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Nonlinear deformations of liquid-liquid interfaces induced by electromagnetic radiation pressure
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The idea of working with a near-critical phase-separated liquid mixture whereby the surface tension be-
comes weak, has recently made the field of laser manipulation of liquid interfaces a much more convenient tool
in practice. The deformation of interfaces may become as large as several tenths of micrometers, even with the
use of conventional laser power. This circumstance necessitates the use of nonlinear geometrical theory for the
description of surface deformations. The present paper works out such a theory, for the surface deformation
under conditions of axial symmetry and stationarity. Good agreement is found with the experimental results of
Casner and DelvillgA. Casner and J. P. Delville, Phys. Rev. Le8Z, 054503(200)); Opt. Lett. 26, 1418
(2002); Phys. Rev. Lett90, 144503(2003], in the case of moderate power or a broad laser beam. In the case
of large power and a narrow beam, corresponding to surface deformations of about 50 micrometers or higher,
the theory is found to over-predict the deformation. Possible explanations of this discrepancy are discussed.
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I. INTRODUCTION =0.53 um, the peak power waB,,,,=3 kW (low enough to
make nonlinear effects negligihleand the duration of each
The formation, deformation, and breakup of fluid inter- pulse was 60 ns. The beam radius at the waist was reported
faces are ubiquitous phenomena in natire One special to be very small,wg=2.1 um, but has most likely been
group of effects which implies the so-called finite time sin- somewhat largeiw,=4.5 um; cf. the dicussion in Ref18].
gularity [2], has as its most common example the breakup ofhe rise of the water surface was small, about @8, oc-
pendant drops driven by gravif,4]. If external fields such curring att=450 ns after the onset of the pulse. The physical
as electric or magnetic fields are present, one has in additioreason for this small surface elevation is evidently the large
extra control parameters. Thus we may mention that intersurface tensiornr=0.073 N/m between air and watéihe
face instabilities driven by electric fields,6] are important  theory of the Ashkin-Dziedzic experiment was worked out in
for many processes such as electro-sprayfiify ink-jet ~ Refs.[18,19.) If we go to the more recent experiment of
printing [8], or surface-relief patterning®]. A uniform mag- ~ Sakaiet al. [20], we will find that the surface displacement
netic field can also be useful, for instance, for the purpose of/as even more minute. In this case the displacement was
forming elongated magnetic droplefis0]. These deforma- induced by a continuous wavew) Ar* pump laserwave-
tions, as well as those induced by the acoustic radiation pred€nN9th in vacuumio=0.514um, maximum powerPa,
sure on liquid surfaced 1,19, have been used to explore the ~0-> W), and was probed with a He-Ne laser. For a beam
mechanical properties of fluid interfaces in a noncontact Wa)?ower P=0.3 W and a beam waisb,=142um the eleva-
(1314, ion of the surface was found to be extremely small, about

. . . 2 nm.
. It is noteworthy that I_aser—lnduced deformatlons of the Generally speaking it is of considerable interest to be able
interfaces of soft materials have not received the sam

. . ; My probe the displacement of fluid interfaces in a way that is
amount of interest in the past. Most attention has been glviﬂ

icle alobal eff h ical levitati oncontact, i.e., which avoids a direct touch of the fluid by
to test-particle global effects such as optical levitation andyechanjcal devices. The only acting force on the fluid sur-

trapping—cf,, for instance, Reffl5,16. The reason for this ¢, e is thys the radiation force. As discussed in Fa], for
cirqumstanpe_ Is simple: Defqrmations Of.ﬂUid interfaces byinstance, this kind of force can measure locally the n,wicrome—
opucgl radlatl_on are ordma_r ilyveak Fc_>r instance, in the chanical properties of soft biological systems because artifi-
c!assw experiment of Ashkin and DziedZit7], a pulsed cial membrane$22] or cells[23] can be highly deformable.
single transverse mode doubled Nd:YAG |ag8 pulses per  gj;ape effects of the radiation pressure should thus be mea-
second was focused vertically from above on a water sur-g o - facilitating the characterization of surface elasticity
face. The wavelength of the incident wave Wa%  onerfies, A major step forward was to recognize that one
can reduce the surface tension considerably by working with
a phase-separated liquid mixture, close to the critical point.

*Email: aslakhallanger@hotmail.com In this way “giant” deformations can be achieved. Recent
TEmail: iver.h.brevik@ntnu.no experiments of Casner and Delville have shown that the dis-
*Email: skjalg.haaland@ntnu.no placements can in this way reach several tenths of microme-
SEmail: rsol@statoil.com ters[21,24-27 (cf. also the recent revie\28]). Also, there
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are seen in the experiments rather remarkable asymmetriesder of 10 ns. For instance, in the Ashkin-Dziedzic experi-
with respect to the upward/downward direction of the laserment[17] a detailed calculation verifies this time scale; cf.
beam[27]. Fig. 9 in[18].

The giant deformations make it necessary to use nonlinear Another point worth mentioning in connection with the
theory for the description of the surface deflection. The purelectrostriction term is that that we have writtefa/ dp)s as
pose of the present paper is to present such a calculation, fan adiabatic partial derivative. This seems most natural in
the typical case where the elevation is axially symmefaic optical problems in view of the rapid variations of the field,
condition almost always satisfied in praclicand in addition  at least in connection with laser pulses. In many cases it is,
stationary. Comparison with the mentioned experiments wilhowever, legitimate to assume that the medium is nonpolar,
be made. We shall moreover assume that the laser beamds that we need not distinguish between adiabatic and iso-
incident from below only. The mentioned up/down asymme-thermal derivatives. The permittivity depends on the mass
try will thus not be treated. density only. Then derivative can be written simply as

For completeness we emphasize that we are consideringe/dp, and is calculable from the Clausius-Mossotti relation.
nonlinear theory only in a geometrical sense, in order tdn this way we can write Eq1) in the following form, when
describe the interface bulge. The electromagnetic theory asmitting the last term,
such is kept on the conventional linear level, as we are only 1 o 1 )
considering moderate laser intensities. The theorylifear f=-380E°V K+ 580 V[E(k— D(k+2)]. ()
deformations _has been worked out befbte,19,21,2$ The Finally, we have the first term in Eq1), which may be
analytic solution for the deflection of the surface is répro-called the Abraham-Minkowski force, since it follows

duced in Eq(47). equally well from the Abraham and the MinkowskhM )
energy-momentum tensors:

II. DERIVATION OF THE GOVERNING EQUATION
N PAM = _ Lo B2V k. 3

A. Basic electromagnetic theory o . .
This is the only term that we have to take into account in

We begin by writing down the expression for the electro-practice in optics, under usual circumstances. We see that
magnetic volume force densifyin an isotropic, nonconduct-  thjs force is equal to zero in the homogeneous interior of the

ing and nonmagnetic mediufi8,29: medium, and acts in the inhomogeneous boundary region
1 1 o6 k=10 only. By integrating the normal component of the Abraham-
f=—=-E2Ve+=-V [E2p<—> } +———(EXH). Minkowski force density across the boundary, we obtain the

2 2 /s ¢ a surface force density which can alternatively be evaluated as

1) the jump of the normal component of the electromagnetic
Maxwell stress tensor.

In the following we focus the attention on the force term
in Eq. (3) only.

HereE andH are the electric and magnetic fielgsjs the
mass density of the mediuffiuid), ¢ is the permittivity, and
k=elggis the relative permittivity where, denotes the per-
mittivity of vacuum.

Let us comment on the various terms in Ef), beginning
with the last term. This term is called the Abraham term, Let us assume that there is established a stationary curved
since it follows from Abraham’s electromagnetic energy-surfacez=h(x,y) distinguishing two fluids, a lower flui¢l)
momentum tensor. The term is experimentally detectable urand an upper fluid2), the equilibrium position being deter-
der special circumstances at low frequen¢ie8], but not at  mined by the balance of gravity, surface tension, and radia-
optical frequencies, at least not under usual stationary condtion pressure. The undisturbed position of the surface is the
tions. The Abraham term simply fluctuates out. xy plane. Because of the surface tension coefficierthere

The middle term in Eq(1) is the electrostriction term. will be a normal stress proportional to the mean curvature of
When seen from within the optically denser medifthe the surface:
medium with the highest), the electrostriction force is al-
ways compressive. Whether this kind of force is detectable in Pp— Py = U(i ¥ i) ' (4)

a static or a stationary case, depends on whether the experi- R Ry

ment is able to measure local pressure distributions withi
the compressed region or not. Moreover, in a dynamic ca
the velocity of soundis an important factor. If the elastic
pressure in the fluid has sufficient time to build up, then th
electrostriction force will not be detectable when measurin
the gross behavior of a fluid such as the elevation of it
surface. Such is usually the case in optics. The time required 1 1 hy1 +h§) +h,,(1+ hf) - 2h,hyhy

for the counterbalance to take place, is of the same order of R + R = (1+h2+ 232 ) (5
magnitude as the time needed for sound waves to traverse 1o x Y

the cross section of the laser beam. For a beam width arounghereh,=dh/dx, etc. Our convention is such that the curva-
10 um, this yields a time scale for counterbalance of theture is positive if the surface is concave upward. Also, we

B. Surface tension and radiation forces on a curved surface

Srhl andR, being the principal radii of curvature at the surface
Soint considered. IR; andR, are positive,p,—p;>0. This
means that the pressure is greater in the medium whose sur-

Sace is convex. It is useful to have in mind the following

eneral formula for the mean curvatureRL+ 1/R,:
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We introduce the intensity of the incident beam,

n>n

o> p. I =enc(EV) (11

T .

(in the case of azimuthal symmetry1(r)), and leta denote
the angle betweeE" and the plane of incidence,

ikl EV=EVcose, EV=EVsina. (12)

Then, we can write the surface force density as

k,

..

| n3-n3cosé,

nm=- ——[(sir? 6, + co€ 6,)T, co€ a
FIG. 1. Definition sketch of the displaced surface. The laser 2c n, cos6
illumination is from below. +T, sir? an. (13)
note that the unit normal vectar to the surface is When E(”=Eﬁi) or E(i)=E(li) (i.e., @=0 or 7/2) it is often
T convenient to expresH as
n=(1+h+h) " (-hy,—hy,1). (6)
The normal points upward, .from medium 1 to'medium 2. = n—llcosz 0i<1 +R- tan 9i.|.>n, (1)
Assume now that there is a monochromatic electromag- c tan 6,

netic wave with electric field vectd®)(r)e™t incident from ) ) o ) )
below, in the positivez direction. The direction of the inci- WhereR=1-T is the reflection coefficient. This expression

dent wave vectok; is thus given by the unit vector has been derived befof@6,27,3Q. It holds also in the hy-
. drodynamic nonlinear case. In connection with the men-
k;=(0,0,1) (7) tioned Bordeaux experimenf®1,24-27, the upper liquid

was always the optically denser one. Tinys> n,, the direc-

in medium 1. When this wave impinges upon the surface, itjon of 11 is antiparallel ton, and the force acts downward,
becomes separated into a transmitted w&/ and a re- . ,ormal to the surface.

flected waveE", propagating in the directions & andk,, The case of normal incidence yields
respectively. We assume, in conformity with usual practice,
that the waves can locally be regarded as plane waves and 4n;n,
that the surface can locally be regarded as plane. The plane T=T.= 21 (19
R (nz+ny)
of incidence is formed by the vectoks andn; we call the
angle of incidenced; and the angle of transmissiaf. See ol 1 —
Fig. 1. Moreover, we leE, andE , be the components d& oo cmine=n (16)
parallel and perpendicular to the plane of incidence, respec- C mp+tm
tively. The expressions for the energy flux transmission co-
efficientsT, and T, for a plane wave incident upon a bound- o
ary surface arécf. [29], p. 496: C. Cylindrical symmetry
n, oS, Eﬁt) 2 sin 26, sin 26, We hgnceforth assume cylindrical symmetry, psing ;tan-
=== =S 206+ 0)c02(6— 8)’ (8) dard cyllnder Cogrdlqate(ar,a,z). Ther_e is no vana_tlon in
n, cosé; \ E, sin(6; + 6)cos (6, — 6, the azimuthal directiongh/d9=0. With the notationh,
=oh/or we have
nycosé,( EV\? sin 26, sin 26,
“ T nicosg \EV) T sirf(6+6) © 1 .
1 iAEL R Cosf ===, sing = (17

1+h 1 J:hz'
When dealing with an unpolarized radiation field, one usu- VLT N

ally averages over the two polarizations and represents t

transmission coefficient by the single entity h"Igogether with analogous expressions fprthis can be in-

serted into Eq(193) to yield

1
(M=5(T+Ty). (10) 2nil(r)1-a
2 n:—%mf(hr,a)n, (18)
Consider now the electromagnetic surface force density,
which we will call II. As mentioned abovd]l can be found wherea is the relative refractive index,

by integrating the normal component of the volume force

density across the surface boundary layer. From (B it a=n/n, <1, (19
follows that the surface force acts normal to the surface, and
that it is directed toward the optically thinner medium. andf(h,,a) is the function
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1+a)? What expression to insert fof(r) in Eq.(25), depends on
(1+a)
/ 2212 the physical circumstances. Thus in the case of an unpolar-
[a* 1+ -adh] ized laser beam, we may use either the expresdidnwith
2 1+(3-a)h?+(2-ad)h! R=(R), T=(T), or alternatively use the expressi¢21). We
x| sima+ [ah?+ 1 +(1-ad)h?2 will follow the latter option here. As noted, there is no re-
T r

striction imposed on the magnitude of the slope of the sur-
(200 face.

When the surface is horizontdl, =0, we havef=1, andIl
reduces to the expressi¢h6).

A peculiar property of the expressiof20) facilitating lll. SOLUTION OF THE NONLINEAR EQUATION
practical calculations is that it is quite insensitive with re-
spect to variations in the polarization angte especially in
the case whem is close to unity, which is in practice most
important. Thus if we draw curves féf(6,) vs 6; for various
input values ofx in the whole region 82 «<90° (not shown o wp \?
here, we will find that the curves lie close to each other. For lc= ﬁ B= (|_> , (26)
practical calculations involving unpolarized light it is thus 1™ P29 ¢
legitimate to replacé(h,, «) by its average with respect ta wg being the radius of the beam waist. The Bond number
As (sirfa)=(coga)=1/2, we canthen write the surface describes the strength of buoyancy relative to the Laplace

f(h,a) =

It is advantageous to introduce nondimensional variables.
Let us first define the capillary length and the Bond num-
ber B,

force density as force. If B<1, gravity is much weaker than the Laplace
force. (The Bordeaux experiments covered the region®10
__2nn1 ¢ hn (21 <B<4) We then define the nondimensional radRsand
c 1+a " the nondimensional height(R) as
wheref(h,) is equal tof(a,h,) averaged ovet, r h(r
() ls equal toflay) averag R=", HR="", 27
f(h,) = (1 +a)? o lc
_A2\h2 2/ _o2\R2 4 B The fact that in practica=n,/n;, is very close to one, makes
1+,(2 a)h; +3h' Y 12+(1, b + 1y = it at first sight possible to simplify the right hand side of the
[a+\V1+(1-ad)hi]ah’+ V1 +(1-ad)h]? governing equatiori25). Namely, from Eq.(22) one would

(22)  expect thaf(h;) — 1. However, the situation is more delicate
) o ) ) _due to nonlinearity: If we keefi(h,) in the formalism and
This expression is valid also in the case of hydrodynamiGgiculate the elevatioh(r), we will find that f gets a pro-
nonlinearity. Note again thdf is the normally directed force |, nced dip within the region where the beam is strong.

per gnit area of the ob_liquh'quid surface . Typically, if we draw a curve forf=f(R) versus the nondi-
Finally, let us consujer the forcg_balance for the liquid o sional radiuR, we will see thatf drops from 1 to about
column, assuming stationary conditions. Whes>n, the 4 3\ henR lies about 0.5. Mathematically, this is because

surface tension force which acts upward, has to balance tr}ﬁe high steepness of the surface makegor Hg) large
combined effect of gravity and electromagnetic surface R

. 27 %" enough to influencé significantly in a narrow region even
force, which both act downward. When the_ surface is giveNyhen a is close to unity. Assuming a Gaussian incident
ash=h(r, #), the mean curvature can be written as

beam,
1 1 194 rh 14 h
-t = __—/—r + o 2 ’ |(r) = Ee—Zrzlwg (28)
Ri Ry rarJ1+h®+(hyr)?2 r°d0\1+h?+(hyr)? 2 ,

Twy

(23 with P the beam power, we may write the governing equa-
with sign conventions the same as in Eg). Thus for azi- tion (25) as a nonlinear differential equation fbi.
muthal symmetry,

1 1
Hrg+ =Hg+ —=H3
—p2=2d T (24) pH-— R BRIy, 29
Ri Ry rdry1+n?’ 1,32 e f(Hp). (29
1+=H2

and the force balance becom{&$,31]

HereF is a positive constant at fixed temperature,
(pr-ppohn - 20 i) (2s)
Pz P2l rdr| \1+h? ' __2np-ny)P

_ 3

This equation follows from considering the equilibrium of a mcd(p1 = p2lc
liquid column having unit base area. Hdrir) is the pres- which can for practical purposes be written as, since
sure scalar, i.eII(r)=II(r)n. ThusII(r)<O. (dnl dp)1=-1.22x 107* m3/kg,
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2 an\ P P G(0)=0, H(«)=0. (41)
F=—-—] 3=264005. (31
mcg\  dp/qlc Ic We linearize the equations by means of lagging, i.e., we use

In the last equation, the dimension lgfis xm. values forHg from the last iteration in the nonlinear func-

The two quantitiese anda will vary with the temperature  10nS K andS. Using a nonuniform grid witm grid points,

T in accordance with the theory of critical phenomena. ThudVe integrate the equations between two grid pojné&d |
for the density contraskp=p,—p, we have +1, lettingm be the midpoint and\R; the distance between

the points. We obtain

Ap=(A )(T_Tcyg (32 AR
p=(Ap : -
0 Tc Hj+1—H;= Km_zl(Gj + Gj+l)- (42
where8=0.325,(Ap),=285 kg/n¥, T-=308.15 K being the
critical temperature above which the mixture separates into 1 AR AR
two different phases. Similarly Gj1—Gj+ Ri—“—zl(Gj +Gjy) - B—Zl(Hj +Hj.p)
T-Tc\* -
o= 0'0<T—C> : (33) =~ ARSy. (43)
¢ HereHg in K, and S, are evaluated as
with »=0.63, 6,=1.04x 104 N/m. More details can be L
found in Refs.[21,25. We give here the practically useful _Hju—H;
formulas fora andl: Hg= —J—lAR_ ) (44)
i
T-T 0.325 — . . . )
a=1- 0,023§€—C) , (34)  Where theH'’s are values from the previous iteration. With
c grid points there aren—1 intervals andn—-1 sets of equa-

tions. This confirms with the fact that there ane Quantities
T-Tc\0468 H and G; since there are two boundary conditions there re-
lo=19 (um). (35)

main 2n—2 equations in all.

To start the iterations we give initial values fa

_These two quantities are the only parameters that vary. const 6®’, To deal with the boundary condition at infinity,
with temperature. There are thus three parameters in all if}e need in practice to replace “infinity” with a finite upper
the problem, namelyf, the beam poweP, and the beam |imit R=R_. The solution falls off quite slowly witlR, so to
waist wy. Nondimensionally, the last two parameters corre-|;ca the naive conditioH(R.) =0 would requireR, to be very
spond toF andB, Eqgs.(31) and(26). large. To avoid calculating the long tail of the solution, we
can find a better boundary condition by using the lowest
order term in an asymptotic expansion fdr When R is
large, S~ e‘ZRz, and Hé is very small so thatS=0,
V1+HZ/B~1. Equation(40) becomes

C

A. Numerical solution

It is convenient to leH be positive downward, so that in
the formalism below we will replackl with —H.

We start from the nondimensional governing equation in 1d

the form EE{(RHR) -BH=0. (45)
1d RH ; ; ; :
__<%) —BH=- Fe—Zsz(HR)’ (36) To IOYVl(,ESt_ %L{der 'Fhls_equathn h_as the asymptotic solution
RAR\ V1 +HY/B H~RY2%7BR which in turn implies that

with boundary conditions 1 =

G=Hg=-|—=+VBJH. (46)
Hx(0)=0, H(=)=0. (37) R

We take this condition to replace the conditibt+0 at R
We solved the discretized equations using a Block-

K=V1+H3B, S= Fe‘Zsz(HR), (38)  Bidiagonal-Matrix-Algorithm, developed by one of the au-

thors(S.H). Our programming language WamTLAB .

We use a two-point method to solve the nonlinear differentia
equation iteratively. Define

and letG=Hg/K. We obtain the following first-order system:

dH B. Results
— =KG, (39 . . . . .
dr First, the following question naturally arises: At which
powersP will the nonlinear correction begin to be impor-
dGc G tant? And what magnitudes of the centerline deformation
RTR™ BH=-S5, (40)  =0) does this correspond to? To get insight into this issue we
constructed a number of figurdaot shown hergfor the
with boundary conditions surface heighh(r) vsr, for various temperature differences
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0 : AR .
-2 S/ == P=300 (MW)
- — — P=600 (mW)
—— P=1200 (mW)
—40t
E -60}
<
-80r
-100
_120 . . . . s _50 s s s s s s s
5 10 15 20 25 30 0 5 10 15 20 25 30 35 40
r (um) r(um)
FIG. 2. Theoretical heightt(r) of displaced surface vs radius FIG. 3. Same as Fig. 2, but with—-Tc=2.5 K, 0p=8.9 um.
whenT-Tc=2.5 K, wp=4.8 um, for three different laser powers ) )
The undisturbed surface is ftr)=0. from the figure to bg12,56,112 um, respectively.

Our choice of input parameters makes the figure directly
comparable to Fig. 6.1 in Casner’s thegl]. The experi-

T~-Tc and beam radit, and for various values . For inental centerline displacements estimated from the photos

each parameter set we made the calculation in two ways, vi

when taking the nonlinear correction into account, and Wheﬁ“red z;téout %Q‘g_f%go: 3(\)/8 r_r|_1?1lv tﬁS,umt_forl P:%Qq[. mw,
omitting it. Of course, there is a transitional region and no2! pm for = myv. 'he theoretical predictions are

sharp limit distinguishing the linear and nonlinear regions thus in this case larger than the observed ones, especially for

Our conclusions, based upon visual inspection of the curveéhe h|gh¢st valug oP. Moreover, one d|fference“ which 'S‘,, .
were that under normal conditions the linear region can b ost noncgable IS the a.bsence of the observed “shoulder” in
taken to prevail untiP~200 mW. WherP>300 mW, non- he theoretical solution in the case of larBeThe shoulder

linear effects turn up. Generally, the nonlinear deformationsggf:vzls _ﬁ)](greg'rige;ttal%S\g‘ﬁnnéhteh;zfercguggag?%e'chgzm
are higher than the linear onggo give an example: AP ' P y cap 9

=220 mW the nonlinear centerline deformation was found tothIS phenomenon. Mathematically, _the es.,t.abllshment of the
houlder seems to be related to an instability; the real deflec-

be only 2% higher than the linear deformation, whereas . . . .
ion jumps from one class of solutions of the nonlinear dif-

P=330 mW it was 5% higher. f tial tion t h | Vid q twall
From Refs[21,25 we recall that in the linear regime we eren 'f.‘ equ?_lon 0 another class. video records actually
have the following simple formula for the centerline heightShO\.N Jumps-in the surface whe_n It gets formed, thus sup-
hin(r) (here in physical variables porting our conjeqture about an |nstaplllty phenomenon. _As
for the observedvidth of the surface displacement, there is
. P [odn Tokdk 22 good agreement with the theoretical prediction.
hlm(r)zfczg(%) J 1+1k2°¢ etOo(kr).  (47) Figure 3 shows analogous results for the cdseTc
o ¢ =25K, wg=8.9um, thus a considerably broader beam.
In the following we show three figures, each of them corre-Here 1.=20.3um, B=0.193. The powers areP
sponding to given values of—T. and wy. Each figure is ={360,600,89pmW. In this case, the valu®,=7 was
based upon a full nonlinear calculation. First, Fig. 2 showgound to be sufficient, for the same reasons as above. Our
how h(r) varies withr whenT-T=2.5 K andwy=4.8 um.  results can be compared with Fig. 6.3 in Casner’s tHe<ik
According to Egs. (35),(26) this corresponds tolc  The theoretical centerline displacements for the three men-
=20.3um, B=0.0560. The powers are P tioned cases oP are{10,19,4% um, which all agree well
={300,600,120pmW. As mentioned above, we had to re- with the observed values. Also in this case there occurs a
place “infinity” with a finite outer limitR.. Numerical trials  shoulder experimentally, but it is not so pronounced as in the
observing the sensitivity of calculated centerline deformaprevious case.
tions showed that the choid®,=9 was large enoughFor Finally, in Fig. 4 we show the cas&-Tc.=3 K, wq
instance, an increase &, from 9 to 10 would lead only to =5.3 um, corresponding tolc=22.1um, B=0.0576, for
minute differences, the first three digits in the centerline depowersP={300,590,83p mW. Again, the outer nondimen-
formation being the sameBecause of the cylindrical sym- sional radiusR.,=9 was found to be appropriate. The theo-
metry, only one half of the displacemerits>0 in the figure  retical centerline deflections are now seen from the figure to
need to be shown. It is seen that both powers 600 anbe {10,39,6% um, respectively, for the given values &t
1200 mW lead to deformations much greater thanu2®  We may compare this with the photos shown in Fig. 2 in Ref.

and are clearly in the nonlinear region. The theoretical def27] or Fig. VI.5 in [28]: The corresponding experimental
flections for the three given values of the power are read offlispacements are abo{t0,40,5% um. Also this time we
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0 - T C_ - = e results. Figures 2—4 show some examples of our calcula-
IR tions; these are all directly comparable with the Casner-
- 2 52300 (W) Delville experiment.
— ~ P=590 (mW) Some general conclusions that can be made from our cal-
-20 —— P=830 (mMW) 7 culations, are the following:
(1) For given values of — T andw,, a largerP causes a
£ 301 1 larger deformation;
= (2) for a givenT-T., a smallerwy causes a larger and
= 407 il narrower deformation;
(3) for a givenwy, a smallerT-T causes a larger and
=501 ] narrower deformation;
(4) very large beam waisigy,~ 20—30um) are not able
-60 i to cause a nonlinear deformation, not even for the larBest
and smallesfT-T. investigated in the Casner-Delville ex-
-70 . ' ' ' ' periment;
> 10 r ij) 20 28 % (5) For small T-T¢ and smallw, (for instanceT-T¢
=2.5 K andwy=4.5 um), a power of 300 mW is not enough
FIG. 4. Same as Fig. 2, but wifi-T¢=3 K, wp=5.3 um. to cause a nonlinear deformation. However, a further de-

crease in temperature, such as to the value€l=1.5 K,

see that the agreement between theory and experiment \M'II take also the 300 mW-induced deformation into the non-

good for low powers, but that the theory over-predicts theinéar regime. .
displacement when the power gets large. The last-mentioned All the items listed above are expected on physical

effect is generally most pronounced when the radius of thgreunds. A large incident power concentrated on a narrow
laser beam is small cross section means a large electromagnetic field intensity

and thus a large surface force. The enhanced deformation for
small T-T is due to the fact that the restoring buoyancy
force (~Ap) and Laplace forcd~o) vanish atT=T; cf.

The “giant” deformations of fluid interfaces recently ob- Egs.(32) and(33).
tained in the experiments of Casner and Del\iR&,24—-2§ Concretely, when comparing our results with the Casner-
with the use of moderate laser beam power&P typically  Delville observations, we find that for broad beams the
lying between 500 and 1000 m\Mave accentuated the need agreement between theory and experiment is quite good; cf.
of taking into account nonlinear geometrical effects in theour discussion of Fig. 3 above. There is however a consider-
theoretical description of the interface deformation. As a ruleable theoretical over prediction of the deflection in the case
of thumb, inferred from a visual inspection of the figures, of narrow beams and high powers. Most strikingly, this is
nonlinear effects are expected to be appreciable when thghown in the casey=4.8 um, P=1200 mW, as discussed in
deformations become larger than about . When the connection with Fig. 2. The physical reason for this discrep-
radius wy of the laser beam is small, typically~5 um, a  ancy is not known. It may be related to the production of
power P~1 watt may easily lead to deflections around heat in the liquid in the presence of the strong field, or to the
100 um. The physical reason for the occurrence of giantloss of radiation energy because of scattering from the non-
deformations is the lowering of surface tension caused byvoidable corrugations on the liquid interface. Perhaps the
working with a phase-separated liquid mixture close to themost intriguing possibility is that the discrepancy is related
critical point. to the reflection of radiation energy from the interface

The nonlinear governing equation in nondimensional‘shoulder,” which is seen to be produced in strong fields
form can be taken as in Eq29) or, what was found more when the illumination is from below. This effect is most
convenient, as in Eq.36) whereG=Hg/K is considered as likely related to an instability; the system decides to switch
the dependent variable. We solved the set of E88—(41)  from one class of solutions of the nonlinear governing equa-
numerically. As a consistency check, we made also an analdion to another class. To our knowledge, no explanation ex-
gous calculation starting from E@29), and got the same ists of this effect.
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