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I. INTRODUCTION

The conservation of energy for electromagnetic fields
leads to a remarkable identity known as the optical theorem.
This theorem relates the power extinguished from a plane
wave incident on an object to the scattering amplitude in the
direction of the incident field. The optical theorem may be
expressed by the formulaf1–3g

se =
v

2ueu2
Imfeaeb

* Aabsk,kdg, s1d

where se is the extinction cross section,e is the complex
vector amplitude of the incident field, andAabsk ,kd is the
tensor scattering amplitude in the direction of the incident
beam and the summation convention is assumed.

In this paper, we present a generalization of the optical
theorem for elecromagnetic fields. We derive expressions for
the extinguished power that are applicable to scatterers in
free space as well as scatterers in a half space. These results
take into account the contribution not only of the homoge-
neous components but also of the evanescent components of
the incident field, both of which are necessary when the
source of illumination is in the near zone of the scatterer.
Results along these lines for scalar fields were recently pre-
sentedf4g.

The paper is organized as follows. In Sec. II, we derive an
expression for the extinguished power that is the progenitor
of the generalized optical theorem for electromagnetic fields.
An expression is obtained that relates the extinguished power
to a volume integral over the domain of the scatterer. This
formulation also applies to the case that the scattering object
is embedded in an arbitrary, inhomogeneous background. In
Sec. III, scattering from an object in free space is analyzed.
In Sec. IV, the problem of scattering from an object in a half

space is addressed. It is found that the extinguished power is
related to the field that is scattered in the directions of the
components of the incident field in both the upper and the
lower half spacesssee Fig. 2d. The half space problem is of
practical importance in applications to optical imaging when
the sample is supported on a slide or other flat substrate.

II. GENERAL RESULTS

The conservation of energy in electromagnetic fields may
be expressed by means of the Poynting vectorf3, Sec. 1.4g.
The time averaged Poynting vector for a fixed frequency,
Ssr d, is given by the expression

Ssr d =
c

8p
RefEsr d 3 H*sr dg, s2d

where Esr d and Hsr d the space dependent parts
of the time varying fields, Esr ,td=RefEsr de−ivtg and
Hsr ,td=RefHsr de−ivtg. In a linear medium at fixed frequency
v=ck0, Esr d andHsr d satisfy the time independent form of
the Maxwell equations which, in the Gaussian system of
units, are

= 3 Hsr d + ik0esr dEsr d = 0, s3d

= 3 Esr d − ik0msr dHsr d = 0. s4d

Hereesr d is the electric permittivity andmsr d is the magnetic
permeability. The fields can be expressed as the sum of the
incident fieldEsidsr d and the scattered fieldEssdsr d,

Esr d = Esidsr d + Essdsr d, s5d
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Hsr d = H sidsr d + H ssdsr d. s6d

The incident field is assumed to be generated by sources
outside the domain being considered and satisfies the free-
space, time independent Maxwell equations

= 3 H sidsr d + iksr dEsidsr d = 0, s7d

= 3 Esidsr d − iksr dH sidsr d = 0, s8d

in addition to the fields being divergence free. The scattered
field satisfies the equations

= 3 H ssdsr d + iksr dEssdsr d = − 4piksr dhsr dEsr d s9d

= 3 Essdsr d − iksr dH ssdsr d = 4piksr dxsr dHsr d, s10d

wherehsr d andxsr d are the electric and magnetic suscepti-
bilities of the scatterer, respectively, andksr d=k0

Îme is the
wave number. The susceptibilities are related to the electric
permittivity and the magnetic permeability by the formulas

esr d =
ksr d
4pk0

fhsr d − 1g, s11d

msr d =
ksr d
4pk0

fxsr d − 1g. s12d

The distinction between the scatterer, characterized by
hsr d andxsr d, and the background, characterized byksr d is
arbitrary. That is,ksr d, hsr d, and xsr d may be redefined in
any way such thatesr d and msr d appearing in Eqs.s3d and
s4d remain unchanged. In many cases of interest there are
compelling reasons to distinguish a scatterer from the back-
ground. In free spaceksr d=k0 everywhere. Because we as-
sume that the background medium is lossless, the power ab-
sorbed by the scatterer,Pa, is given by the integral of the
Poynting vector passing through any surface enclosing the
scatterer but not the sources of the incident field:

Pa = −E
]V

d2r Ssr d · n̂. s13d

Here n̂ is the outward unit normal to the surface]V of the
scatterer. Making use of Green’s theoremf5, Sec. 1.8g and
the Maxwell equations, we find the following expression for
the absorbed power:

Pa =
v

2
Im E

V

d3r ksr dfhsr duEsr du2 + xsr duHsr du2g. s14d

For a lossy, nonmagneticfxsr d=0g material, Imfhsr dg must
be positive in order that the absorbed power be positive.
Likewise, for a lossy, nondielectricfhsr d=0g material,
Imfxsr dg must also be positive.

The Poynting vector associated with the scattered field
alone is given by the expression

Sssdsr d =
c

8p
RefEssdsr d 3 H ssd*sr dg, s15d

from which it follows that the power carried away by the
scattered field is given by

Ps =E
]V

d2r Sssdsr d · n̂. s16d

Again making use of Green’s theorem we obtain for the scat-
tered power the expression

Ps =
− v

2
Im E

V

d3rfHsr d ·H ssd*sr dxsr d + Esr d ·Essd*sr dhsr dg.

s17d

The power supplied to the system is imparted by the incident
field. The total powerPe extinguished or removed, from the
system is due to both scattering and absorption. That is,

Pe = Pa + Ps, s18d

where the absorbed powerPa and the scattered powerPs are
given by Eqs.s14d and s17d, respectively. Explicitly, the ex-
tinguished power is given by the formula

Pe =
c

2
Im E

V

d3r ksr dfEsid*sr d ·Esr dhsr d

+ H sid*sr d ·Hsr dxsr dg. s19d

This is our main result for vector fields. As in the case of
scalar fields, this result may be understood to relate the total
power extinguished from the incident field to the projection
of the magnetic and dielectric susceptibilities of the scatter-
ing object onto the interference pattern generated by interfer-
ence of the incident and the total fields within the domain of
the scatterer. If the scatterer is in vacuum, thenksr d=k0 in
the domain of the scatterer and the above equation takes the
form

Pe =
v

2
Im E

V

d3rfEsid*sr d ·Esr dhsr d + H sid*sr d ·Hsr dxsr dg.

s20d

III. FREE SPACE

We will now show that when the scatterer is in free space,
the general result given in Eq.s20d yields a relationship be-
tween the extinguished power and the scattering amplitude
of the object. Moreover, our discussion will provide a tem-
plate for the calculations provided in the subsequent section
where we consider the more complicated problem of scatter-
ing in a half space.

We suppose that the scattering object is located in the half
spacezù0 and the sources of the incident field are located in
the half spacez,0. The most general case, where sources
may be located anywhere outside of the object, may be
treated by an extension of the analysis presented here. We
consider only nonmagnetic materialssx=0d, though mag-
netic materials may be included by an analogous approach.

The incident field may be expressed as a superposition of
plane wavessf5g, Sec. 3.2d with complex vector amplitudes,
say,eskd. The vectork =k i+ ẑkz, k i being a vector parallel to
the planez=0, ẑ being the unit vector in the positivez direc-
tion, and
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kz =H Îk0
2 − ki

2 whenk0
2 . ki

2,

iÎki
2 − k0

2 whenk0
2 , ki

2.
J s21d

The dependence ofkz on ki is implied throughout. When the
modulus uk iu exceeds the free-space wave numberk0, the
quantitykz becomes purely imaginary. Such values ofkz cor-
respond to evanescent modes of the incident field that decay
exponentially on propagation. The incident electric field is
given by the formula

Eb
sidsr d =E d2kieaskdfab

sid sr ,kd. s22d

Here

fab
sid sr ,kd = Sdab −

kakb

k0
2 Deik·r , s23d

where dab is the Kronecker symbol, summation over re-
peated indices is implied, and the factordab−kakb /k0

2 en-
sures transversality of the fields.

Let us introduce the quantityfabsr ,kd representing the
modes of the the total field associated with the scattering of
incident plane waves. That is, the total field produced on
scattering of the plane wave easkdfab

sid sr ,kd is
easkdfabsr ,kd. Since Eqs.s3d ands4d are linear in the fields,
the total electric field is given by the expression

Ebsr d =E d2k1i eask1dfabsk1,r d s24d

ssee Fig. 1d. The modes of the total field can be written in
terms of incident and scattered field modes:

fabsr ,kd = fab
sid sr ,kd + fab

ssd sr ,kd, s25d

where fab
ssd sr ,kd is the scattered field tensor such that the

scattered field produced on scattering of a plane wave
easkdfab

sid sr ,kd is easkdfab
ssd sr ,kd. The scattered field modes

fab
ssd sr ,kd satisfy the integral equation

fab
ssd sr ,kd = k0

2E d3r8Gbgsr ,r 8dhsr 8dfagsr 8,kd. s26d

In Eq. s26d Gabsr ,r 8d is the outgoing Green’s tensor that
satisfies the equation

− = 3 = 3 Gsr ,r 8d + k0
2Gsr ,r 8d = − 4pIds3dsr − r 8d,

s27d

whereds3dsr −r 8d is the three dimensional Dirac delta func-
tion and I is the unit tensor. The Green’s tensor may be
obtained from the Green’s function for the scalar case by the
formula f6g

Gabsr ,r 8d = Sdab +
1

k0
2

]2

]ra]rb
DG0sr ,r 8d, s28d

whereG0sr ,r 8d is the scalar Green’s function for the Helm-
holtz equation with the following plane wave representation:

G0sr ,r 8d =
i

2p
E d2ki

kz
eiki·sr−r8d+ikzuz−z8u. s29d

We denote reflections through thez=0 plane by a tilde. Thus

we write k̃ =k i−kzẑ. Hence, forzùz8,

Gabsr ,r 8d =
i

2p
E d2ki

kz
Sdab −

kakb

k0
2 Deik·sr−r8d s30d

and forz,z8,

Gabsr ,r 8d =
i

2p
E d2ki

kz
Sdab −

k̃ak̃b

k0
2 Dei k̃·sr−r8d. s31d

Thus,fab
ssd sr ,k1d can also be represented in the form of a

plane wave decomposition:

fab
ssd sr ,k1d =

i

2p
E d2k2i

k2z
eik2·rAabsk1,k2d, s32d

which defines the scattering amplitudeAabsk1,k2d. Using the
Fourier inversion formula,Aab may be seen to be given by
the expression

Aabsk1,k2d =
k2z

2pi
E

z=z0

d2r e−ik2·rfab
ssd sr ,k1d, s33d

wherez=z0.0 is any plane outside the domain of the scat-
terer. It can readily be shown that in the far zone of the object
fab

ssd sr ,k1d behaves asymptotically as

fab
ssd sr ,k1d ,

eik0r

r
Aabsk1, k0r̂ d ask0r → ` s34d

in any fixed directionr̂ .
Substituting from Eq.s30d into Eq. s26d we obtain for

fab
ssd sr ,kd the expression

FIG. 1. Illustrating the notation for scattering in free space. An
incident waveeask1dfab

sid sr ,k1d is represented by the solid line in-
dicating the wave vectork1. A plane wave component of the scat-
tered field with amplitude proportional toeask1dAabsk1,k2d is rep-
resented by a dashed line indicating the wave vectork2.
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fab
ssd sr ,kd = k0

2 i

2p
E d3r8E d2ki

kz

3 Sdbg −
kbkg

k0
2 Deik·sr−r8dhsr 8dfagsr 8,kd,

s35d

where we again assume thatzùz0.0. Substituting this ex-
pression forfab

ssd sr ,kd into Eq. s33d, we obtain the following
expression for the scattering amplitude in terms of the out-
going wave vectork2:

Aabsk1,k2d = k0
2E

V

d3r8Sdbg −
k2bk2g

k0
2 D

3e−ik2·r8hsr 8dfagsr 8,k1d. s36d

Using our main formulas20d for the extinguished power
and assuming thatxsr d=0, we see that the extinguished
power is given by the expression

Pe =
v

2
Im E d2k1i E d2k2iE

V

d3r eask1dfagsr ,k1d

3 hsr deb
* sk2dfbg

sid*sr ,k2d. s37d

Thus Eqs.s23d, s36d, ands37d imply that

Pe =
v

2
Im E d2k1i E d2k2ieb

* sk2deask1dAabsk1,k2
*d.

s38d

The case when a single plane wave is incident on the
scatterer may be recovered by settingeskd=e0ds2dsk i−k0id.
By defining the cross section asse=Pe/ ue0u2, we obtain Eq.
s1d.

The scattering amplitude may be expressed more com-
pactly. Due to the presence of the projection onto transverse
modes,dab−kakb /k0

2 in Eq. s36d, the scattering amplitude
has a nontrivial null space corresponding to nontransverse
field vectors. It is thus appropriate to express the complex
vector field amplitudes in a basis such as the transverse elec-
tric sTEd and transverse magneticsTMd field vectors. Sup-
posep1skd and p2skd are two orthonormal eigenvectors of
the projection onto the transverse fieldsdab−kakb /k0

2. Defin-
ing Ai jsk1,k2

*d=pjbsk1dpia
* sk2dAabsk1,k2

*d and aj =e·p j, we
obtain

Pe =
v

2
Im E d2k1i E d2k2iaj

*sk2daisk1dAi jsk1,k2
*d.

s39d

This result is analogous to that obtained for scalar fieldsf4g
except that in the vector formulation, the extinguished power
depends on the complex vector amplitude of the incident
field. It may be seen that the power extinguished from the
incident field is removed by interference of the scattered field
with the incident field. Equations39d expresses this relation-
ship in terms of the plane wave components of the incident
field and takes into account the cross terms between these
modes.

IV. HALF SPACE

We now consider the problem of scattering from an object
in the presence of a planar interface separating two semi-
infinite half spaces. It is assumed that the scatterer is of finite
size and is located in the regionz1ùzùz2 as shown in Fig.
2. The half spacez.0 is assumed to be vacuum. The other
half spacez,0 is assumed to be occupied by a material
whose index of refraction isn. The field obeys Eqs.s9d and
s10d with

ksr d = Hk0 for zù 0,

nk0 for z, 0.
J s40d

In the domain of the scatterer, the incident field obeys
Eq. s9d and can be represented as a superposition of plane
wave modes. We exclude the case where sources are located
in the region of the scatterer. The modes of the incident field
may be seen to consist of three plane wave components,
usually called the incoming, reflected, and transmitted parts
of the fieldssee Fig. 2d with coefficients obtained by impos-
ing the boundary conditions

uẑ 3 Esr duz=0+ = uẑ 3 Esr duz=0−, s41d

FIG. 2. Illustrating the notation for the half-space problem. In
sad, an incident waveea

+sk1dfab
+sidsr ,k1,k18d associated with sources

in the lower half space is represented by a solid line indicating the
wave vector of the three plane wave components of the field. The
wave vectors of the plane wave components of a mode of the scat-
tered field are represented by a dashed line. The two codirectional
plane wave components of the scattered fieldin the upper half space
combine to produce an outgoing plane wave with wave vectork2

and amplitude proportional toea
+sk1dA+ab

+ sk1,k18 ,k2,k28d. The plane
wave component of the scattered mode in the lower half space is
proportional toea

+sk1dA−ab
+ sk1,k18 ,k2,k28d. In sbd, the notation is

similarly illustrated with a different mode of the incident field
ea

−sk1dfab
−sidsr ,k1,k18d generated by sources in the upper half space.
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uẑ 3 = 3 Esr duz=0+ = uẑ 3 = 3 Esr duz=0−. s42d

The modes of the incident field generated by sources in the
lower half space may thus be seen to be given by the expres-
sion

fab
+sidsr ,k,k8d = us− zdFSdab −

ka8kb8

n2k0
2Deik8·r + Rab8 sk,k8dei k̃8·rG

+ uszdTab8 sk,k8deik·r . s43d

The modes of the field generated by sources in the upper half
space are given by the expression

fab
−sidsr ,k,k8d = uszdFSdab −

k̃ak̃b

k0
2 Dei k̃·r + Rabsk,k8deik·rG

+ us− zdTabsk,k8dei k̃8·r , s44d

whereRsk ,k8d, R8sk ,k8d, Tsk ,k8d, andT8sk ,k8d are the re-
flection and transmission tensors that are discussed in the
Appendix anduszd is the Heaviside step function. In the
upper half space, the wave vectorsk are given by Eq.s45d
and in the lower half space the wave vectorsk8=k i+kz8ẑ and

k̃8=k i−kz8ẑ where

kz8 =H În2k0
2 − ki

2 whenk0
2 . ki

2,

iÎki
2 − n2k0

2 whenn2k0
2 , ki

2.
J s45d

It can be verified that these modes are orthogonal and span
the space of incident fields satisfying Eq.s7d. The incident
field can therefore be written in the form

Eb
sidsr d =E d2kifea

+skdfab
+sidsr ,k,k8d + ea

−skdfab
−sidsr ,k,k8dg.

s46d

We will use the more compact notation,

Eb
sidsr d = o

n=±
E d2kiea

nskdfab
nsidsr ,k,k8d. s47d

The Green’s tensorGabsr ,r 8d for this case satisfies the
equation

− = 3 = 3 Gsr ,r 8d + n2szdk0
2Gsr ,r 8d = − 4pIds3dsr − r 8d,

s48d

and obeys the boundary conditions given in Eqs.s41d and
s42d. The Green’s tensor may be expressed as a superposition
of outgoing modes satisfying the above boundary conditions.
For z8ù0, the only case of interest here, it is given byf7g

Gabsr ,r 8d =
i

2p
E d2ki

kz
eiki·sr−r8dHus− zdTabsk,k8deiskzz8−kz8zd + uszdFRabsk,k8deikzsz+z8d + usz− z8dSdab −

kakb

k0
2 Deikzsz−z8d

+ usz8 − zdSdab −
k̃ak̃b

k0
2 Deikzsz8−zdGJ . s49d

It is again useful to introduce tensor modes of the total
field fab

± sr ,k ,k8d. The total field modes are superpositions
of the incident and scattered field modes given by the for-
mula

fab
± sr ,k,k8d = fab

±sidsr ,k,k8d + fab
±ssdsr ,k,k8d, s50d

where the scattered field modes satisfy the integral equation

fab
±ssdsr ,k,k8d = k0

2E d3r8Gbgsr ,r 8dhsr 8dfag
± sr 8,k1,k18d.

s51d

The total field vector can then be expressed as a sum of total
field modes,

Ebsr d = o
n=±

E d2kiea
nskdfab

n sr ,k,k8d, s52d

and the scattered field vector can be written as

Eb
ssdsr d = o

n=±
E d2kiea

nskdfab
nssdsr ,k,k8d. s53d

Substituting into Eq.s19d the expressions for the fields
given in Eqs.s52d and s53d we obtain the formula

Pe =
v

2
Im E d3r E d2k1i E d2k2i o

m,n=±
ea

m*sk2deb
nsk1d

3 hsr dfad
msid*sr ,k2,k28dfbd

m sr ,k1,k18d. s54d

The modes of the scattered field may be expressed as a
superposition of plane waves weighted by the scattering am-
plitude. In the upper half space the modes of the scattered
field are given by the formula

fab
±ssdsr ,k1,k18d =

i

2p
E d2k2i

k2z
A+ab

± sk1,k18,k2,k28de
ik2·r ,

s55d

and the modes of the scattered field in the lower half space
are given by the expression,
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fab
±ssdsr ,k1,k18d =

i

2p
E d2k2i

k2z8
A−ab

± sk1,k18,k2,k28de
i k̂28·r .

s56d

The asymptotic form of the scattered field is given by ex-
pressions analogous to Eq.s34d. From these expressions it
may readily be seen that

A+ab
± sk1,k18,k2,k28d =

− ik2ze
−ik2zz1

2p
E

z=z1

d2r e−ik2i·r

3fab
±ssdsr ,k1,k18d, s57d

A−ab
± sk1,k18,k2,k28d =

− ik2z8 e−ik2z8 z2

2p
E

z=z2

d2r e−ik2i8 ·r

3fab
±ssdsr ,k1,k18d. s58d

Making use of the explicit form for the Green’s tensor and
the above results for the scattering amplitude and Eq.s51d,
we obtain the following expressions for the scattering ampli-
tude:

A+ab
± sk1,k18,k2,k28d = k0

2E d3rFSdbg −
k2bk2g

k0
2 De−ik2·r

+ Rbgsk2,k28de
−i k̃2·rG

3hsr dfag
± sr ,k1,k18d, s59d

A−ab
± sk1,k18,k2,k28d =

k0
2k2z8

k2z
E d3r Tbgsk2,k28de

−i k̃2·r

3 hsr dfag
± sr ,k1,k18d. s60d

It is useful to note that, with the aid of several identities
given in the Appendix, the field modes in the domain of the
scatterer,z8ù0, given in Eqss50d ands51d, can be written as

fad
+sid*sr ,k,k8d = Tma8 sk* ,k8*dFSdmd −

km
* kd

*

k0
2 De−ik* ·r

+ Rmdsk* ,k8*de−i k̃* ·rG
+

kz8

kz
Rma8 sk* ,k8*dTmdsk* ,k8*de−i k̃* ·r ,

s61d

fad
−sid*sr ,k,k8d = Rmask* ,k8*dFSdmd −

km
* kd

*

k0
2 De−ik* ·r

+ Rmdsk* ,k8*de−ik* ·rG
+

kz8

kz
Tmask* ,k8*dTmdsk* ,k8*de−ik* ·r .

s62d

Substituting these expressions into Eq.s54d and comparing
the results with Eqs.s59d and s60d, we find that for a field
incident from the lower half spaceeg

+skdfgb
+sidsr ,k ,k8d the

extinguished power may be expressed as

Pe =
v

2
Imhea

+*skdeb
+skdfTga8

* sk,k8dA+gb
+ sk,k8,k* ,k8*d

+ Rga8
* sk,k8dA−gb

+ sk,k8,k* ,k8*dgj. s63d

This result has a clear physical interpretation. In the absence
of the scatterer, each component of the incident field imparts
a certain amount of power to the far zone via the outgoing
plane waves reflected from and transmitted through the pla-
nar boundarysz=0d of the half spaces. The scatterer de-
pletes, or extinguishes, some power from the incident field.
In order to properly account for the total power, the field
produced upon scattering must interfere coherently with the
incident field to extinguish incident power. Thus the incident
field modesfgb

+sidsr ;k1,k18d deliver power to the far zone

through the plane wavesei k̃18·r andeik1·r , and the extinguished
power is directly related to the amplitude of the scattered
plane waves in those same directions. Likewise, the power
extinguished from the fieldeg

−fgb
−sid is given by

Pe =
v

2
Imhea

−*skdeb
−skdfRga

* sk,k8dA+gb
− sk,k8,k* ,k8*d

+ Tga
* sk,k8dA−gb

− sk,k8,k* ,k8*dgj. s64d

When the incident field is not a single incident mode, but
consists of a superposition of modes, we find that the extin-
guished power is given by the formula

Pe =
v

2 o
n=±

ImHE d2k1id2k2iea
+*sk2deb

nsk1d

3fTga8
* sk2,k28dA+gb

n sk1,k18,k2
* ,k28

*d

+ Rga8
* sk2,k28dA−gb

n sk1,k18,k2
* ,k28

*dg

+E d2k1id2k2ieb
nsk1dea

−*sk2d

3 fTga
* sk2,k28dA−gb

n sk1,k18,k2
* ,k28

*d

+ Rga
* sk2,k28dA+gb

n sk1,k1,k28
* ,k28

*dgJ . s65d

V. DISCUSSION

The results presented here lend insight into the processes
by which energy conservation is manifest in the scattering of
electromagnetic fields. A number of applications are sug-
gested. It is interesting to note that in the first Born approxi-
mation, when the scatterer is in free space, the extinguished
power may be seen to be the projection of the incident in-
tensity on the imaginary part of the susceptibility,
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Pe =
v

2
E

V

d3r Esidsr d ·Esid*sr dImfhsr d + Osh2dg. s66d

This formula suggests a manner in which object structure
may be investigated. If the intensity of the incident field
forms the kernel of an invertible transformation, then the
object structure as described by Imfhsr dg may be found from
power extinction measurements. In Refs.f8,9g the incident
field was taken to consist of two plane waves and conse-
quently the extinguished power was found to be related to a
Fourier transformf8g or to a Fourier-Laplace transformf9g
of the object. However the analyses presented inf8g andf9g
were carried out for a scalar field. The present results provide
a framework in which to extend those works to electromag-
netic fields for cases where polarization effects may be im-
portant.

The results of this paper may be readily extended to par-
tially coherent fields. The quadratic products of field ampli-
tudes appearing in Eq.s65d must then be replaced by second
order coherence tensors. The results may then be applied to
problems such as the scattering of partially coherent electro-
magnetic beams.
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APPENDIX

The reflection and transmission coefficients in the upper
and lower half spaces may be obtained by first projecting the
field onto the TE-TM basis, then multiplying by the appro-
priate Fresnel coefficients and projecting back onto the origi-
nal basis. We denote byR andR8 reflection in the upper and
lower half spaces, respectively, and byT andT8 transmission
from the upper half space into the lower half space and trans-
mission from the lower half space into the upper half space,
respectively.P and P8 are projection operators onto the
TE-TM basis in the upper and lower half spaces, respec-
tively, and are discussed below. We find for the reflection and
transmission tensors the expressions

Rabsk,k8d = Pgaskdrgdsk,k8dPdbsk̃d, sA1d

Rab8 sk,k8d = Pga8 sk̃8drgd8 sk,k8dPdb8 sk8d, sA2d

Tabsk,k8d = Pga8 sk̃8dtgdsk,k8dPdbsk̃d, sA3d

Tab8 sk,k8d = Pgaskdtgd8 sk,k8dPdb8 sk8d, sA4d

wherer and t are given by

r =1
n2kz − kz8

n2kz + kz8
0

0
kz − kz8

kz + kz8
2 sA5d

and

t =1
2nkz

n2kz + kz8
0

0
2kz

kz + kz8
2 , sA6d

and r8=−r, t8=kz8t /kz. The projection operator onto the
TE-TM basis in the upper half space is given by

Pskd =
1

Îkx
2 + ky

2k0

S− kxkz − kykz kx
2 + ky

2

− kyk0 kxk0 0
D sA7d

and in the lower half space by

P8sk8d =
1

Îkx
2 + ky

2nk0

S − kxkz8 − kykz8 kx
2 + ky

2

− kynk0 kxnk0 0
D .

sA8d

The following identities are used in derivations in the
text:

PgaskdPgbskd = dab −
kakb

k0
2 , sA9d

PagskdPbgskd = dab, sA10d

Tga8 sk,k8dRgbsk,k8d =
− kz8

kz
Rga8 sk,k8dTgbsk,k8d,

sA11d

Rmask,k8dRmbsk,k8d +
kz8

kz
Tmask,k8dTmbsk,k8d = dab −

k̃ak̃b

k0
2 ,

sA12d

Rab
* sk,k8d = Rabsk* ,k8*d, sA13d

Tab
* sk,k8d = Tabsk* ,k8*d. sA14d

ExpressionssA9d andsA10d simply reflect the fact theP is a
projection operator with the usual properties thatP2=P and
P is the identity on the subspace into which it projects. Ex-
pression sA11d may be understood to be a statement of
Stokes reciprocity.
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