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Discrete quadratic cavity solitons
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We predict the existence of various types of discrete solitons in arrays of coupled optical cavities endowed
with a quadratic nonlinearity. We derive mean-field equations and determine their range of validity by com-
paring results with those from the original round-trip model. By using an analytical approach we identify
domains in parameter space where solitons can potentially exist and describe their asymptotic behavior. Taking
advantage of these results, we numerically find discrete solitons of different topologies. Some of them are
unique to discrete models. Ultimately, we study the stability of these soliton solutions and find that discreteness
appreciably influences this behavior.
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I. INTRODUCTION tinuous systemwhere canonical diffraction occurs. The si-

Discrete systems, such as semiconductor superlatticeg‘u“aneous presence of losses and a driving field has a sig-

molecular chains, waveguide arrays, or coupled pendulumdlificant effect on the physics of the system. Moreover,
donlinear effects occur for much less power compared to

share many interesting and somehow intriguing features. Re-, X X .
cently much progress has been made in experimentally argnale pass configurations because of resonant field enhance-

theoretically studying intrinsic light localization in evanes- ment in the cavity.'But it is We.” kno_wn that the interp!ay of
cently coupled waveguide arrays, a prominent example of edback, Ios_s, gain, and nonlinearity leads toa c0n3|dera_bly
discrete system. Light propagation in such arrays exhibitg'Cher dynamical behavior than that observed in conservative

striking anomalies in comparison with beams propagating irghvironments. The system can adapt to the driving field in
usual gcontinuous Systen&ilm waveguides bﬂlkpm%d]ag different ways, giving rise to multistabili§L.2], and, as con-

The theoretical predictions of “discrete diffraction” phenom- sequences, pattern formatift8-17, and other types of spa-

. . . tial self-organization. In particular, so-called cavity solitons
e”?m provided the basis for numerous experlmentallobsgrtcss may exist on a stable and preferably flat background
vations. The particular advantage of “discrete diffraction” is

S A ; : (for a recent review sefl8] and reference therginThey
the possibility to be controlled in size and sign by the inputrepresent localized defects and can either locally increase

conditions [2-9]. Diffractive beam spreading can even be (pright CS$ or decreasédark CS3 the transmission of the
arrested and diverging light can be focused. Fabry-Pérot cavity. Once excited by a local change of the
Consequently, solitary waves are likewise expected to bencident field, in principle, they stay forever on a flat holding
have differently in discrete systems compared with continubeam, even if the initial excitation has been switched off.
ous ones. In 1988 Christodoulides and Josgipredicted  Such robust self-contained localized structuf€Ss were
the existence of discrete solitons in waveguide arrays witlobserved in different configurations, namely, in cavities with
Kerr nonlinearity. Later this concept was successfully ap-saturable absorbefd9], in semiconductor microresonators
plied to light localization in quadratic waveguide arrays[20,21], in cavities with the Kerr nonlinearitj22], in cavi-
where several additional features have been identified, sudies with a quadratic nonlinearity for both the Umecond-
as, e.g., the formation of discrete solitons with different to-harmonic generatiodSHG)] [23,24 and down-conversion
pologies compared to the Kerr cds8. For the limiting case cases(optical parametric oscillatpr{25-27. It was found
of strong localization analytical soliton solutions were de-[18] that CSs exist preferably in the vicinity of subcritical
rived [8]. Later, optical domain walls and quasirectangularbifurcations of the homogeneous solution of the nonlinear
localized modes were fourf®]. Eventually, following these system. The concepts of cavity solitons and pattern forma-
theoretical predictions the existence of discrete solitons hason were confirmed experimentally in semiconductor mi-
been experimentally verified in both cubitO] and quadratic  croresonator$28-30.
waveguide arrayfl1]. As suggested above it was only natural to extend these
Up to date most investigations have focused on conservastudies to discrete systems. Recently, the existence and prop-
tive discrete optical systems. A logical step is to extend theserties of discrete cavity solitons were studied in an array of
studies to dissipative systems where gain and loss play eoupled waveguide cavities endowed with the Kerr nonlin-
significant role. A technologically feasible implementation is earity [31].
a nonlinear waveguide array with dielectric mirrors at the In the present paper a detailed theoretical investigation of
end facedarray of coupled zero-dimension&D) Fabry-  discrete cavity solitons in quadratic nonlinearities is per-
Pérot resonatotsvhere radiation losses can be compensatedormed. The first part of the paper is devoted to the deriva-
for by a driving or pump field. tion of mean-field equations from the more fundamental, but
Over the years a bundle of nonlinear effects has beealso more cumbersome, round-trip model. Although per-
studied in 1D(film) and 2D(bulk) Fabry-Pérot cavitieecon- ~ formed many years ago for continuous syst¢ir® and very
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INPUT FIELD the discrete case and, in particular, how the real cavity pa-
l 1 rameters are related to the mean-field parameters. To shed
MIRRORS —___ . Il some light onto this issue we are going to derive the respec-
=== She— tive mean-field equations in an array of quadratic cavities,
e similarly to, but in more detail than, was done for cubic
nonlinearities in31].
v We start with the well-known evolution equations for the

slowly varying envelopes of the forward ,v* and backward
propagatingu™,v~ field amplitudes in evanescently coupled
waveguides, taking into account quadratic nonlinearitigs

/ as
WAVEGUIDE z
TRANSMITTED ouE i oout C e o
FIELD i|5—” + ~—a—t“ +Ce(UE, + U + XUt vie™ 27 = 0,
z Ve
FIG. 1. Array of coupled waveguide cavities with mirrors at the

end facets.

. . . . . +i&Lﬁ+i_(9_Uﬁ+C( + + + )+ (2)ut2etiABZ_0 (1)
concisely for discrete systems with the Kerr nonlinearity =" 45 V. ot S\Wne1 ™ Un-1) ™ Xefftn -

s

[31], it seems to be in order to work out this approximation
in detail for the more involved case of quadratic nonlineari-
ties. By using this mean-field model we perform a compre-where the real-valued electric field reads as
hensive study of the dynamical behavior of this discrete qua-

dratic system. This includes an analysis of the homogeneous 1 - .
nonlinear stategdiscrete plane wavegsand their stability E(xy,zt) = Re</——EF(X-Xn,Y)[U;(Z,t)e'B FZ
properties, the application of an analytical approach for dis- n VPe

closing the effect of the numerous system parameters on the , _ 1 -
complex behavior, in particular, the identification of domains +Un(z e e F + ——Eg(x — Xq,Y)
in parameter space where discrete cavity solit@SSg of VPs

different topologies may exist. Then, we derive numerically . i B B ot
various types of quadratic cavity solitons and study their X[vp(zDeFs + v (z)e e eF

stability. Eventually, we identify the limits of the mean-field
model by comparing the results with those obtained by using

the round-trip model. with é,:,s(x,y) as the linear mode profiles of the waveguide
at fundamentalwg) and second-harmoni@wg) frequencies,
Il. MATHEMATICAL MODEL respectively, andPg s= 7 [ dx dy[ Eg X He g+c.c.]-€ as the

_ _ guided power for the unit amplitudesg,v>=1. The slowly
Here we consider an array of coupled single-mode waveyarying envelopes are normalized such, that their squared
guide cavities endowed with a quadratic nonlinear materiafnodulus corresponds to the guided power in each waveguide

and high—finesse dielectric mirrors at the end fam Flg at the respective frequency_ The propagation Constﬁﬂ];:s
1) and restrict ourselves to the up-conversion case Wher8 o

i .~ ¢f the guided modes determine the group velocitieg by
radiation losses are compensated for by an external dnvmgn i o ~ 4 '
field at the fundamental frequen¢iF). We assume that the eir spectral derivatives ¢z =dB/0w|u=u.0s They also
system is doubly resonant for both the FF and the secondnter the phase mismat&B=28 - Bs+n2m/A between FF
harmonic fields and that phase matching is approximatelnd SH waves. Here is an integer and\ the poling period
achieved by periodically poling the materigjuasi-phase- Of the QPM grating. The nonlinear coupling of FF and SH is
matching(QPM)]. In addition, the cavities are assumed to bemediated by a type | interaction, where the corresponding
short compared with both the linear coupling length and theéonlinear coefficient has the form
nonlinear coherence length and that frequency conversion

within a single round trip is small. Hence, all the processes e 3 e o

i i 2)_ _EoWr 2 .
we are Ioo!«ng for, as evanescent coupllng or frequency con- ngz == > f f Xi(,-k)(X,y,— wE; 20F,~ WF)
version, will evolve upon many round trips and can be re- 4PpVPs ikt J - J

garded as genuine cavity effects.

Basically, we restrict our considerations to a quasi-infinite
and homogeneous chain of identical weakly coupled Igh-
cavities (Fig. 1). It is well known that mean-field models Because we assume Kleinman symmetry the nonlinear coef-
apply to 1D and 2D high-finesse cavities, no matter whetheficient, which drives SHG, is identical.
cubic[13] or quadratid24] nonlinearities are involved. But The coupling strength between adjacent waveguides sepa-
it is not evident what these mean-field equations look like inrated byAx is determined by

X Ep (%.Y)Er, (x,Y)Eg (x.y)dx dy.
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en w (o driving field W,,, which is given by the overlap of the modal
Crs= RS 2 f J Agj(x,y) field with the externally applied field as
APe s =1 J
XEF’%(x,y)EF@(x— Ax,y)dx dy. W, = —— o f f E'(X— X1Y)
FJ -
Here Ae(x,y) represents the change of the dielectric coeffi-
cient created by an adjacent guide. X HEX‘(X y,z=0 wF)] dx dy,
The optical response of the mirrors enters E@S. as .
boundary conditions a=0,l of the form whereH®™{(x,y,z=0,w) is the transverse component of the

complex magnetic field at the entrance facet of the wave-
guide andT the transmission coefficient of the front mirror.
+ T _ — After having performed the Fourier transformation in Eq.
vp(0) = pse 20 (0),  vyi(1) = pse P (1), 2 (1) with resp%cet to timet and positionn as Ugf(w,2) q
where the phasér s=Br d + ¢ s contains the propagation =2,[dt Uj(t,2expliwt—iqn), we can integrate the remain-
term B d as well as the shifir s caused by reflection at the ing ordinary differential equations with respect to the propa-
mirrors. For convenience, we assume a symmetric cavitgation coordinate. Thus, the amplitudes within the cavity
with nonabsorbing mirrors and the amplitude reflection co-can be expressed by the field amplitude at the output mirror
efficientspg, ps. Each waveguide is excited by the respectiveUs(w;1),Vi(w;l) as

U(0) = pee®F Uz (0) + W, Ui (1) = pre®eu(l),

(2) ~ ®
Ué(w;Z) U (|) |(w/VF+ZcF cosq)(z-1) — er;\flf dz +| (w/Ve+2ce cosq)(z—z’)f dwlz U;i:_q(a), _ a);Z')V;,(w' ;Z/)eIiABz"
ar z —0 ’
q

Vi(0;2) = V()i (@Vsr2es cosa (@) f:ff f dZ g#iloVs2es cose)(z-2) f do’ 2 Ul (w-0'2)U} (0 2)e
where the exponential function in the integral represents the Green’s function. In a next step we replace the fields in the kernel
of the integrals by their values at the boundaries, thus assuming the linear field profile to be maintained in the cavity. Adding
the boundary condition&) we get in lowest nontrivial order

[

~ i (2) ~
A . i . )
pre PFU L (;0) + Wy = Uy (w; 1)e (@/Vrr2er cosal el i(ulVe2ce Cosqﬂﬁ)l] do’ > Uy q(@ = @)V (@'31)
o0 q,

27N -
1 ~ ~
% J dz ei{w’ (INg-1NE)+2cg cosq’ —2ce[codq’ —g)+coda) |-AB}HZ' -1) , (33)
0
~ i (2) {(PsDp) ~
. Dot iXeitPEPE S P
Uj(10) = pelao; el s cosal BT —— gl cosera | " dor 2 Ul (o' = @iV, (0'3])
1
f dZe —i{w’ (1/\/3 1N,:)+2cs cosq’-2cg[cogq’ ~q)+cogq)]-ABHZ 1 (3b)
0

~ i (2 ~ »
PPV (0;0) = Vi (w; )0V 2es00501 _ XM eifuiVezos cosar J do' S Ul (0= 0’ iDUf (')

27TN —% ’
q
1 -~ -
XJ dz/ei{w(lN,:—le)—chcosq+2c,:[cos(q—q')+cos{q’)]+Aﬁ}(z’—l)’ (4a)
0
. |X<2)pze|2q> - ®
Vq(@;0) = psV (w;1)ePstiteVst2es cosal 4 R é(w/VS+2°S°°Sq_AB)'f do' 2 U (w- o' ;)U (o))
27N . < T4 q
q
f dZe l{w(lNF 1/Vs) 2cg cosq+2ce[cogg-q')+codq ) +ABHZ' l) (4b)
0

where the boundary conditions have been used to reNé@e;l),U;,_q(w’—w;l), andva,(w’;l) in Egs.(3b) and(4b). Next,
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we carry out the integration over in Egs. (3) and (4). Assuming that temporal walk-off and “discrete diffraction” only

marginally effect the nonlinear interaction during a single passage we neglect the tern?&yidas in the exponent of the
nonlinear parts. Then, Eq$3b) and (4b) are subtracted from Eq$3a and (4a), respectively. This leads to expressions
containing only the forward propagating fieldlg(w),vg(w) at z=I:

Ua(w)eiA(I)F[e—iAtI),:—i(w/VF+ZCF cosqg)l _ plZ:eiAtD,:+i(w/VF+2cF cosq)l] _ Wq
i (2) ©
ixerr . (ABl 2 ' i + +
= _27:N5|nc<? (p2ptPsd 22 4+ ABII2)| 3 dw’z/ Uy _gl@' = w)Vq,(w’),
q

Vi w)emcps[e—mqg—i(w/\?gzcs cosq)l _ péemq:sﬂ(wﬂ/gzcscosq)l]

. (2) x
i ABl . . .
— I Xeft Siﬂ(<_18>(p,zzpsel(Aq)s+2Aq)S)elAB|/2+elA’B”Z)lf dw,z U" (w-0)U (o), (5)
27N 2 o o a-a 4
[
whereA®r = ®p - BFS is the respective detuning from the du, . 5
nearest cavity resonancg2g =2z#m (m=1,2,..). As usual P Caovn-1+vps1) = 2C0, + (i6+ ApJu, +Up =0,
the mean-field model holds only near a longitudinal cavity
resonanceAdr s< 27 and walk-off, frequency conversion, (6)

and_coupling have to be small for a single passag§ynere the evolution timd is scaled to the FF photon life-
(wI/VF,.S<1,cF's| <1). Hence, the 9xponentials on.the r'ight- time Tph=[(1+p§)/(1—p§)]l\~/ﬁl. The systen(6) is the set of
hand side of Eq(S) are close to unity and can be linearized. nean-field equations describing the field dynamics in an ar-
It is worth to note that we intentionally extract the phas,eray of coupled quadratic cavities.

term from the square brackets of E) for the sake of The cavity parameters are related to the mean-field pa-

minimization of higher-order errors throughout the Taylor .ameters as follows. The detunings of both fields from the
expansion. As a preliminary result we obtain a set of Meantespective cavity resonances read as

field equations in Fourier space:

1+p2 Vo(1 +p?
_{ pg)AcDF v20, Ay=-2SLTPD) 4 e,
(1-p) V(1 - p?)

-i(1- pﬁ)[w\?FlI + 2c¢l cosq+ A(I)F]U;(w) Ay =
*(1=pp)Uq(w) = Wq the ratio of the radiation lossesis determined by the ratio

i (2) e =~ ~
_ Xeit sinc(ﬁ>(p§psem5"2 of the FF to SH photon lifetimes ag=[Vg(1-p3)/ V(1

2aN 2 +p3)]/[(1-p2)/(1+p2)]. The normalized coupling strengths
e [ - . are related to the coupling constants @g=Ve,Ce, C;
+etdf )lf do’ X Uy (@' —0)Vy (o), =Vsmits and the normalized optical field amplitudes are
I given by
) - 2 iABI2 . A2 V(1 + o2
-i1 —pé)[wvgll +2cd cosq+ A@S]V;(w) +(1-pdVy(w) Up = x2 sinC<A—BI> IpEpse ) g2 ~5( PE) ut,
) ABl 2 (1_pF) VF(l +p§)
- ;(—eKISinC<7ﬁ>(p§pse_iAB'/2 +go812)|
77 . .
@ %%)(Pﬁps@m/“e 1ABI2)
- Un= Xertl SIN p 5 U,
Xf do’ 2 Ug_g (0= 0)Ug (o). (1-pp)
—00 q!
2, e A2 4 dDBIZ| (1 + p2)
After having performed the inverse Fourier transformations E=i |prSe1 — o2 | ~S( pz W, (7)
the appropriately scaled evolution equations for the slowly 1 -p) V(1 +p9)

varying envelope of the transmitted F&,) and the SH field

(u,) in the nth waveguide read as In experimental setups the SH field is usually much more
n

confined in the transverse direction than the FF fldid;
thus, the coupling is much less and can be neglettd
au X _ . !
i 4 Cy (U + Una) — 2CUn + (i + AU, + Uipp = E, —_0). A_s a consequence stationary solut_|ons of the sysm
T simplify considerably because the SH field can be expressed
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by the FF one as,=-u2/(i5+A,) and only the FF compo- 3.2
nents appear in the final set of equations as -
L _ o -
; 7
(' + A1)Un - i5+ A2|un|2un + Cl(un—l + un+1) - 2C1un =E. 2.8 A LP \_’_ R
\
(8) i Y
Evidently, in the stationary limit the quadratic nonlinearity is S 24l \\ |
mimicked by a complex-valued cubic one. Therefore station- = - """~~~ - - - ==
ary solutions will be similar to those derived[ia1] provided - —— - - - - — = Nttt
that SH losses are smadli~ 0). However, this simplification Lp
does not hold for the full dynamical solutions. Hence, typical 2t .
effects of the quadratic nonlinearity will mainly show up c
when the field evolution and the stability behavior of station-
ary solutions are under investigation.
1.6 : : .
6.5 6.75 7 7.25 7.5

E
IIl. PLANE WAVE SOLUTIONS AND THEIR STABILITY

. . . FIG. 2. FF amplitude of PW solutions vs the driving field am-
The simplest solution of Eq6) is the transversally ho- litude E. Solid line, stable; thin dashed line, homogeneously un-

mogeneous ,Stfate where a_II. cavities ,are equally _eXCited' E stable; thick dashed line, modulationally unstable. The horizontal
cept fqr qulfylng the §tab|I|ty behavior, the coupling has NOdashed lines divide PW solutions into three parts with different
effect in this case. This homogeneous or plane Wdd)  ,symptotic behavior. LPs designate the limiting points of bistability.
solution is determined by the properties of the isolated cavic,=0.5A,=-5,4,=-2,5=0.6)

ity. However, PW solutions play a key role with regard to the
existence and stability of DCSs, which are |ocalized quects According to this ansatz linear perturbations can spatially
on a homogeneous background. A stable DCS requires therOW or decay(a#0) or oscillate (3#0). Linearizin
stability of the underlying PW background. Moreover, the y ' 9

so-called critical points in parameter space where PW solut-he evolution equations(6) around the PW solution

tions destabilize are potential bifurcation points for DCSs.(bl’bZ’bl’bZ) with respect to the perturbation amplitudes

Therefore, the investigation of PW solutions and their stabil31+3231,;) We obtain

ity properties is a prerequisite for the identification of DCSs. 2by?s 2lby2A
i > ; . >
The intensities of the stationary PW solutiori,| (7 +il")ay + i<51+ 1l 9% ) L+ (A‘— 182 ) )

=|b,|? for the FF andv,|>=|b,J? for the SH of Eq.(6) are 82+ (A5)? 52+ (A))?
[12.18 i6—A
Do\ o
[[bal* +2(8 = A14,)[by? + (A7 + 1)(AZ + 57)][by? ¥ <—52+ A22>b1 2,=0,
=(A3+02)E%  |by[VAZ+ 6= by” (9)
: . , e 2o, 25, \ . 2lby?A7 | .
The formation of DCSs is closely related to the existence of(lw +iIMa, - i 6+ 2 |al + | AT - M2
bistable solutions of Eq9), which is realized, provided that ! 82+ (Ah?2)™t Los2+(Ah?) Tt
A28/ - \3) (M) o
s s AAL >0, 10 | Sz a2 /=0, (12
\’3|Al| +1 122 ( ) S+ AZ

holds. Thus, for PW bistability the fundamental detuniig  where we have introduced effective lossés=1+\' and

has to exceed the critical value ¢8 and the signs of FF and 5,=8+\’, detunings A7 ,=A;1,+\", and discrete diffrac-

SH detunings have to coincid€ig. 2). tion coefficients I''=2C;(coshacosg-1) and I”
Having found the PW solutions they have to be probed=2C, sinh« sin 3.

against stability. In what follows we combine the usual linear  From Eq.(12) we can extract information about the exis-

stability analysis with the search for asymptotic solutionstence and stability of asymptotically increasing or decreasing

which resemble the linear limit of soliton tails. The latter and periodic solutions.

issue is of particular importance because we can easily iden- First we deal with the usual PW stability issue by setting

tify domains in parameter space where various kinds of soliw=0. The solution is stablédecaying perturbationfor \’

ton solutions are expected to exist. To tackle both tasks we: 0, and unstablégrowing perturbationfor A’ >0. Critical

use a unified mathematical approach in looking for solutiongyoints in parameter space are marked by a stability transition

to (6) close to PW background as at\’'=0. Depending on the spatial modulatignof the per-

turbation and on the imaginary paxt of the respective ei-

genvalue at the critical pointe\’=0), we may distinguish

xXexgd (W' +iN)T+(a+ip)n]. (11 between homogeneous instability 6=0 and modulational

(Un, Uy Un,0p) = (1,105, b3,0) + (24, 80,87, 85)
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3

ground. According to this approximation the tails decrease

exponentially ag*@* A" Therefore, a localized solution can

exist only if the real part of the exponent is nonzdw

# 0). Furthermore the imaginary paft determines the type

of DCS, since fo3 # 0 we observe spatially oscillating tails.
The solvability conditions of Eq(12) and requiring sta-

2.8

_ 26 tionarity (\’=0,\"=0) yield the characteristic equation
S —
”a cosha cosB- 1 +i sinha sing = (G, + VG,)/2C, (14)
with
2.2 2|by|?A b,|* 268|byJ2 \2
SN P - (1 o |
52+ A5 P+ A5 852+ A5

(15

Depending on the function&; and G,, Eq. (14) exhibits
_ _ ~different types of solutions. The lines in parameter space
FIG. 3. Domains of stable and unstable discrete PW solutions IRvhere G, and G, change their signs are indicated in Fig. 3.

parameter space defined by the FF detuningand the FF ampli- These lines divide the parameter Spiﬁlﬂ ,A,] into four
tude |by|. Instability domains are shadédomogeneousl), modu- regions. namelv. the domaing G.<0.G.>0: B.G
lational (I1), and Hopf(lll) instability]. The vertical dashed line <% G ,<0' c Gy,>0 G.<0: andD,Gl>O’GZ>O' 1
corresponds to the curve in Fig. 2. Thick dashed lines designate the T,o énal ,ze ,thé set’ofz oséible asy ml toti,c szoluti'ons of Eds
change in sign 0, and G, [Egs. (15), whereas these signs stay (14) and (1/5) we consid%r se arate):/I Ft)hese four arame?er.
unchanged within domainé, B, C, and D. (C;=0.5,A,=-2,§ . p Yy p
-0.6) domains.

In parameter domai\ (G;<0,G,>0) a possible solu-

instability (M) for 8+ 0. The growth of the instability may tion of Bq. (14) is

be purely exponentialA\"=0) or oscillating (A" # 0, Hopf
bifurcation.

From the derived stability criteria we can now distinguish
between different domains in parameter space, which ar¢hus, the small amplitude solutions are purely oscillating
plotted in Fig. 3. In domain | the PW solution is trivially (B+0) and do not increase or decrease in transverse direc-
unstable. It CorreSpondS to the middle branch of the hySterﬁons_ At least one of the 50|utior(g6) is real Va|ued' pro-

esis loop(Fig. 2 and is confined by the limiting pointéPs)  vided that the system parameters satisfy the inequality
of bistability following from Eq.(9) as

1 —
a=0, ,G:arcco<l+—(Glt \Gz)). (16)
2C,

4C, =~ Gy(|by|,Ap) — VGal[by],Ay). an

1
2 _+ _ e 2_ 2 2
balip= 3[2(5 A182) £ VA(6= A14,)" - 3(A1 + DA+ I)]. At each parameter point where the inequality?) holds a

spatially modulated perturbation with the corresponding
(13 . . o . .
wave vectorg is stationary. Hence, it is neither growing nor

PW solutions in domains Il and 1l are subject to modu- decaying, but just on the verge of destabilization. Hence, if
lational or Hopf instability, respectively. Both domains will the PW background allows for a solution of the fo(t®), it
be dealt with below. It is worth noting that a certain driving is modulationally unstable. Therefore, the inequality’)
field amplitudeE corresponds to multiple values for the FF marks the right boundary of domain (kee Fig. 3. This
PW solution|b,|. Thus, it is convenient to use the PW am- boundary[sign of equality in Eq.(17)] coincides exactly

plitude as a parameter rather th&n which easily follows
from Eq. (9).

IV. ASYMPTOTIC BEHAVIOR

with the limiting point of bistability(13) for weak coupling
(C,=0). It is interesting to note that the asymptotic solution
becomes always staggeré@=; opposite sign of ampli-
tudes in adjacent waveguidesn the boundary of this do-

main.

As was discussed in the previous section, the first neces- A typical multistable plane wave response is shown in
sary condition for the existence of spatially localized solu-Fig. 2. The modulational instability of the upper plane wave
tions, i.e., cavity solitons, is a stable PW background. Obvibranch(domainA) leads to the formation of a periodic pat-
ously, the soliton tails have to converge to the PWtern with a spatial period determined 8y Provided that the
background far from the soliton center. Therefore, the secondump amplitude allows for a second stable PW background
evident condition is the existence of spatially increasing andmultivalued solution in Fig. 2 between LPsne cell of it
decreasing solutions around the PWs. A linear theory for thean be extracted to form a bright DCS on the stable low-
description of the soliton tails can be applied, provided thatmplitude backgroundomainC in Figs. 2 and R This case
the amplitude does not deviate too much from the PW backwill be considered in the following section.
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characteristic equationd4) for both domains we can con-
clude that the background allows for spatially exponentially
increasing(decreasingsolutions. The corresponding coeffi-
cients can be obtained easily in dom&nas

*= arccosﬁl + (Gl + \"EZ)IZCJ, B=0. (198

By contrast, asymptotic stationary solutions are slightly os-
cillating in domainC:

a = arccoslil + G4/2C,),

B < arcsif] V= G,/\G,(G, + 4Cy) . (19)

It is clear from Eq.(19) that close to the lings,(|by|,A;)

=0 the length of the corresponding spatial oscillations grows
FIG. 4. Maximum FF amplitude of odd and even DCSs vs ’[heto infinity. Mc_)reover the ratiog/a is very small aﬂd In- .

coupling constantdashed line, unstable solution¥he insets show Cf€ases ConS|defab|)'/ only close to the boundary with domain

selected DCS profiles and the dependence of the width of odd pcRIGi(|bi|,A1)=0 in Fig. 3. Therefore DCSs possess mono-

on the coupling constarficontour diagram, numerical solution; tonically decreasing tails without or with only slight spatial

white dashed line, analytical evaluati¢@l)]. ParametersE=9,  oscillations in domain€ andD.

A1=-6,A,=-2,5=0.6. The asymptotic solutions contain information about typi-
cal scales of spatial inhomogeneities of the localized struc-
V. DISCRETE CAVITY SOLITIONS ture. Therefore the typical extension of the DCS can be ana-

. ' lytically evaluated. Evidently, this method fails for the
A. Bright solitons evaluation of the soliton half-width, because the genuine

Th led i & d q h nonlinear solution is required. But usually it is more impor-
e scaled coupling constaqy depends on the wave- ant o know the minimal width the soliton requires to exist

guide spacing as well as on the mirror reflectivities and can i ot interacting with its counterparts. It is clear that this

be varied inl'a vIinde 6range. (Ijn the ;\qua;iconti;uous”flimit “soliton diameter” exceeds the soliton half-width. Thus, this
(strong coupling Eq. (6) reproduces the effects known from width can be roughly estimated in requiring that the tails

c_onventional planar cavities, such as, for example, tranSIaﬁave decreased to about 10% of the peak amplitude giving
tional symmetry. On the contrary effects of dlscretenes§he number of waveguides as
dominate if the coupling tends to vanish, which can be

achieved by increasing the distance between the cavities. In d=2In10k. (20)

;hr': \?i%lj:;llllle?so?;[telgonlgg‘ru\?:r?isfqmlt ::T)i |ﬂglwdua:] caw_ttles_ Now we use Egs(18) and (19) to apply this formula in
Y 15Ol . g coupiing €ach cavity 1S 4, 1y 4insC andD and get for sufficiently large couplingnd
not affected by its neighbors. In this trivial case the solltonsG > G, for d inD):
> ) ) - "G1> G, for domainD):
are constructed by a combination of amplitudes in the iso-
lated cavities, which assume one of three stationary states d = 6.51VC,/G;. (21)
provided that the response of the isolated cavity is multival- ) o . .
ued (Fig. 4 for C,—0). For example, “odd{“even”) DCSs Actually this apprOX|mat!on describes surprisingly well th(_e
are localized states where ofto) cavity is switched to a DPCS width for any coupling constant except a small domain
high stable level on a low-level background. Increasing thef!0Se to the anticontinuous lim{C, — 0) (see white dashed
coupling strength the adjacent cavities get involved in thdine in inset of Fig. 4. _ _
power exchange. The “trivial” localized solution becomes We start Wlth. a detailed discussion of the usually stz_ible
wider and nonlinear effects compensate for the transvers@dd DCS and will come back to even DCSs below. A typical
spreading due to discrete diffraction. Because the focusingrofile of an odd stable bright DC@omainD) is displayed
environment is preferable for bright localized structures, wen Fig. 5. The shaded part corresponds to the analytically
consider first a negative SH detuning from the cavity reso€stimated width[Eq. (21)]. The amplitude of soliton tails
nance(A, < 0). This choice is evident from Eq8) because a deviates only shghtly from the PW ba_ckground and can be
specific SH detuning results in either an effective focusingerefore approximated by our analytical modiel domain
(A,<0) or defocusing(A,>0) behavior[16,24. Usually ) as
effective focusing allows one to find bright solitons for any . _ 20b 2 —
coupling strength up to the quasicontinuous lifkitg. 4 for Un=]ia.y/(d+ 'Az)<1 + 524 A2 x I\"Gz)
C,— ). As expected the difference between odd and even 2
solitons disappears for the very strong coupling. ,
The lower branch of the plane wave solution in Fig. 2 is a xexplan) + |bl|:|el% (22
typical background for DCSs considered here. It corresponds
to domainsC andD in Fig. 3. The soliton tails have to fit the whereb,=|b,|€'%® is the FF plane wave background aad
asymptotic solutions around its background. Solving theare arbitrary real amplitudes which determine the contribu-

056612-7



EGOROQV, PESCHEL, AND LEDERER PHYSICAL REVIEW E1, 056612(2005

4.5 ' ' - . , 27 ,
¢—¢—¢ Stable DCS i
Asymptotic tail ‘
25} é ]
3.5 2
> z
23| y Z p ]
2.5 ’// % %
y % /
. 2l % /
* o aple ' /
iiyt:\:pggczs tail ‘ //////////
1.5 L 20 35 ~ 50 65
730 40 50 waveguides
waveguides

FIG. 6. FF field profile of a stable first-order DCS with oscillat-
FIG. 5. FF field profile of a typical bright DCS with the corre- INg tails. The shaded area designates the effective soliton width. The

sponding analytical approximation for the tails fB=9.13. The thick solid line corresponds to the analytical approximation of the

shaded area designates the effective soliton width obtained analy$liton tails.(E=5.3635€,=0.75A;=-4,4,=-2,6=0.6)

cally. Inset: FF amplitude of PW solution and maximum FF ampli-

tude of bright DCS vs the pump amplitudie Dashed lines corre- Some peculiarities of this particular DCS type can be
spond to homogeneous(thin) and modulationallythick) unstable  again understood by taking advantage of the asymptotic
states(C;=4,A;=-6,4,=-2,6=0.6) analysis. As mentioned before the DCS tails exhibit an oscil-

lating behavior near the boundary to dom&nG;—0 in

tion of independent exponential solutions wit and o=  EQ. (19)]. A typical DCS profile in domairB is displayed in
[see Eq.(18)]. Figure 5 displays the agreement between the=ig. 6. According to our analysis the exponents of asymptotic
tails of the genuine DCS and the asymptotic approximationsolutions satisfy

Usually, cavity solitons exist on branches in parameter i ) —
space, which bifurcate from PW branchés,24. Indeed, as ~ C0ShacosB=1+G,/2C;, sinhasinfg= £ V- Gy/2Cy,
plotted in the inset of Fig. 5, bright DCSs bifurcate subcriti- (23
cally from the limiting point of PW bistability and stabilize » . o
behind the turning point of the respective branch. For there i§8auiringe# 0 andg# 0. Thus, the DCSs exhibit oscillating
no appropriate background, no DCS can be found beyond thi&ilS, which can be approximated as
PW bistability limiting point. - ) —i

It is interesting to look at the difference of stable and Un=Acex(atifin]+ A exil{a=ifn], (24
unstable DCSs for driving fiel& close to the bifurcation whereA; is an arbitrary complex amplitude aig is deter-
point (right LP in inset of Fig. 5. Solving Eq.(18) provides  mined by
thata™— 0 close to LP. Therefore, according to E0) the .
localized solution becomes flat in the bifurcation poidt: A2=A*1(5_*|A2)
—oo. This explains intuitively the bifurcation of DCS bl2

branches from PW solutions in the LP. Thus the approxima- ) i , )
tion (21) fails in this case and the width of stable DCSs isBY varying A; one can fit the tail24) to the numerically

determined by*. Hence, the occurrence of two soliton tails calculated soliton tailthick solid line in Fig. 6. Equation

with different spatial decay rates reflects the coexistence d20) @pproximates the soliton width shown by the shaded

stable and unstable solitons being both situated at the solitgff€@: The oscillating tails suggest that bound states of DCSs

hysteresis curve. can be formed. Therefore, itis no surprise that the respective
Detailed studies show that the size of the bright DcsSliton branches are multistableee Fig. J, where every

existence domain increases considerably with negative cafigher-order soliton represents a new bound state with an
ity detuningA,. additional hump. The oscillation period of the tails and, thus,

the distance between peaks can be approximated® as
B. Soliton with oscillating tails =/ B. The highest-order bound state is an infinite periodic
: pattern which connects the DCS branch with the modulation-
The quadratic DCSs discussed up to now existed in doally unstable domair(vertical line in Fig. 7. Hence, the
mains of parameter space where PW bistability takes placetable background close to the Ml domain can coincide with
To find out whether DCSs may also exist without an undera stable periodic pattern. It is evident from Fig. 7 that the
lying PW bistability we are now going to search for DCS existence domain of bright DCSs increases with decreasing

solutions in domairB. coupling constant.

(V= Gy + [1+ 2y 261(52 + AD)]).
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FIG. 7. Maximum amplitude of the FF component of bright _ ‘ .
DCSs with oscillating tails vs the holding beak for different FIG. 9. Profile of dark DCS and the corresponding analytic ap-
coupling constant$A;=-4,A,=-2,5=0.6). proximation of the tails folE=8.2. Inset: FF amplitude of PW so-

lutions and minimum amplitude of dark discrete cavity soliton
branch vs pump amplitudgé. Dashed lines correspond to unstable

. . states(C;=0.5,A;=-4.5A,=-2,6=0.6)
Now we proceed to inspect the upper PW branch, which

is displayed in Fig. 2, and belongs to domaiin Fig. 3. For
negative detunings this branch is modulationally unstable be- ot = arcosl(— 1 +i(_ G, ¥ \Ez)>, B=m. (25
yond the limiting point. According to Eq17) the size of the 2C,
instability domain increases with the coupling consta@nt
shown in Fig. 8 by dashed lines. We have shown before thathe corresponding small-amplitude distributioif is given
in this parameter domain spatially periodic solutiodd$) py Eq. (22) with the exponent*n+imn and a* from Eq.
exist excluding the formation of DCSs. However, it turns out(2s).
that outside the Ml domaifdomainA at the I’Ight side of the According|y, we found a dark DCS branch bifurcating
Ml in Fig. 3) there are only asymptotically decreasing or sypcritically from the critical point at the termination of the
increasing solutions of Eq14) which read as MI domain (DCS branch in the inset of Fig.)9The stable
part of this branch can either terminate exactly at the point of
MI or turn back to form a multistable dark soliton branch.
The first case is typical for large negative cavity detuning,
where the oscillating solutiofil6) destroys the background
in the MI point. The second case occurs near nascent PW
bistability (relatively small negative detuningand higher-
order solitons have several intensity dips. The asymptotic
DCS tailsU;, exhibit a phase difference between adjacent
waveguidegstaggered solutionwhich is a signature for dis-
crete systems. Together with the PW background the soliton
tails look sawtoothlike. The asymptotic behavior of the tails
is determined by the linear combination of the two solutions
(25). It can be seen in Fig. 9 that far from the soliton center
the analytic solutior(25) coincides exactly with the tails of
the numerically determined dark soliton. Equati@0) gives
! ; ! ; ! again the dark soliton width shown as the shaded area in Fig.

8 8 = . 9. Close to the bifurcation point we have —0, and hence

: the unstable dark DCS transforms into the staggered PW
FIG. 8. Existence domain of dark DCS in the parameter plane of0lUtion at the onset of MI. ,

FF detuningA; and FF amplitudéb,| for different coupling con- It is interesting to note that this dark DCS branch has no
stantsC; (shaded black areas confined by solid thick lindghe ~ connection with the bistable domain of the PW hysteresis
dashed lines are boundaries of modulational instabilities for th&urve(inset of Fig. 9. The hysteresis curve of the dark DCS
corresponding coupling. The PW background is homogenous ant$ usually several times larger in parameter space than the
Hopf unstable in | and IIl, respectivelfas in Fig. 3. Parameters: corresponding PW bistability domain. On increasing the cou-
Ay,=-2,56=0.6. pling constant, the existence domain of the dark DCS moves

C. Dark staggered solitons

byl
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0.5

FIG. 11. The maximal growth rate of the linear mode of odd

) ) o ) (dashed and even(solid) DCSs vs the coupling constant. Inset:
FIG. 10. The imaginary and real paiis insey of the eigen-  qvnamics of a purely oscillating soliton solutiofE=21,A,
value of the linear mode for an even DCS vs the coupling constant._ 4 g A,=-23,5=0.4)

(E=11.2A,=-5,A,=-6,5=1) The dashed solid line is the ana- o
lytical approximation. _
into two eigenmodes, namely, into a symmetik,

to larger PW amplitudeld,| and large negative cavity detun- =(...,0,a,a,0,...) and an antisymmetridA,=(...,0,a,

ing (Fig. 8). -a,0,...) one. These eigenmodes are well localized around
the soliton center provided that the coupling constant is still
VI. STABILITY OF BRIGHT DISCRETE SOLITONS small. Therefore their imaginary parts can be approximately

described by the following quadratic equations &t
After having found “odd” and “even” bright DCSs we

probe these solutions against their stability as it depends ony* + w?[|Vy|? - 4|Uy|? - (Aiz + Ag)] +4)Ug|2(|Ug)? - AJA,)
the coupling constar@;. To this end the usual linear stability 0 2 12x2

. e e - [Vo|?AZ+ Aj%A5=0, (26)
analysis has been performed. UsingU,,+a,e\" we linear-
ize the governing equatiof6) around small perturbatlons whereA! corresponds ta}=A,~C; for the symmetric and

an:(aln,azrl,azp,a*zn) of the stationary solution U,  A7=A,-3C, for the antisymmetric modesl, andV, are the
=(Up, Vi, Uy, V,). To disclose the main stability properties of field amplitudes in the DCS center. Equatit26) has two
odd and even DCSs it is convenient to select bright DCSs independent zeros with respectdd. Here we only consider
domainsC andD (similar to profiles shown in Figs. 4 and.5  the solution with the lower value @#?, because only this one

In the anticontinuous limitC,=0) the stability is deter-  will finally destabilize. Assuming that the fundamental field
mined by the stability in a single cavity and does not dependmplitude in the DCS center depends linearly on the cou-
on the DCS symmetry. The DCS has eight eigenvalues fopling constantC; and solving Eq.(26) we find the eigen-
C,=0 which are pairwise complex conjugated. Half of themvalue of the antisymmetric linear mode of the even DCS for
belong to the PW background and the rest corresponds to thgmall coupling(see analytical curves in Fig. LOFirst, Eq.
up-switched high-level cavity state in the soliton center. To(26) has real-valued solutions and the corresponding two
give specific examples we concentrate on a parameter set, fantisymmetric eigenvalue?sgsym:—l *iw,eym are stablgsee
which all these eigenvalues have the same real part, namelgig. 10. But, for increasing coupling®> becomes negative
Rel=-1; thus\=-1%*iw. This condition is well satisfied in and therefore the solutions of E¢R6) become imaginary
a wide range of the PW hysteresis loop, provided that photothus compensating for the negative real part of the eigen-
lifetimes are equal for FF and SH fieldé=1). value. Finally the even DCS loses stability for increasing

First of all we are interested in the mechanism of destacoupling (see inset of Fig. 10 Obviously, for stronger cou-
bilization of the even DCS for some critical coupling pling the considered eigenmodes spread out to several cavi-
strength. The evolution of the imaginary part of the eventies and the approximatiof26) is no longer valid.
soliton eigenvalues is sketched in Fig. 10 for our particular Direct numerical calculations show that the eigenvalue of
example. Herew,=1.264 andw,=0.951 describe the high- the antisymmetric eigenmode finally converges exponen-
and low-level cavity states corresponding to the case of vartially to zero for increasing coupling constant. This mode
ishing coupling. However, the eigenvalue degeneracy disapransforms to the so-called translational mdsee solid line
pears with increasing coupling strength. Thus the low-powerin Fig. 11) known in continuous models with translational
state eigenvalua, splits into a continuous ban@Fig. 10.  symmetry[32]. The analytical analysis of the eigenmodes of
By contrast, the high-power-state eigenmodg splits odd DCSs is more involved. The antisymmetric mode bifur-
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cates in our example from the plane Re-1 as well but
unlike the even DCS, it does not lead to soliton instability.
This mode also converges to the quasitranslational mode
and, therefore, its eigenvalue converges to zero for large cou-
pling constant as wellsee dashed line for large coupling in
Fig. 11).

There is one more interesting eigenmode of the DCS,
which is more prominent for odd DCSs. This mode appears
due to the interactions of a localized eigenmode with the
continuous spectrum of the soliton background and its eigen-
value possesses an imaginary paashed line aroun€,
=10 in Fig. 12. The existence of an oscillating linear mode
of a localized discrete solution potentially opens the possi-
bility to find breathing DCSs in arrays of coupled quadratic ‘

nonlinear cavities. Indeed, we observed oscillating solutions. 10 20 30 40 50
Such a purely oscillating soliton solution was recently found E
in arrays with the Kerr nonlinearity31]. Unlike in the Kerr FIG. 13. The intracavity field amplitude at the output mirror for

case we found oscillating solitons only for relatively large pyy solution vs the driving amplitudg in the mean-field approxi-
SH detuningA, (inset in Fig. 1). In this case the mean-field mation (curve 9 and for the round-trip model fopg=0.95]
model is valid only for very high®@ cavities. =49, (curve 2; pe=0.92)=7.74,, (curve 3; pg=0.9=9.59,,
(curve 4. ParametersA;=-12.9 A,=-2,5=0.6.
VII. VALIDITY OF MEAN-FIELD APPROACH . . . .
ing, and effective length. For comparison we give all values
All results presented in the previous parts of this papein units of the mean-field modgsee Eqs(6) and(7)]. How-
were obtained by solving the mean-field model derived inever, even if we fix the parameters of the scaled mean-field
Sec. Il. We are now going to compare these predictions witlapproach there are still degrees of freedom left in determin-
numerical solutions of the complete round-trip model. Be-ing the parameters of the round-trip model. Here we used
fore starting we should remember the assumptions that wemifferent values of the cavity lengthand of the mirror re-
made to obtain the mean-field equations. The cavity was agtectivity pr s, but kept the photon lifetimer,,~ 2l /\~/F(1
sumed to be doubly resonant, exhibiting high finesse at bothpg) constant. The resonator length is expressed in effective

FVfY at'.‘d SH ::fr_equetncu?El”&Z{H. To e;]Ch'?c\j/% th'ls go?l thgt nonlinear Iengthsn,:lldﬂz—PSxffz where P g is the corre-
reflection coefficients of all mirrors should be close to unity g, 4inq guide power.,

|b1 _pF'S|”<l' In ﬁdt?]ititon, th? effectil\ll(e %avity Ientgtr? shgufld First, we determined the range of bistability of PW solu-
€ small enougn that coupling, walk-off, mismatch, and Ir€+;, ¢ qerived from both modeldig. 12. As was expected

guency conversion have an e_ff_ect only after many roung,q discrepancy between both models increases for large de-
trips. To reveal the range of validity of the mean-field model

) uning and increasing transmissivrf)éyszl—péyS of the mir-

e soved pumercly e ystem o forverd and backaors (1, 13. I e refleciviy s aige encuol e
Pprop y e >0.98, the results of the mean-field model coincide almost
ferent values of cavity parameters, such as reflectivity, detun- . . .
exactly with the round-trip one, even for large cavity detun-

45 43
————— Pr=0.95;1=4.9 I,
*—6—0 p =093 /=
35 | . Pr 0‘9.8,1 21, |
' Mean-field
k25 1 SEKRES
15 Mean-field 25}
""" P=0.9;1=9.55 [,
P=0.95; 1=4.9 I
5 . 1.9 - .
-20 -15 -10 -5 10 20 30
A waveguides

FIG. 12. The boundary of PW bistability domain for different FIG. 14. Intracavity field amplitude profiles of bright solitons
mirror reflectivities and in the mean-field modél,=-2,5=0.6). for different round-trip paramete(€,=5,A1=-6,A,=-2,5=0.6).
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ing (|A4]<20). Although for a relative large negative cavity dratically nonlinear material. Starting from a round-trip
detuning the mean-field model predictions are not exact evemodel we have derived mean-field equations and have
for pr=0.95, there is still a good qualitative agreement.checked their validity. On the basis of this mean-field ap-
There are appreciable quantitative discrepancies dor proach we have characterized stationary solutions of the dis-
~0.9 (line 4 in Fig. 13. This involved behavior of lon®  crete dissipative nonlinear system by means of asymptotic
cavities can be understood by accounting for the large fremethods. Solving a linearized version of the original equa-
guency conversion upon one passage. tions allowed for an almost exact description of the soliton

To investigate the validity of the mean-field model for tails and thus for the identification of domains in parameter
non-PW solutions bright DCSs for different round-trip pa- space where discrete cavity solitons of different topology
rameters have been calculat&dy. 14). It is evident that also may exist. A simple analytical formula was obtained for
in this case the mean-field model holds down to mirror re-evaluation of the effective soliton width. Based on these ana-
flectivities of 0.95. Going further it turns out that the mean-lytical studies we found by numerical means bright DCSs
field model gives qualitatively correct solutions provided thatwith evanescent as well as oscillating tails and dark stag-
the reflectivity exceeds 0.92. gered DCSs. All these soliton branches emanate subcritically
from the bifurcation point. Based on a linear stability analy-
sis of bright DCSs it was shown that even DCSs destabilize
due to the action of an antisymmetric eigenmode, which

In conclusion, we have investigated the optical responsé&ransforms into the translational mode in the quasicontinuous
of a chain of identical coupled cavities endowed with a quadimit (strong coupling

VIIl. CONCLUSION
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