s2+1dD accordingly. These spatial solitons have
been found to occur in a variety of materials like Kerr ma-
terials, photorefractive materials, liquid crystals, etc. Re-
cently, Pecciantiet al. f4g set up an experiment to demon-
strate all-optical switching and logic gate blocks using
spatial solitons in liquid crystals.

Thes1+1dD spatial solitons, a continuous wave beam lin-
early confined in one transverse dimension and self-guided
in the other transverse dimension, are stable to perturbations
and have been observed experimentally. As2+1dD soliton
that is self-guided in both transverse dimensions is not stable
with a Kerr-type nonlinearity. Additional mechanisms such
as index saturation or inclusion of higher-order nonlinearity
helps to stabilize the propagation of such beams.

A simple model for the stable propagation ofs2+1dD
solitons may be based on cubic-quintic nonlinearityf5,6g.
This model has attracted considerable attention. It has been
shown that the cubic-quintic nonlinearity correctly describes
the dielectric response of the polydiacetylenep-toluene sul-
fonatesPTSd crystal f7g. This type of nonlinear response is
known for semiconductor-doped glasses and various
p-conjugated polymersf8–10g. In these types of materials
the refractive indexn is of the form

n = n0 + n2I + n4I
2, s1d

whereI is the beam intensity,n0 is the linear refractive index,
and n2 and n4 are nonlinear coefficients withn2.0 andn4
,0; i.e., the higher-order nonlinearity is of the saturating
kind. The propagation of spatial solitons in a PTS like me-
dium has been studied by various groupsf11–13g

Now, if we are using a high-power laser beam, we have to
consider the phenomenon of plasma generation through mul-
tiphoton absorption. For an extreme high-power laser pulse
of the order of 10 TW relativistic self-channeling in an un-
derdense plasma has been predicted and experimentally ob-
served over a plasma length of 3 mm. In this regime nearly
all molecules of the medium are ionized and relativistic self-
focusing develops from an increase of electron inertia under
the influence of the intense electromagnetic wave. When
such pulses are propagated through air, they can propagate
over considerable distances because of the formation of fila-
ments after the plasma has been generated through multipho-
ton ionization of airf14g. The dispersive effects are less im-
portant in this case. The main mechanism behind the filament
formation is related to a dynamic balance between the Kerr
self-focusing and the defocusing induced by the plasmaf15g.

The idea of controlling light with light by taking advan-
tages of nonlinear optical effects is a topic of interest to
many researchers and scientists. The fundamental benefit is
in the possibility of avoiding any optoelectronic conversion
process and hence increasing the device speed and efficiency.
It is in this scenario, the self-guided beams called “spatial
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solitons” find importance. The areas of application include
all-optical switching devicesf16g, optical computing, all-
optical polarization modulatorsf17g, logic gates, etc. The
prospect of forming all-optical switches and logic gates pre-
sents promise for generations of novel optical interconnects
for computing and communications.

In the present work, we have studied the propagation of
an optical high-power beam through a PTS-like medium. In
this high-energy regime, we have to consider the phenom-
enon of plasma generation through multiphoton absorption
f18g. Multiphoton absorption is a nonlinear process, in con-
trast with the one-photon absorption process. It has a self-
defocusing effect on the material. The counteracting self-
defocusing effect of both photoionized free electrons and the
quintic nonlinearity restricts the unbounded growth of the
Kerr nonlinearity. The study of spatial solitons in a bulk Kerr
medium with multiphoton ionization has been carried out by
Henz and Herrmannf19g. Couaironf20g has studied the dy-
namics of light filaments formed when a femtosecond laser
pulse propagates in air, taking into consideration the plasma
generated using photoionization.

The refractive index now takes the formn=n0+n2I
+n4I

2−Ne/2n0Ncr, whereNe is the number density of free
electrons andNcr is the critical plasma density.

The beam evolution is studied using the cubic-quintic
nonlinear Schrödinger equation with the effect of multipho-
ton ionization. We analyzed the problem using both numeri-
cal and analytical methods.

We used the variational methodf21g with a Gaussian an-
satz for the analytical analysis. Approximate solutions can be
found using this method. The solutions obtained using the
variational method were used as initial conditions for the
direct integration to obtain a numerical solution. The finite-
difference beam propagation methodsFD-BPMd was used
for the numerical analysisf22g.

II. ANALYTICAL ANALYSIS USING THE VARIATIONAL
METHOD

An electric field Esr ,td in a dielectric medium satisfies
Maxwell’s equation in the form

¹2E −
1

c2

]2D

]t2
= = s= ·Ed, s2d

whereD=eE is the displacement vector in the dielectric me-
dium, with e being the dielectric constant relative to vacuum
and it is approximately equal ton2, n being the refractive
index. For a medium characterized by cubic nonlinearity,D
can be written as D=fn0svd+n2svduEu2g2E where, E
= 1

2fAsr ,tdexpiswt−kzd+c.c.g. Using this we can reduce
Maxwell’s equation to

2ik
]A

]z
+ ¹2A + 2kk0n2uAu2A = 0 s3d

for a cubic medium wherek=v /c, k0=n0k, and A is the
amplitude of the beam. This is the cubic nonlinear
Schrödinger equation.

There are many materials which show quintic nonlinear
effect in addition to the cubic one. In this case Maxwell’s

equation can be simplified to obtain the cubic-quintic nonlin-
ear Schrödinger equation. Hence the dynamics of the ampli-
tudeA of a laser beam in a PTS-like medium is governed by
a cubic-quintic nonlinear Schrödinger equation of the form

2ik
]A

]z
+ ¹2A + 2kk0n2uAu2A + 2kk0n4uAu4A = 0. s4d

Since we are using a very-high-power laser beam, we
have to consider the effect of multiphoton ionization as well.
The reduced Maxwell’s equation for the slowly varying am-
plitude A now takes the form

i2k
]A

]z
+ ¹2A + 2kk0n2uAu2A + 2kk0n4uAu4A

− raAE
−`

h

uAst8du2Ndt8 = 0, s5d

where N is the number of quanta necessary to ionize the
molecules,h= t−z/v is the time of the moving frame of the
pulse maximum, andr anda are constants.

Here, we are considering the propagation of the beam
along thez direction and variation along the radial direction.
So we will use cylindrical coordinates for our analysis.
Hence Eq.s5d takes the form

i2k
]A

]z
= −

1

r

]

]r
Sr

]A

]r
D + 2kl1uAu2A + 2kl2uAu4A

+ raAE
−`

h

uAst8du2Ndt. s6d

Herel1=−k0n2 andl2=−k0n4
The time dependence of the beam is taken into account by

the ansatzAsz,r ,hd=Bsz,rdTshd. Tshd is the normalized in-
put shape.

Equations6d can be obtained from the Lagrangian

L = i
r

2
SB

]B*

]z
− B* ]B

]z
DT +

r

2k

]B

]r

]B*

]r
T + r

l1

2
uBu4T3

+ r
l2

3
uBu6T4 + r

ra

2k

uBu2N+2

N + 1
Tgshd, s7d

where

gshd =E
−`

h

T2Ndt.

For a solution of this problem, let us assume a trial solution
of the form

Bsz,rd = CszdexpF−
r2

2wszd2 + ibszdr2G , s8d

whereCszd is the maximum amplitude,bszd is the curvature
parameter, andwszd is the beam radius. Ideally, the trial
function should include a possibility to model the dynami-
cally varying radial shape function of the beam. But that will
make the variational analysis more complicated.

The reduced Lagrangian is then given by
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kLl =E
0

`

Lrdr , s9d

kLl = i
T

2
SC

]C*

]z
− C* ]C

]z
Dw3

Îp

4
+ bzuCu2Tw5

Îp

8

+
uCu2T

2k
H 1

w4 + 4b2Jw5
Îp

8
+

l1

2
uCu4T3w3

Îp

8Î2

+
l2

3
uCu6T4w3

Îp

12Î3
+

ra

2k

uCu2N+2

sN + 1d5/2Tgshdw3
Îp

4
.

s10d

Now we can find the variation ofkLl with respect to the
various Gaussian parametersCszd, Cszd* , wszd, andbszd:

C
]kLl
]C

= i
T

2
CCz

*w3 + bzuCu2T
w5

2
+

uCu2T
2k

H 1

w4 + 4b2Jw5

2

+
l1

2Î2
uCu4T3w3 +

l2

3Î3
uCu6T4w3

+
ra

2k

uCu2N+2

sN + 1d5/2Tgshdw3 s11d

and

C* ]kLl
]C* = − i

T

2
C*Czw

3 + bzuCu2T
w5

2
+

uCu2T
2k

H 1

w4 + 4b2Jw5

2

+
l1

2Î2
uCu4T3w3 +

l2

3Î3
uCu6T4w3

+
ra

2k

uCu2N+2

sN + 1d5/2Tgshdw3. s12d

Subtracting Eq.s12d from Eq. s11d, we get

iT

2
CCz

*w3 +
iT

2
C*Czw

3 = 0

⇒uCu2=y sa constantd

⇒ws0d2uCs0du2 = wszd2uCszdu2 = E0. s13d

Adding Eqs.s11d and s12d we obtain

isCCz
* − C*Czd = − 2bzuCu2w2 −

2uCu2

2k
H 1

w4 + 4b2Jw2

−
2l1

Î2
uCu4T2 −

4l2

3Î3
uCu6T3

+
4ra

2k

gshduCu2N+2

sN + 1d5/2 . s14d

Now, the variation ofkLl with respect towszd andb gives

]kLl
]w

=
3

2
iTsCCz

* − C*Czd + 5bzuCu2T
w4

2
+

uCu2T
4k

+ 10uCu2Tb2w4

2k
+

3l1

4Î2
uCu4T3w2 +

l2

3Î3
uCu6T4w2

+
3ra

2k

uCu2N+2

sN + 1d5/2Tgshdw2 s15d

and

]kLl
]b

= 0 ⇒
d

dz
sw5uCu2d =

6b

k
uCu2w5. s16d

From this and considering the fact thatw2uCu2 is a con-
stant, we can write

dw

dz
=

4bw

2k
. s17d

This implies

bszd =
k

2

d ln w

dz
. s18d

Comparing Eqs.s14d and s15d we obtain

bzw
2 +

5

2kw2 +
4b2w2

2k
+

9l1

2Î2
uCu2T2 +

10l2

3Î3
uCu4T3

+
6s2N + 1dra

2ksN + 1d
uCu2N

sN + 1d5/2gshd = 0. s19d

Now, combining Eq.s19d with the derivative form of Eq.
s17d, we obtain

d2w

dz2 = −
20

s2kd2w3 −
36l1T

2E0

4kÎ2w3
−

40l2T
3E0

2

6kÎ3w5

−
24s2N + 1dragshdE0

N

s2kd2sN + 1d5/2w2N+1 . s20d

Here uCu2 has been eliminated by using the fact thatw2uCu2
=E0.

On integrating the above equation, we get an equation for
the variation ofwszd as

1

2
Sdw

dz
D2

+ Pswd = 0. s21d

This is analogous to the equation of a particle moving in a
potential well. The potentialPswd is given by

Pswd = −
10

s2kd2w2 −
18l1T

2E0

4kÎ2w2
−

10l2T
3E0

2

6kÎ3w4

−
24s2N + 1dragshdE0

N

2Ns2kd2sN + 1d5/2w2N + c. s22d

The phasefszd of Cszd (Cszd= uCszduexpfifszdg) is obtained
from Eq. s14d, and also using Eq.s19d we find
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df

dz
=

4

2kw2 +
7l1

2Î2
uCu2T2 +

8l2

3Î3
uCu4T3

+
2s7N + 4dra

sN + 1d2k

gshuCu2Nd
sN + 1d5/2 . s23d

Introducingwszd /w0=yszd, Eq. s21d becomes

1

2
Sdy

dz
D2

+ Psyd = 0, s24d

where

Psyd =
m

y2 +
n

y4 +
j

y2N + K,

m = −
10

4k2w0
4 −

18l1T
2E0

4kÎ2w0
4

,

n = −
10l2T

3E0
2

6kÎ3w0
6

,

j = −
24s2N + 1dragshdE0

N

2Ns2kd2sN + 1d5/2w0
2N+2 ,

K =
c

w0
2 . s25d

Now, let us assume that the beam atz=0 hasws0d=w0

and fdwszd /dzgz=0=0. This givesK=−sm+n+jd.
Depending on the values ofm, n, andj we can identify

four different regimes.
s1d sm+nd /j.0. This condition implies defocusing due

to both third- and fifth-order nonlinearities as well as the
nonlinearity due to the multiphoton effect. We can clearly see
from Fig. 1 that the beam diffracts faster than in the purely
linear case.

s2d −1, sm+nd /j,0. This condition implies focusing
due to the third-order nonlinearity and defocusing due to a
weak fifth-order nonlinearity. The multiphoton effect is also
of defocusing nature. We can seesFig. 2d that the nonlinear-
ity is trying to focus the beam.

s3d −2.5, sm+nd /j,−1. In this case the third-order non-
linearity is of the focusing case and there is a strong fifth-
order nonlinearity. A potential well has been created. The
spreading of the beam is stopped at the zeros of the potential
function sFig. 3d.

s4d sm+nd /j=−2.5. This is the limit case. The potential
well has degenerated into a single point. The diffraction of
the beam is exactly compensated by the focusing effect of
the nonlinearity and beam propagates without any change in
its shapesFig. 4d. The collapse of the beam has been arrested
and we get a stables2+1dD spatial soliton which propagates

FIG. 1. Qualitative plot of the potential functionPsyd when all
the nonlinearities are of defocusing naturefsm+nd /j.0g. The dot-
ted line represents the linear case.

FIG. 2. Qualitative plot of the potential functionPsyd when
third-order nonlinearity is of focusing nature and all other nonlin-
earities are of defocusing naturesweak fifth orderd f−1, sm+nd /j
,0g. The dotted line represents the linear case.

FIG. 3. Qualitative plot of the potential functionPsyd when
third-order nonlinearity is of focusing nature and all other nonlin-
earities are of defocusing naturesstrong fifth orderd f−2.5, sm
+nd /j,−1g. The dotted line represents the linear case.

FIG. 4. Qualitative plot of the potential functionPsyd when
focusing due to the third-order nonlinearity is completely balanced
by the defocusing due to the fifth-order nonlinearity and multipho-
ton ionizationfsm+nd /j=−2.5g. This is the limit case. The dotted
line represents the linear case.
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through the medium without any shape change.
A three-dimensional plot of the normalized soliton inten-

sity vs the timeh and the radial variabler is plottedsFig. 5d.

III. NUMERICAL ANALYSIS

Equations5d is numerically studied using the FD-BPM. It
is a cylindrical partial differential equation that can be “inte-
grated” forward inz by a number of standard techniques. In
this approach, the field in the transverse plane is represented
only at discrete points on a grid and at discrete planes along
the propagation directionz. Given the field at onez plane, we
can find the field at the nextz plane. This is then repeated to
determine the field throughout the structure.

Let Ci
s+1 denote the field at transverse grid pointi and

longitudinal planesi, and assume that the grid points and
planes are equally spaced byDr and Dz apart, respectively.
The radial and longitudinal dimensions are discretized by the
valuesr i andzs according to the relations

r i = iDr and zs = sDz

We get a tridiagonal matrix of the form

− c1Ci+1
s+1 + dCi

s+1 − c3Ci−1
s+1 = c1Ci+1

s + c2Ci
s + c3Ci−1

s .

This can be easily solved using the Thomas algorithm
f23g. Once the field ats is known, we can determine the field
at s+1 and so on.

We integrated Eq.s5d using the result obtained from the
variational analysis as initial condition. The numerical pa-
rameters of the simulation has been chosen so as to fit the
usual experimental configurations. Here, we have chosen
n0=1.6755, n2=2.2310−12 cm2/W and n4=−8310−22

cm4/W2 which are the nonlinear coefficients of PTS at
wavelength 1600 nmf24g. Similarly, for AlGaAs, with n0
=3, n2=1.5310−13 cm2/W, n4=−5310−23 cm4/W2 at
wavelength 1550 nmf24g. The beam intensity is chosen as
1.13109 W/m2. The outcome of these simulationsssee Fig.

6d agrees very well with that obtained from the variational
approach. The beam propagates without any change in shape.

IV. RESULTS AND DISCUSSION

In this work we have studied, both analytically and nu-
merically, the propagation of a high-energy laser beam
through a PTS like medium characterized by both third- and
fifth-order nonlinearities. The energy of the beam considered
in the present problem is sufficiently high enough to produce
multiphoton ionization. Solutions are obtained using the
variational formulation. It is found that multiphoton ioniza-
tion helps in containing the catastrophic breakdown of the
beam and helps in forming stable solitons. We could also
show analytically the formation of stable solitons. This solu-
tion was taken as the initial condition for the numerical
simulation. The soliton is found to propagate without any
shape change.
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