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Because of a common approximation used in the derivation of the wave equation, conventional analyses of
Bragg reflection from dielectric gratings do not account for the distinctive behavior of the longitudinal field
component of the electric field. We address this issue, which has particular significance in subwavelength scale
periodic dielectric structures. We discuss new reflection phenomena within the theoretical framework of
coupled-wave analysis, supplemented with numerical calculations.
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Since any periodic variation in the dielectric coefficient
can be decomposed into a Fourier series of linearly superim-
posed sinusoidal gratings, the analysis of Bragg reflection
from sinusoidal dielectric gratings is of fundamental and
broad interest. The theory of Bragg reflection is the corner-
stone of many research areas in photonics, including diffrac-
tion, distributed feedback lasers, optical filtering, grating-
enhanced nonlinear optics, and photonic crystals.

Early milestones in the theoretical framework include the
coupled-mode theory formulations based on ideal-mode ex-
pansion in the colinear geometryf1,2g as well as the analysis
of TE-TM mode coupling under conditions of oblique inci-
dence f3g. The subsequent local normal mode expansion
methodsf4g resulted in more accurate description of the TM
reflection coefficient, and the “rigorous coupled-wave
theory” ssummation over diffraction ordersd was introduced
f5g. Recent publications include the interaction of forward-
and backward-propagating modes in both the TE and TM
polarizations—a four-wave problemf6g—and an investiga-
tion of thin surface gratings using a technique based on
Green’s functionsf7g.

In this paper, we discuss the role of the longitudinal elec-
tric field in periodic dielectric structures, and in particular,
investigate reflection phenomena. The longitudinal compo-
nent of the electric field is of recent interest for demonstrated
and proposed applications in near-field microscopy, single
molecule studies, charged particle accelerators, and ultra-
focused lightf8–12g. In Sec. I, we present qualitative argu-
ments why investigation of the longitudinal field component
may reveal phenomena different from what is conventionally
expected, and in Secs. II and III, we present a more detailed
theoretical analyses, supplemented with direct numerical cal-
culations of field propagation in the appropriate regime. Sec-
tion IV discusses the conditions that are necessary to observe
these phenomena.

I. INTRODUCTION

In writing the wave equation, one usually makes the ap-
proximation that the normalized variation in the dielectric

coefficient per unit lengthu=esr d /esr du, is much smaller than
the corresponding fractional change in the electric field am-
plitude u= ·Esr d /Esr du. While justified for macroscopic di-
electric structures, this approximation does not hold in gen-
eral f13,14g and is certainly suspect in subwavelength
gratingsf15g and similar structures.

The wave equation is derived from Maxwell’s equations
for the Fourier components at the optical frequencyv of the
fields Esr ,td=Esr dexps−ivtd and similarly forHsr ,td f16g.
Without neglecting terms that arise from the divergence con-
dition = ·e0esr dEsr d=0, we obtain

¹2Esr d +
v2

c2 esr dEsr d + = S 1

esr d
Esr d · = esr dD = 0, s1d

where 1/c2;m0e0, e0 is the vacuum permittivity andesr d is
a dimensionless function describing the spatial variation of
the refractive index, e.g., in a uniform medium with refrac-
tive index n0, esr d=n0

2. For a one-dimensional grating,
esr d=esxd, the third term of Eq.s1d becomes

=S 1

esr d
Esr d · = esr dD → x̂F−

1

e2Sde

dx
D2

+
1

e

d2e

dx2GExsr d

+
1

e

de

dx
= Exsr d. s2d

A sketch of the geometry is shown in Fig. 1, along with the
polarization directions for the waves considered in Secs. II
and III. sWe set] /]y→0 in all equations, assuming a uni-
form structure along they axis.d Clearly, a sinusoidal pertur-
bation inesxd of the form sins2px/bd will introduce, among
others, a term that is spatially varying as cos2s2px/bd. This
term will affect the x̂ component of the electric field, i.e.,
Exsr d, polarized longitudinally to the grating.

II. FORMULATION

To quantify this observation, we assume that the back-
ground refractive index of the material isn0, and the grating
is described by a sinusoidal modulation of the dielectric co-
efficient, so thatesr d appearing in Eq.s1d is written as*Electronic address: mookherjea@ece.ucsd.edu
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esxd = n0
2F1 − 2e1sinS2p

b
xDG , s3d

whereue1u is small compared to unity, but large enough that
terms up toOse1

2d are maintained. We obtain
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x + 4e1

2S2p

b
D2

sin22p

b
x. s4d

We write the field asEsr d=Asr deibz and, after some
straightforward algebra, we derive the following equation,
accurate toOse1

2d,

0 =S ]2

]x2 +
]2

]z2 + 2ib
]

]z
DA

+ Sv2

c2 n0
2 − b2DA + n0

2v2

c2 F− 2e1sin
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xGA

+ x̂F2e1S2p

b
D2
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Dcos
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3f=Ax + ẑibAxg− 2e1
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b
Dsin 2

2p

b
xf=Ax + ẑibAxg

+ x̂F− 4e1
2S2p

b
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2p

b
x − sin22p

b
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Whereas the terms proportional toe1 vary spatially as
coss2px/bd, the terms proportional toe1

2 vary as
coss4px/bd and sins4px/bd, i.e., twice as rapidly. These
terms arise from Eq.s2d and not from any Fourier-series

expansion ofesxd—there is only a single “Fourier compo-
nent” in Eq.s3d.

The above equation, though conceivably suitable as the
basis for numerical simulations, does not concisely state
what sort of physical behavior is engineered by the new
terms. To proceed further, we need an ansatz forA. We de-
fine k0

2=n0
2v2/c2−b2, which has the following significance:

if e1=0 in Eq. s5d, its solutions areAsxd= â exps±ik0xd,
whereâ is a unit polarization vector.

Given a nonzero value fore1, we can expect different
solutions: in this paper, we investigate the coupling between
the two linearly-polarized components of the following field
distribution:

Asxd = â1Usxdeik0x + â2Vsxde−ik0x, s6d

whereâ1 andâ2 are unit polarization vectors andU andV are
scalar functions that describe the amplitudes. Clearly, the two
components of Eq.s6d would be uncoupled whene1=0, i.e.,
U and V would be independent ofx. As an aside, we point
out that Eq.s5d is linear and the principle of superposition
holds; other families of field configurations may be impor-
tant and can be considered in subsequent investigations, e.g.,
the Bloch function “principal components”f17g of the grat-
ing, as replacements for exps±ik0xd in Eq. s6d.

We assume thatUsxd and Vsxd are slowly varying over
2p /k0, so that

d2A

dx2 < â1S2ik0
dU

dx
− k0

2UDeik0x

+ â2S− 2ik0
dV

dx
− k0

2VDe−ik0x. s7d

This approximation can be restrictive in certain instances,
and one should check that the obtained solutions satisfy this
condition. The assumption may be relaxed if predominantly
numerical analyses will be relied upon, giving up the conve-
nience of closed-form analytical solutions.

Following the usual rotating-wave argumentsf18,19g, we
divide the terms in Eq.s5d into two categories—sad those that
can be phase matchedsexactly or with some detuningd to
expsik0xd and hence contribute cumulatively todU/dx and
sbd those terms that can be phase matched to exps−ik0xd can
contribute cumulatively todV/dx. We introduce the scalar
coefficientsp12; â1·â2, pxx=sâ1·x̂dsâ2·x̂d, pzx=sâ1·ẑdsâ2·x̂d,
and pxz=sâ1·x̂dsâ2·ẑd to write the resulting pair of differen-
tial equations as

dU

dx
= ks1dVei2ds1dx + ks2dVei2ds2dx, s8d

dV

dx
= fks1dg*Ue−i2ds1dx + fks2dg*Ue−i2ds2dx,

with the parameters defined in Table I.
Since ds1d and ds2d cannot both be zero simultaneously,

there are two distinct phase-matching possibilities,s1d k0
<p /b, which results in the conventional Bragg reflector de-
sign, ands2d k0<2p /b, which requires a wavelength one-
half that of the first casesi.e., at the second-harmonic optical

FIG. 1. Schematic of one-dimensional grating in the dielectric
coefficientesxd with incident and reflected waves as indicated by
Eq. s6d. Also shown are the boundary conditions used in solved in
the coupled-mode equationss8d.

S. MOOKHERJEA AND U. LEVY PHYSICAL REVIEW E71, 056609s2005d

056609-2



frequencyd for a given gratingsfixed value ofbd. Alterna-
tively, in cases2d, the wavelength may be kept constant if the
spatial periodicityb is doubledswhich is the situation we
consider in the numerical calculationsd. Equations6d with U
andV as constant numbers representing fixed amplitudes is a
solution of Eq.s5d when e1=0. Note the field must have a
longitudinal component, polarized along the grating axis, in
order forks2d to be nonzero. It is also possible for bothds1d

andds2d to be nonzero, in general.
In order to solve Eq.s8d, we need to impose suitable

boundary conditions. Typically, we specify that the incident
wave has amplitudeUsx=0d=1 and require that the grating
is long enough, with lengthL, such that there is zero ampli-
tude for the “reflected” wave at the far-end of the grating
Vsx=Ld=0. This is a reasonable assumption, since the re-
flected wave is itself generated per-unit-length from the in-
cident wave, and this conversion is expected to have fully
depleted the incident wave before the distanceL. Conse-
quently, the solution of Eq.s8d is well known in terms of
hyperbolic trigonometric functionssRef. f16g, Chap. 6.6d,

Usmd =
dsmdsinhfSsmdsx − Ldg + iSsmdcoshfSsmdsx − Ldg

− dsmdsinhfSsmdLg + iSsmdcoshfSsmdLg
,

s9ad

Vsmd =
iksmdsinhfSsmdsx − Ldg

− dsmdsinhfSsmdLg + iSsmdcoshfSsmdLg
, s9bd

wheresSsmdd2;uksmdu2−sdsmdd2 for m=1 or m=2. If S is real,
the above solutions describe functions that are both exponen-

tially decaying overx=0 to L, and hence describe a physical
scenario where the incident wave,U, is continuously fed
back into the reflected waveV as a function ofx such that, at
the input facet of the gratingsx=0d, uUu2<uVu2, i.e., all the
incident power has been converted into reflected power.
Also, uUu2+ uVu2 is an exponentially decreasing function ofx,
since the field does not penetrate very far into the grating if it
is being reflected.

In general, the overall phase of eachk depends on the
choice of reference plane, but there is a relative shift ofp /2
in the phase ofk between the two cases, i.e.,uphasesks1dd
−phasesks2ddu=p /2, which is important for the round-trip
resonance condition for waves propagating between two
such reflectors. For TE polarized waves,pxx=pxz=0 and
p12=1, and the conventional results are unmodifiedf16g. For
the TM polarization, if we assume that the two waves in Eq.
s6d propagate at angles ±u with respect to thez axis, we
calculate thatp12=−cos 2u, pxx=−cos2u, pzx=−sinu, cosu
=−pxz, k0=s2pn0/l0dsinu, and b=s2pn0/l0dcosu, where
l0 is the wavelength in vacuum corresponding tov. Conse-
quently, changing the wavelengthl0 and changing the amgle
u have similar effects in the following calculations. Sincek0
appears in the denominator ofk, and 1/k0→` asu→0, it is
convenient to instead graph the product ofk and k0. sThis
follows simply from the fact that the grating is alongx
whereasu is defined from thez axis.d Definingl=l0/n0, we
obtain the relationships

k0ks1d = −
e1

2
FS2p

l
D2

cos 2u −
2p

b
cos2uS2p

b
− 2

2p

l
sinuDG ,

s10ad

k0ks2d = − ie1
22p

b
cos2uS2p

b
−

2p

l
sinuD = 0 if ds2d = 0.

s10bd

These coefficients are plotted as a function ofu in Fig. 2 for

TABLE I. Coupling coefficientskd and phase mismatch param-
eter sdd for the two reflection cases, defined so that the detuning
parameterd is zero at wavelengthl=b/2 and atl=b, respectively,
for a given value ofb, the grating periodicity. The former case
corresponds to the usual Bragg reflection and the existence of the
second case depends on the longitudinal polarization of the field.

Case 1

ds1d =
p

b
− k0

ks1d = −
e1

2k0
Hv2

c2 n0
2p12 − FS2p

b
D2

− k0
2p

b
Gpxx − b

2p

b
pzxJ

Case 2

ds2d =
2p

b
− k0

ks2d = − i
e1

2

k0
HFS2p

b
D2

−
k0

2

2p

b
Gpxx +

b

2

2p

b
pzxJ

FIG. 2. Magnitude of the contradirectional coupling coefficients
smultiplied by k0 and normalized to unit peak value; unitsmm−2d
for the two Bragg reflection cases. Numerical values:l0/n0

=1 mm andb=1.5, 1.75, and 2.0mm, labeled by “1,” “2,” and “3,”
respectively.
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three different values ofb, given l. As u→90°, the waves
propagate predominantly along thex axis, and by definition
of the Poynting power flow, the waves are no longer polar-
ized longitudinally to the gratingspxx=pzx=0d; henceks2d

vanishes. The limitu→0 is not valid in this simple theoret-
ical formulation.

When the Bragg resonance condition forks2d is satisfied
si.e., ds2d=0d, the magnitude ofks2d is salgebraicallyd zero, as
shown by the three nulls between 30° and 45° in the curve
for “resonance 2” in Fig. 2. This coupling coefficient reaches
a peak valueaway from what is usually considered as the
Bragg resonance condition for contradirectional coupling, as
shown in Fig 2.

III. NUMERICAL CALCULATIONS

The prediction that a second-reflection condition can exist
between the two fields of Eq.s6d is validated with numerical
solution of the differential equations.sSimulation algorithms
which do not explicitly enforce the divergence condition are
unsuitable for this task.d We have used two numerical tech-
niques, s1d a shooting method based on a fourth-order
Runge-Kutta propagator ands2d a finite-difference
spolynomial-based collocationd method, and which generates
the data shown in Fig. 3.

The wavelength ofl0=1.5 mm in a dielectric with refrac-
tive indexn0=3.5 is used, withe1=0.225. Based on Fig. 2,
the two reflection conditions exist for different regimes of
the propagation angle,u. For cases1d, which is based on
Bragg reflection of the transverse field component, the angle
u should be large, so that the field is mostly polarized trans-
verse to the grating, and we pickus1d=75.0° and a grating
period b=221 nm to satisfy the Bragg resonance condition,
i.e., ds1d=0. Over a distance of 2mm, a fraction
uVs0d /Us0du2=98.9% of the incident power is reflected. In
cases2d, we leave the wavelength unchanged and set the
grating periodb=442 nmftwice that in the cases1d as sug-

gested earlierg. Since the leading-order term inks2d is Ose1
2d,

we sheuristicallyd pick a value fore1=0.45, twice as large as
earlier. Since it is the longitudinal field component that is
significant in this case, the field should therefore be incident
at a different angle to the grating than in cases1d. For us2d

=10.8°, and over a distance of 2mm, the numerical simula-
tion shows almost full power reflection in this case as well.

IV. DISCUSSION

We have shown earlier thatks2d=0 if ds2d=0, but for re-
flection of the incident field, we require that bothU and V
decrease exponentially withx. If Ss2d in Eq. s9d is to be a real
number, it is necessary that

uks2du . uds2du, i.e.,
b

2p/k0
, e1

2cos2us2d, s11d

which restrictsbøl /4 in all cases. For weak gratings, e.g.,
ue1u<0.1, Eq.s11d prescribes a grating period in the nanom-
eter scalesfor optical wavelengthsd, which is difficult to re-
alize with lithographic fabrication techniques. Stronger grat-
ings are necessary to observe macroscopically the effects of
these longitudinal terms in the wave propagation equation.
However, a composite material comprising alternating layers
of titanium-dioxide and a nonlinear polymer, which has
shown a large third-order nonlinear susceptibilityf20g, is
characterized by layer thicknesses in the tens of nanometers,
and may be a suitable material for experimental studies. In-
terestingly, the theory for this enhanced nonlinearityf21g is
valid in the same range of layer thicknesses,bøl /4, as the
present theory of longitudinal field reflection, i.e., when the
phase accumulated by a wave in propagating across a single
layer of the multilayer stack or a single halfperiod of the
grating is less thanp /2.

FIG. 4. sad Reflection is observed for both casess1d and s2d,
with reference to Table I. Numerical calculations of the incident-
wave envelopeU scontinuous lines A and Cd and the reflected-wave
envelopeV sdashed lines B and Dd, where C and D refer to con-
ventional Bragg-reflectionscase 1d and A and B refer to reflection
according to case 2.sbd For a different value ofe1, fSs1dg2 is a
negative number and the fields in Eq.s9ad do not exponentially
decay withx; hence the incident wave is not reflected according to
case 1; however, the wave is still reflected according to case 2.

FIG. 3. Numerically calculatedE-field envelopes of the forward
propagatingsU: continuous lined and reflectedsV: dashed lined
fields, showing that the incident field is reflected almost completely
in the given length of the grating. The wavelength is the same in
both cases, and the grating period is doubled in cases2d, compared
to cases1d, and the angles of incidence are different in the two
cases. Numerical values of parameters are given in the text.

S. MOOKHERJEA AND U. LEVY PHYSICAL REVIEW E71, 056609s2005d

056609-4



Furthermore, ifb is chosen according to the above rela-
tionship, it follows from the definitions in Table I that

ds2d .
2p

b
s1 − e1

2cosus2dd <
2p

b
if ue1u ! 1. s12d

Examining Eq. s9bd, we see that near-unity reflection is
achieved when, first,uks2dLu is greater than 1, and secondly,
whenuks2du2 is only slightly greater thansds2dd2, so thatSs2d is
a small real number.

Values of the parameters may be chosen so that, when the
conditions for reflection in cases2d are satisfied, conditions
for reflection according to cases1d may or may not simulta-
neously be satisfied. For example, Fig. 4 shows examples
where a field of wavelength ofl0=2 mm propagates with
angleu=7.5+ in a dielectricsglassd with refractive indexn0
=1.50, and withe1=0.380 ande1=0.364 in the two cases,
respectively. In the case of Fig. 4sad, both conditionsuks1du
.ds1d and uks2du.ds2d are satisfied, and the reflection coeffi-
cients forl andl /2 are 99.9 and 98.3 %, respectively. In the
case of Fig. 4sbd, however,uks1du,ds1d while uks2du.ds2d, so
reflection exists only in case 2. The conventional theory
would predict that we are outside the stopband of the grating
filter, whereas the role of the longitudinal field may result in
strong reflection, instead. Values ofkL in both cases are in
the range of 5–10, for which coupled-mode theory is reason-

ably accurate, generally to within 10–20 % of results com-
puted from anab initio numerical methodf22g. Further nu-
merical studies, based on Eq.s5d, will be carried out to
develop a deeper understanding of these novel effects, and
especially the role of the second-orderx derivatives onU and
V in Eq. s8d.

V. CONCLUSION

We have derived the wave propagation equation in a one-
dimensional periodic medium characterized by a sinusoidal
variation in the dielectric coefficient along the transverse
axis. We have shown that consideration of the longitudinal
field component reveals a second-resonance Bragg reflection,
which condition exists for waves that have a field component
polarized parallel to the axis of the grating. To investigate
this observation in a framework that yields closed-form so-
lutions, we have used coupled-wave theory, supplemented
with numerical calculations, to provide a simple comparison
with the conventional results.
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