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[. INTRODUCTION space is addressed. It is found that the extinguished power is
related to the field that is scattered in the directions of the

The conservation of energy for electromagnetic erIdScomponents of the incident field in both the upper and the

e e i e poner ety o plPWer Pl spacessee Fig. 2 The al pace proen is o
P 9 P ractical importance in applications to optical imaging when

wave incident on an object to the scattering amplitude in th . .
direction of the incident field. The optical theorem may be he sample is supported on a slide or other flat substrate.

expressed by the formuld—3]

Il. GENERAL RESULTS
w *

T Jle2 Im[e,esAqs(k,K)], 1) The conservation of energy in electromagnetic fields may
be expressed by means of the Poynting vef3orSec. 1.4
where o is the extinction cross sectioe, is the complex The time averaged Poynting vector for a fixed frequency,
vector amplitude of the incident field, am,z(k k) is the  S(r), is given by the expression
tensor scattering amplitude in the direction of the incident
beam and the summation convention is assumed. c .

In this paper, we present a generalization of the optical S(r) = 8 REE(r) X H (r)], ()
theorem for elecromagnetic fields. We derive expressions for
the extinguished power that are applicable to scatterers iyhere E(r) and H(r) the space dependent parts
free space as well as scatterers in a half space. These resuylis the time varying fields, E(r,t)=RgE(r)e"“] and
take into account the contribution not only of the homoge—H£r )=RgH(r)e . In a linear medium at fixed frequency

neous components but also of the evanescent components 9 cky, E(r) andH(r) satisfy the time independent form of

the incident field, both of which are necessary when thethe Maxwell equations which, in the Gaussian system of
source of illumination is in the near zone of the scattererUnits are '

Results along these lines for scalar fields were recently pre-
sented 4].

The paper is organized as follows. In Sec. Il, we derive an
expression for the extinguished power that is the progenitor
of the generalized optical theorem for electromagnetic fields. V X E(r) —ikou(r)H(r) =0. (4)

An expression is obtained that relates the extinguished power

to a volume integral over the domain of the scatterer. Thigieree(r) is the electric permittivity ang(r) is the magnetic
formulation also applies to the case that the scattering objegtermeability. The fields can be expressed as the sum of the
is embedded in an arbitrary, inhomogeneous background. limcident fieldE"(r) and the scattered field®(r),

Sec. lll, scattering from an object in free space is analyzed.

In Sec. IV, the problem of scattering from an object in a half E(r)=EV(r) +E®(r), (5)

V X H(r) +ikqe(r)E(r) =0, (3
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H(r) =HY(r) + HO(r). (6)

The incident field is assumed to be generated by sources
outside the domain being considered and satisfies the fre
space, time independent Maxwell equations

Ps=f d’r S9(r) - A. (16)
N

%:gain making use of Green’s theorem we obtain for the scat-
tered power the expression

V x HO(r) +ik(r)E"(r) =0, (7
- w
_ _ Ps=——Im | &3[H(r)-H® (r)x(r) +E(r) -E®"(r) 5(r)].
¥ X E9(r) — Ik HO() =0, ® 2 fv [H() -H (1)x(r) +E(r) - E®" (1) 7(1)]
in addition to the fields being divergence free. The scattered (17)

field safisfies the equations The power supplied to the system is imparted by the incident

V X HO(r) +ik(r)E®(r) = = 4aik(r) »(r)E(r)  (9) field. The total poweP, extinguished or removed, from the
system is due to both scattering and absorption. That is,
V X EO(r) —ik(r)H®(r) = 4aik(r)x(r)H(r), (10) P.=P.+P, (18
where 7(r) and x(r) are the electric and magnetic suscepti-
bilities of the scatterer, respectively, ak@)=Kkyvue is the
wave number. The susceptibilities are related to the electri
permittivity and the magnetic permeability by the formulas

where the absorbed powBy and the scattered powe are
given by Egs.(14) and(17), respectively. Explicitly, the ex-
nguished power is given by the formula

K(r) _c J 3 W (.
e(r) = mo[n(r) -1, (11) Pe > Im Vd r K(NDE" (r) - E(r) 5(r)
+HO(r) - H(r)x(r)]. (19
k(r)
u(r) = mo[x(f) -1]. (120 This is our main result for vector fields. As in the case of

scalar fields, this result may be understood to relate the total

The distinction between the scatterer, characterized bpower extinguished from the incident field to the projection
7(r) and x(r), and the background, characterizedkfy) is  of the magnetic and dielectric susceptibilities of the scatter-
arbitrary. That isk(r), #(r), and x(r) may be redefined in ing object onto the interference pattern generated by interfer-
any way such that(r) and u(r) appearing in Eqs(3) and  ence of the incident and the total fields within the domain of
(4) remain unchanged. In many cases of interest there arée scatterer. If the scatterer is in vacuum, tieén =k, in
compelling reasons to distinguish a scatterer from the backhe domain of the scatterer and the above equation takes the
ground. In free spack(r)=k, everywhere. Because we as- form
sume that the background medium is lossless, the power ab-
sorbed by the scatterel,, is given by the integral of the p_ = @ |mf B ED (r) - E(r)p(r) + HO*(r) - H(r) x(r)].
Poynting vector passing through any surface enclosing the 2 v

scatterer but not the sources of the incident field: (20)
P,=— [ dS(r)-n. 13
é L\, (r) (13 Ill. FREE SPACE
Heref is the outward unit normal to the surfad¥ of the We will now show that when the scatterer is in free space,

scatterer. Making use of Green's theoré® Sec. 1.8and  the general result given in ERO) yields a relationship be-

the Maxwell equations, we find the following expression fortween the extinguished power and the scattering amplitude
the absorbed power: of the object. Moreover, our discussion will provide a tem-

plate for the calculations provided in the subsequent section
P,= w Im f & k([ 7()|EMR+ x(DHE)[Z]. (14) yvhgre we consider the more complicated problem of scatter-

v ing in a half space.
, We suppose that the scattering object is located in the half
For a lossy, nonmagnet{g(r)=0] material, Inf7(r)] must  gpace,=>0 and the sources of the incident field are located in
be positive in order that the absorbed power be positiveine half space<0. The most general case, where sources
Likewise, for a lossy, nondielectri¢(r)=0] material, may pe located anywhere outside of the object, may be

Im[x(r)] must also be positive. treated by an extension of the analysis presented here. We
The Poynting vector associated with the scattered fiel&éonsider only nonmagnetic materialg=0), though mag-
alone is given by the expression netic materials may be included by an analogous approach.
c X The incident field may be expressed as a superposition of
S9(r) = 8 REES(r) x HE"(n)], (150 plane waveg[5], Sec. 3.2 with complex vector amplitudes,

say,e(k). The vectork =k +Zk,, k, being a vector parallel to
from which it follows that the power carried away by the the planez=0, Z being the unit vector in the positivedirec-
scattered field is given by tion, and
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h2_.2 2 2

=1 VKool whenlo=id, (21) HAT 0= [ G110 (28
iVkZ -k whenkd < K.

In Eq. (26) G,4(r,r') is the outgoing Green’s tensor that

The dependence & on k; is implied throughout. When the ] .
satisfies the equation

modulus |k,| exceeds the free-space wave numkgrthe
quantityk, becomes purely imaginary. Such valuekptor- , 5 " 3 ,
respond to evanescent modes of the incident field that decay ~ vV X V X G(r,r") +kgG(r.r )= = A4ml 8 - 1),

exponentially on propagation. The incident electric field is (27)

given by the formula
where 89(r -r’) is the three dimensional Dirac delta func-

i ) i) tion and | is the unit tensor. The Green’s tensor may be
Eg (1) = | dkeu(k)dyur k). (22)  optained from the Green’s function for the scalar case by the
formula[6]
Here
1 &
K K Galg(l’,l"): 501,8 koﬁ Go(r,r’), (298
Bp(r K) = ( -5 )eik-f, (23
Ko whereGy(r,r’) is the scalar Green’s function for the Helm-
where 5,5 is the Kronecker symbol, summation over re- holtz equation with the following plane wave representation:

peated |nd|ces is implied, and the factéy;—k kﬁ/kO en-
ok, . .
sures transversality of the fields. Golr,r')=— f 8 ik (r=r ik =2 (29
Let us introduce the quantity,s(r,k) representing the 2w ) Kk,
modes of the the total field associated with the scattering of
incident plane waves. That is, the total field produced onVe denote reflections through te0 plane by a tilde. Thus
scattering of the plane wave ea(k)qbg) (r.k) is we writek=k-k2. Hence, forz=2,
€,(K)d,5(r k). Since Egs(3) and(4) are linear in the fields,

the total electric field is given by the expression Guglr 1) = '_f ﬂ(éaﬁ_ %g)eik,(r_r,) 30)
27 ) K, K2
Eﬁ(r) :f dzle ea(kl)d’aﬁ(klvr) (24) and forz<Z',
(see Fig. 1 The modes of the total field can be written in " r’):i— K 5 _F;kE ) 31)
terms of incident and scattered field modes: ap 2 k, \ K '
Baplr k) = q’)(') (r,k)+ ¢(5)(r k), (25) Thus,¢f}g(r ,k;) can also be represented in the form of a

plane wave decomposition:
where qb(;) (r,k) is the scattered field tensor such that the
scattered field produced on scattering of a plane wave ¢( (r k )_ fdzkzeikz-rA (k1K)
e (k)gb(') (r k) is e (k)¢S 51 K). The scattered field modes ! K, a2
¢ (r k) satisfy the integral equation

(32)

which defines the scattering amplitudgs(k,k,). Using the
Aaskiska) 4 Fourier inversion formulaA,; may be seen to be given by
6a(k1)Tkzzel aE I the expression

AN
N\

k .
Anpky ko) = =2 f d’re*2"¢%(r ky), (33
271 J =4,

wherez=z,>0 is any plane outside the domain of the scat-
terer. It can readily be shown that in the far zone of the object
¢(;}J,(r ,k1) behaves asymptotically as

ea(ky)dl)(r, k1)

eikor
G Ky) ~ ——A,pky, ko) askgr — o (34)
FIG. 1. IIIustratlng the notation for scattering in free space. An ! roepnt ko ko

incident Waveea(kl)¢> (r ky) is represented by the solid line in-

dicating the wave vectd{l A plane wave component of the scat- N any fixed directiort. ' .
tered field with amplitude proportional &,(k1)A,4(ky,k») is rep- Substituting from Eq.(30) into Eq. (26) we obtain for
resented by a dashed line indicating the wave veksor qsfjg(r ,k) the expression
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K (kl)ZAJrap(klvkivkzakz) gk
Pap(r k) =k fdg f & . - o
\
I_(,B_k’z ik-(r-r") ’ ’ \\ _
X 6‘3,),_ k(z) el 77(I’ )d)ay(l’ ,k), 3 ,/ z=12z i
N\
,I
(35 -
”
where we ag;a;n assume thet 7> 0. Substituting this ex- eH)iA? ek ki k) -
pression forg Sﬁ(r ,k) into Eqg.(33), we obtain the following -
. & . . . ea(k1)¢ (1‘ ki, ki)
expression for the scattering amplitude in terms of the out- ®

going wave vectok:
€, (ky) 1A+aﬁ(kl ki, ko, k) giker

’ k2 kz 2mha K 2z =2
a,B (k1,ko kof d°r (5137 k% )

Xe K2 (") b1 K1), (36) X
Using our main formula20) for the extinguished power P
and assuming thaj(r)=0, we see that the extinguished & \
power is given by the expression kiAol Ky ) g '
2k ex ey ¢ (r, ki, K))

w
= E Im fdzklfdzkzj d?’l’ ea(kl)¢ay(r,k1) ©
. v FIG. 2. lllustrating the notation for the half-space problem. In
X n(r)eﬁ(kg)qb() (r.ky). (37) (a), an incident wavee;(kl)¢;(')(r ,kq,k}) associated with sources
in the lower half space is represented by a solid line indicating the
Thus Egs(23), (36), and(37) imply that wave vector of the three plane wave components of the field. The
w ) o . wave vectors of the plane wave components of a mode of the scat-
Pe= E Im [ d%y | d kZHeﬁ(kZ)ea(kl)Aaﬁ(kl!kZ)' tered field are represented by a dashed line. The two codirectional
plane wave components of the scattered fieldin the upper half space
(38) combine to produce an outgoing plane wave with wave vekjor
gnd amplitude proportional te] (kl)Amﬁ(kl,kl,kz, 5). The plane
wave component of the scattered mode in the lower half space is
proportional toea(k )AL ap (kl,kl,kz, 5). In (b), the notation is
similarly illustrated with a different mode of the incident field

@. k ® rk enerated by sources in the upper half space.
The scattering amplitude may be expressed more com Sk (1 ki) G Y PP P

pactly. Due to the presence of the projection onto transverse
modes, 5,5~k k,;/k0 in Eq. (36), the scattering amplitude
has a nontrivial null space corresponding to nontransverse We now consider the problem of scattering from an object
field vectors. It is thus appropriate to express the complexy the presence of a planar interface separating two semi-
vector field amplitudes in a basis such as the transverse elegfinite half spaces. It is assumed that the scatterer is of finite
tric (TE) and transverse magnetigM) field vectors. Sup- sjze and is located in the regian=z=z, as shown in Fig.
posep; (k) and p,(k) are two orthonormal e|genvectors of 2. The half space>0 is assumed to be vacuum. The other
the projection onto the transverse fle'@% k.ks/K3. Defin-  half spacez<0 is assumed to be occupied by a material
ing Aj(kq,k5)=pjs(KD)p.(ko)Aup(ky,k3) and aj=e-p;, we  whose index of refraction is. The field obeys Eqg9) and
obtain (10) with

Pe=§ Im fdzklfd2k2a;(kz)ai(kl)Aij(kl’k;)' k(r)={k0 orz=o. (40)

The case when a single plane wave is incident on th
scatterer may be recovered by settielg) =e,6? (k,—Kg)).
By defining the cross section ag=P./|ey|?, we obtain Eq.

IV. HALF SPACE

nk, forz<O.

(39) In the domain of the scatterer, the incident field obeys
This result is analogous to that obtained for scalar fields Eq. (9) and can be represented as a superposition of plane
except that in the vector formulation, the extinguished powemwave modes. We exclude the case where sources are located
depends on the complex vector amplitude of the incidentn the region of the scatterer. The modes of the incident field
field. It may be seen that the power extinguished from thenay be seen to consist of three plane wave components,
incident field is removed by interference of the scattered fieldisually called the incoming, reflected, and transmitted parts
with the incident field. EquatiofB9) expresses this relation- of the field(see Fig. 2 with coefficients obtained by impos-
ship in terms of the plane wave components of the incidening the boundary conditions
field and takes into account the cross terms between these
modes. ZXE(N)|z0r= 2X E(r)| =0 (41)
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ZX V XE()|zgr= 2X V XE)|po-. (42 Vn?k2-k?  whenk§ > k2,
= iVk2-n2k2 whenn?k3 < k? (45
The modes of the incident field generated by sources in the iVki = n%kg ko <k

lower half space may thus be seen to be given by the expresr can be verified that these modes are orthogonal and span
sion the space of incident fields satisfying E). The incident
field can therefore be written in the form

. k'K, \ -~
S0k, k) = (- {(@ —M>e"‘"f+R; Kk’ ek’-f] | | |
o} B(r ) ( Z) B nzkg ﬁ( ) E(B')(r):fdzlq[e;(k)cﬁz(,'g)(r,k,k’)+e;(k)¢;(/;)(r,k,k’)].

+0(2)T, 5k, k") (43 46)
The modes of the field generated by sources in the upper ha{;s \vill use the more compact notation
space are given by the expression '
AN Ef(=2 | dkel(eiprkk). (47
¢;(i)(l',k,k’) = (2) (5a/3_ Lzé)eik-r + Raﬁ(k,k’)eik'r n=+
Ko B The Green's tensoG,4(r,r’) for this case satisfies the
+ 0= 2)Topk kT, (44)  equation

’ 2 7 — ’
whereR(k k"), R'(k,k"), T(k,k’), andT’(k,k’) are the re- -V XV XGr )+n2(z)kOG(r,r )=~ 4ml 8 =),
flection and transmission tensors that are discussed in the (48)
Appendix andéd(z) is the Heaviside step function. In the ;4 obeys the boundary conditions given in E@) and
upper half space, the wave vectdrsare given by EQ(45  (42). The Green’s tensor may be expressed as a superposition
and in the lower half space the wave vectfs'k;+k;zand  of gutgoing modes satisfying the above boundary conditions.
k’=k,—k,z where Forz’ =0, the only case of interest here, it is given [}

i dZ H ! B ! ! : ’ k k ; ’
Galg(r,r "= 2qu f kkﬂelkn-(r—r ){ o(— Z)Ta,g(k,k’)e'(kzz -k2) 4 0(2)|:Ra’3(k,k’)e'kz(2+z )+ 0(z— Z’)(ﬁaﬁ _ tl%lj)elkz(z—z )
Z

+6(z - z)(éaﬁ - %) eikz<2’-2>] } : (49)

It is again useful to introduce tensor modes of the total Substituting into Eq(19) the expressions for the fields
field <l'>i5(f ,k,k’). The total field modes are superpositions given in Eqgs.(52) and (53) we obtain the formula
of the incident and scattered field modes given by the for-
mula

. w *
£ = GE0( kK + GED(r kK, (50) Pe=> Im fd3rfd2k1fd2kz 2 e (kpejky)
m,n=+
where the scattered field modes satisfy the integral equation iy , ,
v the integral e X BT (ko) BT K KD, (54)
f,(;)(r,k,k’) :kgf d®r' G, (r, 1) (") e (r' Ky, k1). The modes of the scattered field may be expressed as a

superposition of plane waves weighted by the scattering am-
(51 plitude. In the upper half space the modes of the scattered

The total field vector can then be expressed as a sum of totzfj{leld are given by the formula

field modes,
2 & (K) " S kyk)) = o —dzkz”Af (kqki.ko kg2t
Egn)=3 | k) is(rikk), (52) ap (1KoK =5 | 2 " Aaplkakikakg)emer,
) 55
and the scattered field vector can be written as 9
E(ﬁs)(r) => f dzkueg(k)qsg(;)(r,k,k’). (53  and the modes of the scattered field in the lower half space
n=+ are given by the expression,
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Substituting these expressions into E&4) and comparing

the results with Eqs(59) and (60), we find that for a field

incident from the lower half space;(k)df(' r,k,k’) the
(56) extinguished power may be expressed as

The asymptotic form of the scattered field is given by ex-

pressions analogous to E(R4). From these expressions it

may readily be seen that

— ik e ko1 .
2z d2r e7ikaiT
=7y

Al otk kikakg) = 2

X ¢i(s (r 1 kl; ki) ]
d2r ekt

— ik, g ka2 f
2 =2,

X FEO(r kq,k]).

Afaﬂ(kla ki,kz, ké) -

Making use of the explicit form for the Green’s tensor and
the above results for the scattering amplitude and (Ed),
we obtain the following expressions for the scattering ampli-

tude:

+ ' ' ks gk e
Alaﬁ(klakl’kz,kg):kgj d3r{<5ﬁy——2%>e ko

+ Rﬁy(kz,ké)e_&z'r]
X n(r)(ﬁi‘y(r ’ klvk:’L) ’
Kok,

kZz

A (ke K Ko k) =

It is useful to note that, with the aid of several identities
given in the Appendix, the field modes in the domain of the
scattererz’ =0, given in Eq450) and(51), can be written as

1) * . N k*k* .
S (r kK =T, (k" K >{(6M5-J§f)e-lk .

¥ Rﬂg(k*,k’*)e"i?'r}

!

k;
kRl’m(k K')T,sk" k' )""‘r

. KKy s
bas (1KK) =Rya(K' K ){(%—Jg)e"k !

5(k Kk’ )—Ik r:|

k/
+ 2T

k, W(kk)T(;(kk)""Ir

f d?r T, (Ko, ké)e‘iEZ‘r

Po= - Imie} (b T (k. kAT, lk kK k)

R (K KDAT (kKK k)T (63)

This result has a clear physical interpretation. In the absence
of the scatterer, each component of the incident field imparts
a certain amount of power to the far zone via the outgoing
plane waves reflected from and transmitted through the pla-
nar boundary(z=0) of the half spaces. The scatterer de-
pletes, or extinguishes, some power from the incident field.
In order to properly account for the total power, the field
produced upon scattering must interfere coherently with the
incident field to extlngwsh incident power. Thus the incident
field modes¢+(' (r;kq,ky) deliver power to the far zone
through the plane wavei” andek1”, and the extinguished
power is directly related to the amplitude of the scattered
plane waves in those same directions. Likewise, the power
extinguished from the fiel@ qS Wis given by

(57)

(58)

P, = g Im{e; (K)e5 (KR ,(k, kAT 4k, k' K" k')

(59 . _ £ g
Tk KA (kK KT KT (64)
When the incident field is not a single incident mode, but
consists of a superposition of modes, we find that the extin-
(60 guished power is given by the formula
60

w *
= 52 |m{f d?ky Ay €], (kz)e?;(kl)

X [T (Ko kAL (ke k1KoK )
+ R (Ko, kDAL (k1 k], K5,k )]

+ f dzkl\\d2k2l\e?3(kl)e:(kz)
X [T (Ko kAL ok, kK5, kb))

+R’;a<k2,kg>A2yB<k1,k1,k{,ké*n}. (65)
(61)

V. DISCUSSION

The results presented here lend insight into the processes
by which energy conservation is manifest in the scattering of
electromagnetic fields. A number of applications are sug-
gested. It is interesting to note that in the first Born approxi-
mation, when the scatterer is in free space, the extinguished
power may be seen to be the projection of the incident in-

(62) tensity on the imaginary part of the susceptibility,
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P, = gf dr EO(r) - EV*(n)Im[5(r) + O(;2)].  (66) Topk,k') = P;a(E’)tyﬁ(kikl)Pﬁﬁ(E)a (A3)
v

This formula suggests a manner in which object structure Tap(ksk') = Pra(k)t ok kPgk7), (A4)

may be investigated. If the intensity of the incident field wherer andt are given by

forms the kernel of an invertible transformation, then the 2 ,

object structure as described by[latr)] may be found from %k -k

power extinction measurements. In Rei8,9] the incident [ nPkt+k;

field was taken to consist of two plane waves and conse- r= k.- K (AS)

quently the extinguished power was found to be related to a 0 Z—f

Fourier transforn{8] or to a Fourier-Laplace transforfi9] K+ Kz

of the object. However the analyses presente8jrand[9]  and

were carried out for a scalar field. The present results provide

a framework in which to extend those works to electromag- 2nk, 0

netic fields for cases where polarization effects may be im- n%k, + k.

portant. t= x| (AB)
The results of this paper may be readily extended to par- 0 z -

tially coherent fields. The quadratic products of field ampli- k. +k;

tudes appearing in E465) must then be replaced by second 5,4 r'=-r, t'=k\t/k, The projection operator onto the

order coherence tensors. The results may then be applied 4&_TM pasis in the upper half space is given by
problems such as the scattering of partially coherent electro-

. 2 2
magnetic beams. P(k) = 1 ( ke, =k K+ ky) (A7)
V2 + k§|<0 —kko keko 0
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APPENDIX T;a(k,k’)RyB(k,k,) - _k ZR;a(k,k,)T%B(k,k’),

The reflection and transmission coefficients in the upper z
and lower half spaces may be obtained by first projecting the (A11)
field onto the TE-TM basis, then multiplying by the appro- .
priate Fresnel coefficients and projecting back onto the origi- k. kK

nal basis. We denote By andR’ reflection in the upper and Rua(k, KR, gk, k') + EZTm(kvk’)Tuﬁ(k’k’) = Sap~ kg '
lower half spaces, respectively, and Dand T’ transmission z

from the upper half space into the lower half space and trans- (A12)
mission from the lower half space into the upper half space, . L

respectively.P and P’ are projection operators onto the Rap(K.K) =Rk k"), (A13)
TE-TM basis in the upper and lower half spaces, respec-

tively, and are discussed below. We find for the reflection and T;B(k,k’) = Taﬁ(k*,k’*). (Al14)

transmission tensors the expressions . . .
P ExpressiongA9) and(A10) simply reflect the fact th® is a

R,5(k.k') = P (K)r sk, k')Pss(K) (A1) projection operator with the usual properties tRatP and
B vy B P is the identity on the subspace into which it projects. Ex-

) , L, o~ e pression(Al1l) may be understood to be a statement of
Ros(k.K') =P (K)o s(k,k")Pggk"), (A2)  stokes reciprocity.
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