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Analysis of longitudinal-field reflection in dielectric gratings
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Because of a common approximation used in the derivation of the wave equation, conventional analyses of
Bragg reflection from dielectric gratings do not account for the distinctive behavior of the longitudinal field
component of the electric field. We address this issue, which has particular significance in subwavelength scale
periodic dielectric structures. We discuss new reflection phenomena within the theoretical framework of
coupled-wave analysis, supplemented with numerical calculations.
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Since any periodic variation in the dielectric coefficient coefficient per unit lengthV e(r)/ e(r)|, is much smaller than
can be decomposed into a Fourier series of linearly superinthe corresponding fractional change in the electric field am-
posed sinusoidal gratings, the analysis of Bragg reflectioplitude |V -E(r)/E(r)|. While justified for macroscopic di-
from sinusoidal dielectric gratings is of fundamental andelectric structures, this approximation does not hold in gen-
broad interest. The theory of Bragg reflection is the cornereral [13,14 and is certainly suspect in subwavelength
stone of many research areas in photonics, including diffracgratings[15] and similar structures.
tion, distributed feedback lasers, optical filtering, grating- The wave equation is derived from Maxwell's equations
enhanced nonlinear optics, and photonic crystals. for the Fourier components at the optical frequencyf the

Early milestones in the theoretical framework include thefields E(r ,t)=E(r)exp(—-iwt) and similarly forH(r,t) [16].
coupled-mode theory formulations based on ideal-mode exithout neglecting terms that arise from the divergence con-
pansion in the colinear geomefy,2] as well as the analysis dition V- ¢,e(r)E(r)=0, we obtain
of TE-TM mode coupling under conditions of oblique inci-
dence[3]. The subsequent local normal mode expansion 2 1

<@E(r) Y e(r)) =0, (1

methodd 4] resulted in more accurate description of the TM V2E(r) + w—ze(r)E(r) +V
reflection coefficient, and the “rigorous coupled-wave ¢
theory” (summation over diffraction ordersvas introduced
[5]. Recent publications include the interaction of forward-where 1£2= uqe, € is the vacuum permittivity ane(r) is
and backward-propagating modes in both the TE and TMa dimensionless function describing the spatial variation of
polarizations—a four-wave problefit]—and an investiga- the refractive index, e.g., in a uniform medium with refrac-
tion of thin surface gratings using a technique based ofive index ny, e(r)=n,>. For a one-dimensional grating,
Green's functiong7]. €(r)=€(x), the third term of Eq(1) becomes

In this paper, we discuss the role of the longitudinal elec-
tric field in periodic dielectric structures, and in particular, 1 1/de\?2 1d2e
investigate reflection phenomena. The longitudinal compo- V(—E(r) : Vf(r)) _))A{_e_2<d_> +‘d—X2]Ex(f)
nent of the electric field is of recent interest for demonstrated «(r) x €
and proposed applications in near-field microscopy, single 1lde
molecule studies, charged particle accelerators, and ultra- +;&VEX“)' (2)
focused light{8—12. In Sec. |, we present qualitative argu-

ments why investigation of the longitudinal field component y o ateh of the geometry is shown in Fig. 1, along with the
may reveal phenomena different from what is conventionally '

red. and in S L and Il i detail olarization directions for the waves considered in Secs. |
tthpeCt? ,Ian Im ecs. ?n ,tvge ptrﬁ?fn ?more de Ial eEnd lll. (We setd/dy—0 in all equations, assuming a uni-

eoretical analyses, suppiemented with direct numerical cag, ., gy ctyre along thg axis,) Clearly, a sinusoidal pertur-
culations of field propagation in the appropriate regime. Sec

tion IV di th nditions that are n " 10 0b r\E)ation in e(x) of the form sir{27x/b) will introduce, among
0 scusses the conditions that are hecessary to 0bse o%hers, a term that is spatially varying as @@srx/b). This
these phenomena.

term will affect theX component of the electric field, i.e.,
E.(r), polarized longitudinally to the grating.

I. INTRODUCTION

In writing the wave equation, one usually makes the ap- Il. FORMULATION

proximation that the normalized variation in the dielectric 4, quantify this observation, we assume that the back-

ground refractive index of the materialmg, and the grating
is described by a sinusoidal modulation of the dielectric co-
*Electronic address: mookherjea@ece.ucsd.edu efficient, so that(r) appearing in Eq(1) is written as
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[e(z)/no? — 1] /(2€1) = —sin (ZEz) expansion ofe(x)—there is only a single “Fourier compo-
nent” in Eq.(3).

The above equation, though conceivably suitable as the
basis for numerical simulations, does not concisely state
3 L what sort of physical behavior is engineered by the new
\ ' terms. To proceed further, we need an ansatzAfowWe de-

. 2 fineky2=ny2w?/c2- B2, which has the following significance:
if =0 in Eq. (5), its solutions areA(x)=aexp(ikgX),

ay V(z) e ko= =
05

/" . wherea is a unit polarization vector.
04 Given a nonzero value foe;, we can expect different
i 05 solutions: in this paper, we investigate the coupling between
a; U(x) etko® 08 the two linearly-polarized components of the following field
2 distribution:
’ ‘ A(X) = 3,U(x) e X + a,V/(x)e ko, (6)
z U@©) =1 V(L) =0 whered; anda, are unit polarization vectors andlandV are

scalar functions that describe the amplitudes. Clearly, the two
FIG. 1. Schematic of one-dimensional grating in the dielectriccomponents of Eq6) would be uncoupled whea =0, i.e.,
coefficiente(x) with incident and reflected waves as indicated by U andV would _be _'ndependent of. _As_an aside, we pc_"_nt
Eg. (6). Also shown are the boundary conditions used in solved inout that Eq.(5) is linear and the principle of superposition

the coupled-mode equatioK8). holds; other families of field configurations may be impor-
tant and can be considered in subsequent investigations, e.g.,
o the Bloch function “principal component$17] of the grat-
e(x) = noz[l _ Zelsin<—x>}, (3) ing, as replacements for exkox) in Eq. (6).

We assume thalt)(x) and V(x) are slowly varying over
where|e,| is small compared to unity, but large enough that27/Ko, S0 that

terms up tOO(elz) are maintained. We obtain A du _
— = él<2ik0— - k02U>e'k0X
1de _ 2 2—770032—77x— 2 2—Wsin(ZZ—WX) o dx
edx b b Up b)) ) v oL\
+8y| - 2ik0& - ky?V | e kox, (7)
1de of 27 2 52277'
edx = ae b co FX’ This approximation can be restrictive in certain instances,

and one should check that the obtained solutions satisfy this
condition. The assumption may be relaxed if predominantly

1d% 2w\ 27 o(2m\% . 2w _ . ; =
“d ~2¢| — smFx+ 4e, | — S|n2?x. (4) numerical analyses will be relied upon, giving up the conve-
€

b b nience of closed-form analytical solutions.

We write the field asE(r)=A(r)é#? and, after some  Following the usual rotating-wave argumefts,19, we
straightforward algebra, we derive the following equation,divide the terms in Eq(5) into two categories—a) those that
accurate tCO(elz), can.be phase matche(dxgctly or with some detuningo

X expikgx) and hence contribute cumulatively tiJ/dx and
0= (ﬁ AN 2i,8i)A (b) those terms that can be phase matched tg-ékgx) can
% 97 Jz contribute cumulatively tadV/dx. We introduce the scalar

o2 o2 o coefficientsp;,=2a; -8, Pu=(81-X)(82-X), Pox=(8;1-2)(8,-X),
+ <_2n02 - ,BZ)A + noz—z[— Zelsin—x}A and p,,=(3;-X)(8,-2) to write the resulting pair of differen-
¢ ¢ b tial equations as

2mw\? . 2w 2T 21
K 20 sin== - =2 du . _
+x{2q< b ) sin b X:|AX 261< b )cost & - K(l)vé25<1>><+ K(z)vézgz)x, (8)
X[VA, +ZBA]-2 2<2—”> i 22—77 [VA, +ZBA]
«+ 2 BA- 2¢€, b )Sin 2 XVA, 2 BA d—V:[K(l)]*Ue“Zéu)“[K<2)]*Ue“2‘5<2)x
d L
. of 27 2 s2277' _n2277 X
+X| —de o ) |0 XTSI A (5 with the parameters defined in Table I.

Since 8V and §? cannot both be zero simultaneously,
Whereas the terms proportional tg vary spatially as there are two distinct phase-matching possibiliti€s, ko
cog2mx/b), the terms proportional toe? vary as =~ /b, which results in the conventional Bragg reflector de-
cog4mx/b) and sif4mwx/b), i.e., twice as rapidly. These sign, and(2) ky=~2w/b, which requires a wavelength one-
terms arise from Eq(2) and not from any Fourier-series half that of the first casé.e., at the second-harmonic optical
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TABLE I. Coupling coefficient(x) and phase mismatch param- 1 ;
eter (&) for the two reflection cases, defined so that the detuning 3 :
parameteis is zero at wavelength=b/2 and at\=b, respectively, ~ sl 9 . | =
for a given value ofb, the grating periodicity. The former case § ' 1 4_5(\ < §
corresponds to the usual Bragg reflection and the existence of the & : ‘ N N g
second case depends on the longitudinal polarization of the field. 2 0.6\ /\) R I RTIRS AR 2
~ 2 : =
Case 1 g 04F NN é
g &
n_T E 0.2 3 ) 1.8
MW=~k e 5 e
1
0 i i i i
0 15 30 45 60 75 90

Propagation angle 8 (degrees)

o € ) o 2 2m\? 2w 2w

K =_2_ Mo P12~ F _kOF pxx_IBszx . . ) . -
kol € FIG. 2. Magnitude of the contradirectional coupling coefficients

(multiplied by kg and normalized to unit peak value; unjisn=2)

for the two Bragg reflection cases. Numerical valuag/ng

Case 2 =1 um andb=1.5, 1.75, and 2.qum, labeled by “1,” “2,” and “3,”
respectively.
2
6@ =— -k,
b tially decaying ovex=0 toL, and hence describe a physical

scenario where the incident wav¥, is continuously fed
back into the reflected wawé as a function ok such that, at
the input facet of the gratingx=0), |U]?=|V/?, i.e., all the
incident power has been converted into reflected power.
Also, |U[2+|V|? is an exponentially decreasing functionsof
since the field does not penetrate very far into the grating if it
is being reflected.
frequency for a given grating(fixed value ofb). Alterna- In general, the overall phase of eaghdepends on the
tively, in case(2), the wavelength may be kept constant if the choice of reference plane, but there is a relative shifirt2
spatial periodicityb is doubled(which is the situation we in the phase ofx between the two cases, i.¢éphaséx'?)
consider in the numerical calculation&quation(6) with U -phaséx?)|==/2, which is important for the round-trip
andV as constant numbers representing fixed amplitudes is @sonance condition for waves propagating between two
solution of Eq.(5) when e;=0. Note the field must have a gych reflectors. For TE polarized waves,=p,,=0 and
longitudinal component, polarized along the grating axis, inp12=1, and the conventional results are unmodifie@]. For
orderzforKQ) to be nonzero. It is also possible for bofft e T\ polarization, if we assume that the two waves in Eq.
and &%’ to be nonzero, in general. _ _ (6) propagate at anglesé+with respect to thez axis, we
In order to solve Eq(8), we need to impose suitable . cylate thatp;,=—C0S ¥, P =—C0L6, p,=—sinf, cosd
boundary conditions. Typically, we specify that the incident:_pxz, ko= (27mN/ \g)sSin 6, and B=(2my/\)cos6, where
wave has amplitudel(x=0)=1 and require that the grating \o is the wavelength in vacuum corresponding«ztoConse-
is long enough, with length, such that there is zero ampl_i— quently, changing the wavelengtly and changing the amgle
tude for the “reflected” wave at the far-end of the grating y haye similar effects in the following calculations. Sirige
V(x=L)=0. This is a reasonable assumption, since the réappears in the denominator ef and 1k, — % asf— 0, it is
flected wave is itself generated per-unit-length from the in-conyenient to instead graph the productxoind ko. (This
cident wave, and this conversion is expected to have fullfs|iows simply from the fact that the grating is along
depleted the incident wave before the distaiceConse- \yhereas is defined from the axis) Defining\ =\q/ng, we
quently, the solution of Eq(8) is well known in terms of  piain the relationships

hyperbolic trigonometric function&Ref. [16], Chap. 6.6, ,
SMsinHS™(x - L)] +iS™cosiS™(x - L)] koY = - 6—1{(2—77) cos - 2—Wco§¢9<2—r - 22—Wsin 6)} ,
- 8MsinHS™L] +iS™coshS™L] A b b A

(108

2 2
o & 2_77) _@z_w] B2
K |ko{|:< 2 b pxx+2 b Pzx

U(m) —

, 2
(9a)

ixMsinfS™(x - L
) _ ik™sinHS™(x-L)]
V= SMsin{S™L] +iS™coshS™L]’ (%)

where(S™M)2=|«™[2-(§M)? for m=1 orm=2. If Sis real,
the above solutions describe functions that are both exponeihese coefficients are plotted as a functiorvah Fig. 2 for

2 2m 2
kow® = - ielzfcosZe(f - Twsin e) =0 if 62=0.

(10b)
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FIG. 3. Numerically calculate&-field envelopes of the forward

propagating(U: continuous ling and reflected(V: dashed ling FIG. 4. (a) Reflection is observed for both casé and (2),

flelds, showmg that the |nC|den_t field is reflected alm_ost complete!ywith reference to Table I. Numerical calculations of the incident-
in the given length of the grating. The wavelength is the same i

both cases, and the grating period is doubled in €2secompared
to case(1), and the angles of incidence are different in the two
cases. Numerical values of parameters are given in the text.

Mvave envelop&) (continuous lines A and aand the reflected-wave
envelopeV (dashed lines B and Dwhere C and D refer to con-
ventional Bragg-reflectioficase ] and A and B refer to reflection
according to case 2b) For a different value ofe;, [SY]2 is a
negative number and the fields in E@a) do not exponentially
three different values o, given\. As §— 90°, the waves decay withx; hence the incident wave is not reflected according to
propagate predominantly along tkeaxis, and by definition case 1; however, the wave is still reflected according to case 2.
of the Poynting power flow, the waves are no longer polar-

ized longitudinally to the gratindp.,=p,,=0); hencex®  gested earligr Since the leading-order term if? is O(e,?),
vanishes. The limi¢— 0 is not valid in this simple theoret- e (heuristically pick a value fore;=0.45, twice as large as
ical formulation. y L earlier. Since it is the longitudinal field component that is
_ When the Bragg resonance condition #f’ is satisfied  gignificant in this case, the field should therefore be incident
(i.e., 8?=0), the magnitude ok'® is (algebraically zero, as gt a different angle to the grating than in ca4g For 6@
shown by the three nulls between 30° and 45° in the curve- 10 g°  and over a distance ofi@m, the numerical simula-
for “‘resonance 2" in Fig. 2. This coupling coefficient reachestion shows almost full power reflection in this case as well.
a peak valueaway from what is usually considered as the

Bragg resonance condition for contradirectional coupling, as IV. DISCUSSION

shown in Fig 2. We have shown earlier that?=0 if §2=0, but for re-
flection of the incident field, we require that bothandV
1. NUMERICAL CALCULATIONS decrease exponentially with If S in Eq.(9) is to be a real

The prediction that a second-reflection condition can exisPUMPer. it is necessary that
between the two fields of Eq6) is validated with numerical b
solution of the differential equation&Simulation algorithms K] >18?], e, ok < €,°cog 6@, (11
which do not explicitly enforce the divergence condition are ko
unsuitable for this taskWe have used two numerical tech- which restrictsb<\/4 in all cases. For weak gratings, e.g.,
niques, (1) a shooting method based on a fourth-order|e|~0.1, Eq.(11) prescribes a grating period in the nanom-
Runge-Kutta propagator and(2) a finite-difference eter scalgfor optical wavelengths which is difficult to re-
(polynomial-based collocatigmmethod, and which generates alize with lithographic fabrication techniques. Stronger grat-
the data shown in Fig. 3. ings are necessary to observe macroscopically the effects of

The wavelength okg=1.5 um in a dielectric with refrac- these longitudinal terms in the wave propagation equation.
tive indexny=3.5 is used, withe;=0.225. Based on Fig. 2, However, a composite material comprising alternating layers
the two reflection conditions exist for different regimes of of titanium-dioxide and a nonlinear polymer, which has
the propagation angleq. For case(1), which is based on shown a large third-order nonlinear susceptibili0], is
Bragg reflection of the transverse field component, the angleharacterized by layer thicknesses in the tens of nanometers,
6 should be large, so that the field is mostly polarized transand may be a suitable material for experimental studies. In-
verse to the grating, and we pigk!=75.0° and a grating terestingly, the theory for this enhanced nonlineaf$] is
periodb=221 nm to satisfy the Bragg resonance conditionyalid in the same range of layer thicknesdes;\/4, as the
e, 8V=0. Over a distance of 2m, a fraction present theory of longitudinal field reflection, i.e., when the
[V(0)/U(0)[?=98.9% of the incident power is reflected. In phase accumulated by a wave in propagating across a single
case(2), we leave the wavelength unchanged and set théayer of the multilayer stack or a single halfperiod of the
grating periodb=442 nm[twice that in the cas€l) as sug- grating is less thanr/2.
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Furthermore, ifb is chosen according to the above rela-ably accurate, generally to within 10-20 % of results com-
tionship, it follows from the definitions in Table | that puted from anab initio numerical method22]. Further nu-
merical studies, based on E¢b), will be carried out to
develop a deeper understanding of these novel effects, and
especially the role of the second-ordeaterivatives orlJ and
Vin Eq. (8).

Examining Eq.(9b), we see that near-unity reflection is
achieved when, firstx<@L| is greater than 1, and secondly, V. CONCLUSION

when|«?|? is only slightly greater thas'®)?, so thats® is We have derived the wave propagation equation in a one-

a small real number. dimensional periodic medium characterized by a sinusoidal
Values of the parameters may be chosen so that, when the b y

conditions for reflection in cas) are satisfied, conditions variation in the dielectric coefficient along the transverse
: . P axis. We have shown that consideration of the longitudinal
for reflection according to cagd) may or may not simulta-

neously be satisfied. For example. Fid. 4 Shows exam Iefield component reveals a second-resonance Bragg reflection,
y ) p_ » Mg MBI hich condition exists for waves that have a field component
where a field of wavelength ofy=2 um propagates with

angle #=7.5 in a dielectric(glass with refractive indexn polarized parallel to the axis of the grating. To investigate
~150 an‘d Withe: =0.380 ande.=0.364 in the two cas(()as this observation in a framework that yields closed-form so-
r_es'pec,:tively In fﬁ; c.ase of Fieé(_aél both conditiong Y| ' lutions, we have used coupled-wave theory, supplemented
= 50 and|;<32)|> 52 are satisfied émd the reflection coeffi- with numerical calculations, to provide a simple comparison

cients forh and\/2 are 99.9 and 98.3 %, respectively. In theWIth the conventional results.
case of Fig. &), however,| Y| < 8§ while |«?|> §?, so
reflection exists only in case 2. The conventional theory
would predict that we are outside the stopband of the grating The authors are grateful to Jacob Sche(@altech for
filter, whereas the role of the longitudinal field may result ininsightful comments and useful criticism. This work was
strong reflection, instead. Values gL in both cases are in supported by the National Science Foundation and the Helle-
the range of 5-10, for which coupled-mode theory is reasonman Program at UCSD.

2 2
52> f(l — &,%c0s6?) ~ f if e <1. (12)
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