PHYSICAL REVIEW E 71, 056608(2005

Analytic properties of photonic crystal superprism parameters

M. J. Steef? R. Zoli,>® C. Grillet? R. C. McPhedrafi,C. Martijn de Sterké,A. Norton? P. Bassf and B. J. Eggletdn
RSoft Design Group, Inc., 65 O’Connor St, Chippendale, New South Wales 2008, Australia
%Centre for Ultrahigh-Bandwidth Devices for Optical Systems (CUDOS) and School of Physics, A28, University of Sydney,
New South Wales 2006, Australia
3DEIS—Dipartimento di Elettronica Informatica e Sistemistica, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
4Centre for Ultrahigh-Bandwidth Devices for Optical Systems (CUDOS) and Department of Applied Mathematics, University of Technology,
Sydney, New South Wales 2008, Australia
(Received 6 October 2004; published 19 May 2005

We study the analytic properties of the photonic crystal superprism resolution parampetgrand r
introduced previously by Baba and Matsum®fppl. Phys. Lett. 81, 2325(2002], which characterize the
potential dispersive power of a superprism. We find closed form expressions for these quantities that greatly
simplify their accurate evaluation and reveal significant insights about their behavior. The expressions imply
general properties of the parameters which are true for all bands and all photonic crystals. In particular, we
demonstrate that all photonic crystals exhibit infinite resolution as measured by the paraateterparticular
contours in any photonic band.

DOI: 10.1103/PhysRevE.71.056608 PACS nuni®erd2.25.Fx, 42.70.Qs, 42.82.Gw

I. INTRODUCTION tional factors. In practice, the plane-wave approximation is
Photonic crystals, while still best known for their unique &N imperfect one and the finite size of both the optical beams

diffractive properties such as Bragg reflection, photonic ban nd the crystal plays an important rQIEb]. que th‘? angu-
gaps, and strongly modified density of states, are increasd SPectrum of a Gaussian beam has a finite width in the
ingly attracting attention for their intriguing dispersive be- Plane-wave basis, different angular components undergo dif-
havior within the photonic bands. Since being highlighted byferent degrees of refraction upon entering the crystal. This
Notomi [1], these dispersive properties have been exploretfads to beam spreading and a departure from the simple
in theory and experiment in the form of negative refractionpredictions of the geometric treatment above. To ensure that
[2-5], and more generally in the form of theuperprism the refracted beam remains well collimated and to determine
[6-11]. A superprism is a two-dimensional photonic crystal the ability of a crystal of a given size to separate incoming
device, usually planar, that exhibits very strong angular steefeams of different angles or frequencies, we must quantify
ing of an output beam in response to modest changes in tHBe resolution properties of the superprism.
angle or wavelength of an input beam. Such a device has To this end, Baba and co-workes3,14 introduced three
obvious utility in applications such as switching, but also asstandard parameters g, andr that relate the normalized
an output coupler onto detector arrdy]. optical frequencyw= w/(2mc)=al\, the propagation angle
The basic behavior of a superprism is commonly under- :
stood in terms of a momentum conservation argument based
on the equifrequency contours of the two-dimensional in-
plane band structure of the photonic cry$tdl The standard
construction is illustrated in Fig. 1. At the frequency of in-
terest, the dispersion curves are drawn for an external uni-
form medium(thick circle) and photonic crystaithin curve.
The component of the incident wave veckothat is tangen-
tial to the interface between the two medihain line is
conserved to within a reciprocal lattice vector upon refrac-
tion and determines the possible wave vecteraithin the
photonic crystal. The normal to the photonic dispersion
curve atk gives the direction of energy flow within the crys-

ftal. In Fig. 1, only one of the _tWO_ solutions carries energy FIG. 1. Construction for refraction at the interface between a
into the crystal, and the other is disregarded. If the photoniitorm medium and a photonic crystal. Equifrequency curves for a
crystal and the incoming beam are both very broad so thanitorm (thick line) and triangular photonic crystafine line) are
the approximation of plane-wave inputs is reasonable, thighown. Light is incident from a uniform medium with wave vector
construction correctly predicts the propagation within thex upon an interface with the photonic crystahain line. The tan-
crystal. gential wave vector component at the interface is conse(deited
However, as pointed out in a series of papers by Baba anghe) identifying the allowed output wave vectoks The direction
co-workerqg 13-15, in order to design superprisms that work of the group velocityv in the photonic crystal is given by the
effectively, it is necessary to account for a number of addi-normal to the equifrequency curve at its intersection wth
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However, several questions remain. Determination of the
superprism parameters themselves is an intensive procedure
since they depend on second derivatives of the photonic
crystal dispersion relation, calculated along sharply curving
contours. The difficulty of this is exacerbated by the high
resolutions we have noted can occur in photonic crystals. For
example, calculating by first principles requires determin-
ing the group velocitw =V, along an equifrequency con-
tour, and implicitly parametrizing that contour with the input
angle .. Only then can the derivativedé,/ 96, be evalu-
ated. Since the equifrequency contours are strongly curved,
this operation is numerically awkward, is ill suited to rectan-
gular discretizations of the Brillouin zone, and is accurate

FIG. 2. Geometry for the superprism analysis. The coordinate%my for extremely high-resolution sampling grids. More-
(x,y) are the conventioqal coorqmates of the Brillouin zone. Theover, since the superprism parameters are found entirely nu-
coordinates(#, ) are aligned with the cut plane of the crystal perically and are complicated functions, it is very difficult to
which lies along the direction. The angle)=0 if the crystal cut  yeye10n much intuition for their general properties. Finally,
plane is along thé'-X direction. The wave vectdt represents the the parameters have only been evaluated for the first few

incoming beam at an angk to the normal to the interface, and . : .
K is the wave vector of the refracted beam inside the crystal. Thebands and for a limited range of photonic crystal designs. As

angle between the normal and the group velocity inside the such, it has not been possible to draw general conclusions

crystal is denotedd,. The vectorsk and v are in general not regarding prope_rtles of arbitrary crystals_ or bands: .
collinear. Here we provide answers to all these issues. Primarily, we

find explicit analytic formulas fop, g, andr expressed only

in terms of the incoming wave vector, and the standard first

and second derivatives of the band surfaces with respect to

the wave vector. This avoids the awkward process of calcu-

lating derivatives along curved arcs, and improves the accu-

racy of the results. In this way we show, for example, that the

quantity p from Eq. (1) is closely related to the curvature of

the equifrequency curves, as defined in the differential geom-
, (1)  etry of plane curved17]. We also use these formulas to

o derive general properties about rotation of the crystal and the

measures the variation of output angle with input angle ag\?havior of the parameters in any band of a photonic crystal.

fixed frequency. The generalized dispersion, given by € S.h.OW for instgnce that,. for.any photonic crystal, along a
specific contour in the Brillouin zongy=0. This contour

then corresponds to a configuration in which the photonic
' ) crystal collimates the incident beam, with the result that the
b resolution parameter diverges. That is, any band of any

measures the change in the output angle with frequency fhotonic crystal contains points of infinite resolution.

fixed input angle. Finally, the resolution parameatesatisfies
A We consider a two-dimensional photonic crystal, typically

90,

0 76,
Th luti i les the ch f i a square or triangular lattice with peri@d As indicated in
€ resolution parameter scales thé change of propaga 'qf]g. 2, light with wave vectok is incident from an external

angle with f_requency, the most importgnt attribute_ of a spec; edium with refractive index. In the external medium, we
trometer, with the change of propagation angle with angle o ave the dispersion relation
incidence. The latter gives different frequency components
the same propagation angle due to the range of angles - ak|
present in the incident beam, and thus measures cross talk in w= 2
the spectrometer. The three parametprg,r are defined
throughout the first Brillouin zone, and every point in the The refracted wave within the crystal must satisfy the disper-
zone corresponds to a particular experimental configuratiosion relation of the crystal, that is, it must correspond to a
of input angle#, and frequencyw. solution ®=w;(«), for some photonic band at a point
Using these three quantities, Baba and co-workers hawithin the first Brillouin zone.
explored a number of photonic crystal structures and super- We introduce two sets of coordinate axes in reciprocal
prism geometries in order to achieve high resolutions, angpace(x,y) and(#, x). The pair(x,y) are the natural coor-
have identified structures with>75. For comparison, con- dinates of the Brillouin zone such thatlies along thel'-X
ventional prisms have a resolution parameter of order unitydirection of the lattice. The coordinatés, x) are rotated by

of the incoming beany, and the propagation angle of the
refracted beany,. See Fig. 2 for the definitions of these
angles, and note especially thitis the angle of the group
velocity inside the crystal, not of the wave vecter The
generalized angular resolving power, given by

a0,

P= 20

a0,

Jw

qE

q 90, II. THEORY

p Jo

96

g,_ )

r

3
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an angleys so as to be aligned with the crystal interface. Thewrite these expressions in termskofind the standard partial

two sets are thus related by derivativesw ,,,w ,, and second derivatives ,,, ® ,,® -
) The final expression for the angular resolving power is found
{n]_[coap —smt//Mx} ©) to be
X sing cosy ||y 1
Note that the anglés depends only on the relative orientation p= gﬁ{W(“’,nnw,xz M Zw,nxw,nw,x)} :
of the interface between the uniform medium and the crystal, X
and the crystal lattice vectors. Thys=0 when the interface (11
tangentt lies along thel-X direction. ___ The dispersion parameteris found in a similar fashion:
Figure 2 is of course closely related to the construction in
Fig. 1. The crystal interface indicated by the chain line in o d0:| S
Fig. 1 corresponds to the axis in Fig 2. Note that while <=z . o gtan Wy /o))
there are two solutions fok in Fig. 1, only one of them : :
carries energy into the crystal and is of interest. The group 1 Wyl Uy (12)
velocitiesv in each figure correspond. VA @, Y s, )
| |

As mentioned previously, the internal and external wave
vectors are related by the conservation of the tangential wavidsing results in Appendix A 1, after some manipulation we
vector component at the interface, so tifat-«)-t=0, or  find

equivalentl ~ ~ -~ ~ o~ -
CI g _k, 1 w,nnw,xz + w,xx“’ynz ~ 20,5 @0,
k,= K, (6) a= o, Iv[2 o
where we use the notatide=(k,,k,) (see Fig. 1 D —n T
Now consider the directions of propagation of the incident + _x_uk_?u(z( (13
and refracted beams. The group velocity in each medium is 7
given by the gradient of the equifrequency curves, o o
_&B i 0,0~ 0,0
V=(0,0,) = V,0(0) = (@, 7) "ot |V|2(—uz‘—”—“a ) (14)

(8 1 (kJ_,_ Oy =

0w + W 1 ®

I\Jel

77 .’.).(X — ) (15)
T 20 0,0,

N

yNTX
In the isotropic mediumy is parallel to the wave vector

K. In the photoni wal h hich beh If desired, the final result may also be obtained by direct
- In the photonic crystal, however, which DeNaves esSeng . ation of aai/aa‘)|ac. Equations(11), (13), and(15) are

tially as a dispersive anisotropic material, the group velocity ! L . .
and wave vector are in general not collinear. Thus, the inci%?igﬁteﬁ)éxgﬁgr;e; ugcs)r?sft:BSt %iﬁ:i?egsp;?ogtstiﬁﬁJ:;lgtjé:-
dent and refracted angles, respectively, satisfy tities throughout the Brillouin zone, without unduly high

_ v sampling resolution.
6 =tan* f 0. =tan * U_q 9 We indicated earlier that these expressionspiop, andr
X X improve the accuracy of their evaluation. It is true that both
our formulas and the first principles definitiofE)—(3) re-

A. Derivation of formulas quire the calculation of numerical second derivatives, so at
first sight both methods should be equally susceptible to nu-
merical noise. However, note that in Eq4.1), (13), and
(15), the second derivatives appear explicitly and may be
found by standard finite differences along the Cartesian axes
n and y, so that fourth order accuracy is easily obtained. In

We now derive explicit formulas for the superprism pa-
rameters. In this section, we work exclusively in thg x)
coordinate system. Beginning with the resolving power
elementary results give

a6, _1 contrast, the second derivatives in E¢B—(3) are implicit.
v e (v, 1vy) These formulas explictly involve only first derivatives, but
te the they depend on the anglé. which is the direction of the
1 v ) gradientv. As the derivatives are to be taken along compli-
=—lv, 2| -v, —X| |. (10) ; fixed 0. i |
VE\“X 96 |- 7 96, |- cated curves corresponding to fixed 6, or 6, it would be

a nontrivial and tedious programming task to achieve fourth
Since the equifrequency curves are complicated and can onfyrder accuracy using the first principles definitions.
be followed numerically, the derivatives of the group veloc-
ity components inside the parentheses of the final expression
are awkward to calculate, and require a high sampling reso- Equations(11)—(15) express the parameters in terms of
lution for accurachl3]. In Appendix A 1, we show how to the 5, y coordinate frame aligned with the external medium—

B. The p parameter as a curvature
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crystal interface. For both numerical convenience and physi- 3 — E—
cal insight it can be more helpful to express the quantities in EEer O
terms of the Brillouin zone coordinatesy. The various de- 2
rivatives ,,  ,, @, etc., are easily converted to the de- 3
rivatives, o, @y, ®x,, andw y, using the transformation E
. 0 -{ X
4 9 o
dn | _|cosy —siny || ox (16) A1
d | |sing cosy d -2
ax ay 5] .
e e
Performing this transformation, we find in particular that the 3 2 4 0 1 2 3
expression K2
B z,mz)‘; + Z)’XXZ)‘WZ— 22{)’””’”" » FIG. 3. Equifrequency contours and Brillouin zone for the first
G= |v|3 (17) band of the photonic crystal with parameters given in the text. The
band exhibits dnondifferentiablg minimum atl’, a saddle point at
e o X, and a maximum aw.
_ 00+ @0, = 20 0,0, (19)
[v[? depends on the curvature of the equifrequency contours.

g—lowever, the second term in E@L3) is not invariant under

the coordinate transformation and such a relation does not
exist. The reason of course, is that the output amgis still

given by the normal to the equifrequency contours and so
y=ddglds, (19 Egs.(1) and(2) are not perfect analogs with respect to inter-
change of the variables. However, a little manipulation re-
veals theg=(k,/ @ ,)(6; ,0c ,~ 6 .6, ,). Thinking of the plane
embedded in three space, this relation has a natural represen-

which appears in all three equations is invariant. In fact thi
is a well-known quantity—theurvaturey of the plane curve
satisfyingw(x,y)=wg [17], and defined as

where ¢ is the angle of the tangent vector (o, @), and
s is the arclength along the contour. Thus we have

Kk tation in terms of the vector cross product:
p==X|v|G, (20
Y ke
_ _ 5 5 a=="[(V.(6),0) X (V,(6),0)] (23
and using the relationsk,=(2mnw/a)cosé, and o, Wy

=|v|cos#,, we obtain the pleasing expression

cosf 27w 1
(21) “coss, a LA O X (V0).0L (24

_ Cos N27w
cosf, a

. . . . . . which contains the identical Snell's law factor seen in the
Now it is straightforward to show that in a uniform isotropic gocong equality of Eq21).

medium of indexn;, G=a/(2#n;w), and thus for an interface

between two uniform media of indices andn,, IIl. FEATURES IN CONTOUR DIAGRAMS
- _hycosé, (22) From the work of Baba and co-workefd3,14, it is
Puniform = n, cosé,’ known that the superprism parametgrsg, andr show a

) ) ) ) ) surprising degree of fine structure. Using our expressions for
which can also be obtained directly from H@) in combi-  these parameters, we can now understand the features in
nation with Snell’s law. Thus, finally, we have the result that{hege diagrams. To begin, in Fig. 3 we show the equifre-
for the photonic crystalp can be considered as a factor due gyency contours for the lowest band of a two-dimensional
to a generalized Snell's law multiplied by the curvature of jectangular lattice of air holes in silicofrefractive index
the equifrequency contour at the operating frequency. Belows 065, periodh, air hole radius 0.2636 corresponding to the
we explore the physical significance of this result. Note ﬁ'configuration used in Ref15]). This band has a minimum at
nally that due to the invariance @ with respect to, the 1 at the Brillouin zone center, maxima M, and saddle
only factor in Eq.(11) that givesp a dependence on the points atX. Figure 4 presents plots of the superprism param-
orientation of the crystal is the factéy/w,. We discuss this  gters logg|1/p], logda|, and logr| for four different angles
further in Sec. Ill. of incidence, 0°, 30°, 45°, and 70°. The incoming light is
incident from a uniform medium with index 3.065. The
quantities in these and all following plots were calculated
with Egs.(11)—(15) using the commercial band structure tool

Given the similarity of the definitiongl) and (2), it is BandSOLVE[18].
natural to wonder whethey can be expressed in terms of the  In Fig. 4 we use the natural,y coordinates in the Bril-
curvature of the contours of fixed input anglg just asp louin zone; theé, n system is rotated by, with the short

C. Alternate forms for q
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FIG. 4. Contour plots over the entire Brillouin zone of Jgd/p|, log;dal, and loggr| (left to right) for a photonic crystal with
parameters given in the text. The rows correspond to different orientations of the crystal cut plane with respeciXalirection. From
the top, the angles ang=0° (cut plane alond’-X), 30°, 45°(cut plane alongy-M), and 70°. The broken white lines through the origin lie
along the interface between the two media and thus indicate the direction gfakis.

broken white lines through the origin denoting the direction Each|1/p| plot shows two obvious features, a continuous
of the » axis. Recall that a beam directed perpendicular towhite curve that passes through tkepoints (which we see
the » axis is normally incident upon the crystal. below are saddle points of the band surfaand a black
curve that passes through the origin. Note that the white
curve is invariant with respect t. In fact, it corresponds to
the zeros of the curvature functi@which depends only on
Let us first consider the results f¢k/p| in the left col-  the band structure and not on the interface properties. The
umn. We choose to pldtL/p| rather thanp| since then the physical relevance of the curvature is seen more clearly in
logarithmic plots of|r| can be understood as the sum of theFig. 5 which superimposel./p| with equifrequency con-
corresponding plots ofl/p| and |g|. In these plots, white tours for the first two bands. By definitidsee Eq(19)], the
indicates positive values, and black indicates negative reline of zero curvatur&=0 traces out the inflection points of
gions. Thus since we are plotting lp{i/p|, white corre- the equifrequency contours, as is apparent in Fig. 5. It is easy
sponds to small values ¢f| and black to large values ¢f|.  to understand why should vanish at such points. Varying

A. Properties of p
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exhibit very large angular resolving power. However, in
practice, these regions are not very accessible, since with
 ,~0, the group velocity is almost parallel to the interface
of the crystal and the light travels almost parallel to the sur-
face rather than through the crystal. It is interesting that at
angles other thary=0° and 45°, the curven,=0 is not
symmetric with respect to the normal to the interface. This is
because at other values #f the crystal does not have mirror
symmetry in the direction of normal incidence and so the
input angles #, are not equivalent.

B. Properties of q

Consider now the plots df in the second column of Fig.
4. Again, the plots are characterized by fine lines of very
large (white) and very small(black) values, but note that
now both sets of curves depend on the interface asiglehe
white maxima curves are identical to the minima in thép|
plots. This is to be expected from the explicit dependence on
p in Eg. (13). The complicated black minima curves obvi-
ously correspond to the cancellation of the two terms in Eq.
(13), but more insight can be gained from Eg3). The cross
product in that expression vanishes when the contours of
input angled; and output anglé, are locally tangent. This is
illustrated in Fig. 6 which superimposes the contours of these
angles with theq| function for three angles aof. The diffuse
black contours corresponding tp=0 trace out the lines in
the Brillouin zone where the two types of contours are lo-
cally parallel. This result has a simple physical interpretation.
Recall that theg function is defined for constant input angle
6,. Thus as the frequency is varied, we move along a contour
of fixed 6. If this contour is tangent to a contour of fixég
then 6, is unchanged as we sweep out #hecontour, andj
vanishes. On the other hand, we would expect thatcthe
function should be enhanced where the contours are locally
perpendicular, but this effect tends to be swamped by the
divergence of the co&. term in the denominator of E¢23).

(b)

FIG. 5. Role of the curvatur& in the structure ofp for the C. Properties ofr
lowest two bands a#=0. The peak of the diffuse white contour . . . .
represents zeros db. Thin white curves are the equifrequency The plots Of|r| n t_he third column of Fig. 4 are simply
contours of each band. For the lowest band, show@jithe black ~ the sums of the previous two columns and there are no new
dotted lines indicate the direction of th=0 curves obtained by features to explain. Typically, we are interested in regions of
quadratic expansion of the band at the saddle poin &or the  the Brillouin zone where is large. However, noting that the
second band, shown i), there is a band maximum &t minima  largest values of correspond to the zeros @ which are
atX andY, and a saddle point just befohé on I'-M. invariant with respect to the crystal orientation, we obtain the

important result that rotating the crystal cannot improve the
the input angleg; corresponds to moving along the equifre- maximum potential values of However, rotations can make
guency contour at the working frequency. Near an inflectiorattractive parts of the Brillouin zone mormccessible by
point, the group velocity is constant to first order, and so themoving them away from points wheig, ~0.
angled, is also constant. By Ed1), we havep=0.

Note that in Fig. 5 for t_he second band we illustrate a case |\, GENERAL PROPERTIES OF THE PARAMETERS
where the saddle point lies near but not exactiyMatThe

lines giving zeros ofG intersectl-X andI'-Y lines at right The simple form(18) of the curvatureG lets us make a
angles, and continue smoothly into the neighboring quadaumber of general statements about the superprism param-
rants of the Brillouin zone. eters for all two-dimensional photonic crystals and all bands.

Returning to the plots in the first column of Fig. 4, the In the figures already examined, paths of zero curvature were
black curve describes the locus of the function=0 or  clearly visible. We now demonstrate that this is a universal
equivalently cog).,=0, which from Eq.(21) is the path along property. We first recall the fundamental result that every
which p becomes singular. In theory, points near this curvephotonic band contains several critical points within the Bril-
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minima, C, and C, have the same sign, while they have
opposite signs at saddle points. Now &f,= a4, for some

a. Then near a critical point we have the quadratic expan-
sion,

(1/C,C))[1/C, + a®IC,]
[1/C;+ a?IC)

Thus as we approach a saddle point along the line
=+y|C,/C,|, the quantity|v|G vanishes and since there are
saddle points in every banthere are positions where0,

and therefore where+ <, in every band for any photonic
crystal This very general statement is the second principal
result of this paper. Note that near these positions we expect
a rapidly changing and very large but finiteOf course, this
argument does not apply to minima and maxima, for which
C, andC, have the same sign.

In fact there are not just isolated points of vanishiag
and thus infiniter, but continuous closed paths through the
Brillouin zone. To see this, consider an irreducible segment
of the Brillouin zone. Within this segment or on its boundary,
there must exist a band maximudh. and minimumuU_. As
is evident from the quadratic expansi¢®6), the quantity
|v|G at U, and U_ has opposite signs. Then sinpdG is
smooth, if we consider lines connectify andU_ and not
leaving the segment, there must be an odd number of points
along each line at whiclv|G vanishes. By choosing arbi-
trary paths betweeb, andU_ we connect up such points of
zero curvature to form trajectories. Since the curvature also
vanishes at the saddle points in the segment, the saddle
points must lie on the trajectories of zero curvature. If there
is only one such trajectory it connects the two saddle points
through the points of zero curvature on the lines fromto
(U

Before closing this section a few comments need to be
made. The first is that in E¢g25) we have taken the principal
axes of the critical point to align with the coordinate axes.
Though this is not true in general, the calculation is justified
since the quantityv|G is invariant under rotations. Second,
note from Eq.(26) that|v|G is not uniquely defined at the
critical points, varying between T and 1[C,. However,
this is only true at the critical points whevevanishes. None-
theless, it shows that operating close to critical points is not
desirable, unles€,=C,.

viG= (26)

FIG. 6. Role of the isocontours of, (dashed whitg and 6,
(dashed blackin the structure ofg for the lowest band aty=0
(left), 30° (centey, and 45°(right). The diffuse black contour rep- V. INFINITE r AND REAL SYSTEMS
resents zeros db.

Although we have drawn attention to the possibilities of
louin zone. For two-dimensional phOtOﬂiC CrySta|S, such aéero diffraction along the lines WheFE:O, areal system can
the structures we are considering here, the critical points ing¢ course never attain this value, since the nonzero line-
clude at least one minimum, one maximum, and two saddlgigths of the frequency and wave vector spectrum will
points [19,20. The group velocity vanishes at the critical smear out the values of the superprism parameters. Recall
Eoints, so in the neighborhoqd of a critical point qf frequencyipat through Eqs(4) and (6), each incoming plane wave at a
o, the frequency can be written as the quadratic form  given frequency is mapped to a particular point in the Bril-

=~ (8997 (69,2 louin zone. Thus a distribution of incoming wave vectors and

mopt o _LZC (25  frequencies is mapped to a patch of the Brillouin zone. For a
X y Gaussian beam of given angular spraddand linewidthA @

for constantsC, and C, (these are similar to the effective say, it would be straightforward to determine the size of this
masses in periodic electronic systgm21]. At maxima or  patch and so obtain averaged valuepp§, andr. For cer-
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tain problems, the minimum value over the patch might be j ;K j dr Ky

more relevant than the average. A detailed analysis of the 20 = ok 90 = o ke 96 (A2)
; ; ; ; il K o Ik ke 96, |5

degree of averaging as a function of the beamwidth and line-

width is beyond the scope of this paper; however, one can

imagine several ways to mitigate the problem. Of course, we o ok

can always reduce the impact of angular spreading by using = 2 Zm (A3)

a sufficiently large crystal and broad beam. However, certain koK) K 96 |5

portions of the Brillouin zone are intrinsically less sensitive

to linewidth issues. For example, consider the “corner” of theHere repeated indices indicate a sum over the coordinates
p=0 curve in Fig. 5 afk,a, Kya)~(2 7,2.79. The curvature  and 5 and we usea;=dw/ Jx;. The first term in Eq(A3) is

of the equifrequency contour passing through this point vanthe standard second derivativg . We now need to simplify
ishes to fourth order inSk, and thus we would expect an the other derivativesx,/dk,, and (dk.,/38,)|. For the first
optimal insensitivity to the angular spread of the incomingof these, we find the inverse of the matrix of reciprocal de-

beam. rivatives:
-1
VI. CONCLUSION 1 ok %
IK; _ [ ki ] _ JK, OK (Ad)
We have provided convenient formulas for the calculation K K, ok, ok
of the superprism parameters. Not only do these formulas Ik Ik
simplify the analysis of superprism performance, but they 7 X
also show that infinite resolution as determined by the pa-
rameterr is theoretically attainable in any crystal and any 1 0 -1
band. The art of superprism design is to obtain strong reso- = [2:n\225 Kk 2 \2%0
lution, yet over reasonable bandwidths, and to combine this (—) —1 1 (—) —X
with good energy efficiency. The accurate and computation- a ke Ky a Ky
ally efficient formulas derived here and the identification of 1 0
the region in the Brillouin zone associated with very high _ ~ ~
resolution should help future research aimed at exploring - @ _ Y Ky ’ (AS)
applications and devices based on superprism phenomena in k(2m/a)’es ®, (2mn/a)’0,

photonic crystals.
Here we have used Eggl) and(6), in progressing from the
first to the second line.
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APPENDIX A: EVALUATION OF DERIVATIVES ALONG
EQUIFREQUENCY CONTOURS
1. Derivatives needed fomp k. -k -1 k kJ
1 = Y
By simple geometry, we can consider the incoming wave = —(Zwa/n)zib 0 o = K
vectork as a function off, and o, k, Kk, -k, =
w
~ A7
- 2mhw . (A7)
k(6,w)= (sin 6,cosé,). (A1)

Combining Egs.(A5) and (A7) with the last of Eq.(10)
yields Eq.(11).
Figure 1 indicates how to fing givenk so it is reasonable to
view the in-crystal wave vector as a functiaetk) of the
incoming wave vector. Thus the group velocitik) has the
complete dependenogrdk(6;,®)]} By the chain rule, we The procedure for the derivatives required das similar.
can write This time, we have

2. Derivatives needed forg
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o ;K Po Ik oK
Iy I (A8) =22 Zm (A10)
do |y K dol, IKjoKk) Ky do a
o Ik Ik Since K,/ dw|, =dKy/ 38, Egs.(A5) and (A7) provide the
_0Uj OK| OKm - i . . . )
ke T (A9)  remaining unknowns in EqA10), which substituted into the
K Om 0w T4 last of Eq.(12) gives Eq.(13).
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