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The stationary state of a spherically symmetric plasma configuration is investigated in the limit of immobile
ions and weak collisions. Configurations with small radii are positively charged as a significant fraction of the
electron population evaporates during the equilibration process, leaving behind an electron distribution func-
tion with an energy cutoff. Such charged plasma configurations are of interest for the study of Coulomb
explosions and ion acceleration from small clusters irradiated by ultraintense laser pulses and for the investi-
gation of ion bunches propagation in a plasma.
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I. INTRODUCTION

The interaction of ultraintense laser pulses with solid tar-
gets leads to the formation of plasmas with unusual proper-
ties in terms of particle energy distributions and of spatial
mass and charge-density distributions. Such properties can
be exploited in order to obtain sources of high-energy elec-
tromagnetic radiation and charged particle beams with un-
precedented intensities and time and space resolutions. For
the intensities of present-day ultrashort, superintense laser
pulses, the energy that the ions in a target acquire due to
direct interaction with the electromagnetic fields of the laser
pulse is usually small, while the energy of the plasma elec-
trons can be of the order of tens of keV. These “hot” elec-
trons expand until their “pressure” is balanced by the elec-
trostatic field that sets up due to spatial charge separation
f1–3g. This process leads to a steady-state configuration
sSSCd which is reached in a time of the order of some elec-
tron plasma periods. Thus, since the ion response time is
much longer than that of the electrons, SSC can be achieved
before the ions can depart significantly from their initial con-
figuration. Afterwards, ion acceleration takes place, as pre-
dicted theoreticallyf1–15g and confirmed experimentally
f16–27g. Clearly, this description does not apply to highly
relativistic regimes like those described inf28g.

The aim of this paper is to present a combined analytical
and numerical investigation of three-dimensional SSC char-
acterized by a hot electron plasma and a coldsimmobiled ion
core. Such configurations are especially appealing because,
contrary to one-dimensional geometries, in three-
dimensional cases charged SSC are expected to set up. In
fact, while in the former case an infinite energy is required in
order to bring a charge to infinity, in the latter the energy
necessary for electron evaporation is finite. In particular, we
show that the SSC charging up and the energy distribution of
the electrons depend on the ratio between the radius of the
ion core and the electron Debye length and on the history of
the electron expansion. The understanding of the SSC charg-
ing up with immobile ions and of the electron energy distri-
bution is relevant to many experimental conditions as these

processes affect the way in which ions are accelerated on
longer time scales when the constraint of a fixed ion core is
removed. In the case of the Coulomb explosion of a small
clusterf29–39g, these processes affect the value of the maxi-
mum energy that the ions can acquire in the acceleration
process. The relation between the cluster charge and the ion-
ization state of the ions has been recently addressedf40g.
Furthermore, in applications related to proton imaging
f41–43g and to the propagation of ion beams in solid targets
f44g, the Coulomb repulsion and the screening effect of the
electrons can strongly affect the proton trajectories. This is
also the case for applications of proton laser acceleration to
hadron therapyf45–52g, where a very precise collimation of
the proton beam and a high-energy resolution are essential.
Moreover, as discussed inf53g, the topic of the charging of a
spherical plasma in less extreme conditions can play a key
role in the study of dusty plasmasf54g and aerosolsf55g.

These charged configurations may be of significant inter-
est also in the investigation of ultracold neutral plasmas pro-
duced by photoionizing laser-cooled trapped atomsf56,57g.
In fact, such ionization process leads to charged equilibrium
configurations where the value of the charge depends on the
electron temperature. The paper is organized as follows. In
Sec. II, simple relationships are derived analytically on the
basis of two schematic models that are introduced in order to
grasp the main features of the plasma charging process in
different collisionality regimes. In Sec. III, we present the
results of a series of numerical simulations obtained with a
one-dimensional particle-in-cell codesPICd in a spherical ge-
ometry and with fixed ions. We then compare the numeri-
cally obtained charge values and electron energy distribu-
tions with those obtained from the analytical models. Finally,
conclusions are presented in Sec. IV.

II. SIMPLIFIED MODELS OF THE CHARGING PROCESS

In this section, we discuss two simplified models that al-
low us to identify the main physical features of the plasma
charging process. These models rely on assigning a simpli-
fied condition for the electrons to leave the ion core and on
two different rules for the energy redistribution of the re-
maining electrons.

As a starting configuration, we assume the following elec-
tron and ion density profiles:*Electronic address: ceccherini@df.unipi.it
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nesrd = nisrd = n0us1 − r/Rd, s1d

with usxd=1 for x.0 andusxd=0 for x,0. HereR is the
radius of the ion plasma core andN0=n0s4pR3/3d the ion
and electron initial particle number. We denote byNe the
time-dependent number of electrons inside the ion core.

Initially, electrons have a Maxwellian energy distribution
with temperatureT0. Moreover, in these models the electron
density is taken to be uniform inside the ion core. As a fur-
ther simplification, we assume that, on average, the radial
crossing of the electron trajectories does not lead to a relative
redistribution of the charge in front and behind each electron
outside the core. This simplification allows us to assume that,
after leaving the ion core, each electron moves as if in an
effective time-independent Coulomb field. Hence, the condi-
tion for an electron to reach infinity is that it has a positive
total energy when it reaches the ion core surface atr =R. In
this model, the particles which satisfy this condition are said
to “evaporate” and are assumed to be lost when they reach
r =R. On the contrary, the electrons that have a negative en-
ergy atr =R are assumed to remain inside the ion core. Fur-
thermore, we assume that inside the ion core the electrons
move as free particles. The evaporation of the electrons with
positive total energy atr =R changes the number of electrons
Ne, the total energy of the system inside the ion core, and
causes an energy redistribution of the remaining electrons.

We discuss the “collisional” regime and the “collision-
less” one. In the first one, the electrons which have not
evaporated thermalize at a temperatureT, which turns out to
be a decreasing function of time. In the second regime, no
thermalization occurs, and the evaporation causes a progres-
sive depletion in the high-energy tail of the electron distribu-
tion function, which remains isotropic in velocity space.

In what follows, lengths will be measured in units of the
initial Debye lengthld=sT0/4pn0e

2d1/2, with e the absolute
value of the electronic charge, timet in units of vpe

−1

=s4pe2n0/med−1/2, with me the electron mass, energies in
units of the initial electron temperatureT0, velocities in units
of the initial electron thermal speedvth,0=ÎT0/me, mass in
units of the electron mass, and particle numbers in units of
N0. Since inside the ion core the electron density is taken to
be uniform, with the adopted normalization the normalized
electron densityne and the normalized total number of elec-
tronsNe are numerically equal.

A. Collisional regime

If the electrons inside the ion core are rethermalized by
collisions, their velocity distribution function remains Max-
wellian and their time-dependent kinetic energy is given by
Uk=3NeT/2. The electron evaporation rate is obtained by
calculating the flux of electrons with positive total energy
through the core surface. Defining the time-dependent quan-
tity fT=eFR/T=s1−NedR2/3T, with FR the electrostatic po-
tential at the ion core surface, the positive total energy con-
dition corresponds tov2/2TùfT. Thus we obtain

dNe

dt
= −

3
Î2p

s1 + fTd
t

e−fTNe, s2d

wheret=R/ÎT is the electron crossing time inside the ion
core. Analogously, the energy fluxFU of the evaporating

particle can be computed by noting that each evaporating
electron carries away the residual energyv2/2T−fT. Then
we obtain

FU =
3

Î2p

s2 + fTd
t

e−fTNeT. s3d

The total energy of the system can be written asU
=3NeT/2+UF, whereUF is the electrostatic energy of the
charged configuration which increases as the electrons
evaporate as

dUF

dt
= −

2

5
R2s1 − Ned

dNe

dt
. s4d

Thus, from the total energy balance we obtain for the time
change of the kinetic energy of the system

ds3NeT/2d
dt

= −
3

Î2p

s2 + fTd
t

e−fTNeT +
2

5
R2s1 − Ned

dNe

dt
,

s5d

which, coupled to Eq.s2d, gives the time evolution of the
temperatureT.

B. Collisionless regime

If, on the contrary, we assume that plasma electrons inside
the ion core are not significantly affected by collisions, their
distribution function becomes non-Maxwellian. We assume
that the electron distribution remains homogeneous in coor-
dinate space and isotropic in velocity space. Thus, denoting
by NE the time-dependent number of electrons with kinetic
energysnormalized on the initial temperatureT0d in the in-
terval fE ,E+dEg, and introducing the time-dependent quan-
tity f0=eFR= 1

3s1−NedR2, which differs fromfT in the pre-
vious section by the normalized temperature factor 1/T, we
obtain

dNE
dt

= −
3

2Î2

ÎE
R

usE − f0dNE. s6d

This implies that the evaporation of the electron population
with energyE stops at a well defined timet= tE, wheretE is
such thatE=f0stEd. Therefore,

NE = NEs0de−t/td for t ø tE = NEs0de−tE/td for t . tE
s7d

with td=s2RÎ2/3ÎEd the E-dependent decay time andNEs0d
the electron kinetic energy distribution at the initial timet
=0. We assume the electron velocities at timet=0 to be
Maxwellian distributed, hence the initial electron kinetic en-
ergy distributionNEs0d is given by

NEs0d = NE,0 =
2

Îp
e−EÎE. s8d

The electron numberNe, and thereforef0, can thus be cal-
culated performing numerically, at fixedt, the integralNe
=edENE. Note that in this collisionless model, a rough esti-
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mate of the asymptotic electron number could be obtained by
approximating the final electron distribution function with
the initial one forE,E* , and with zero forE.E* . We can
then determine the cutoff energyE* self-consistently by
equating its value to the electrostatic energy of the configu-
ration with chargeQsE*d=eE*

` NEs0ddE,

E* = fQsE*dR2/3g. s9d

C. Discussion of the analytical models

Numerical integration of Eqs.s2d ands8d shows that both
in the collisionless and in the collisional regime the electron
evaporation rate is significantly reduced from its initial value
when the quantitiesfT, f0 become of order unity. This
means that, in the collisional regime, the evaporation nearly
stops when the electron electrostatic energy, which is an in-
creasing function of time, is of the order of the electron
temperature which decreases with time. In the collisionless
case, the electron evaporation is significant only until the
electron electrostatic energy is of the order of the initial av-
erage electron kinetic energy.

The initial evaporation rate, which is obviously the same
in both the collisional and in the collisionless case, is ob-
tained from either Eq.s2d or Eq. s6d, which give

UdNe

dt
U

t=0
= −

3
Î2p

1

R
. s10d

A linear approximation ofNe is feasible as long ast! t* , t̃,
where

t* = Î2pR/3 s11d

is the initial characteristic evaporation time andt̃ is defined
in the two different collisionality regimes by either the con-
dition fTut̃,1 or f0ut̃,1 and which can be roughly evalu-
ated as

t̃ = 3t* /R2. s12d

Therefore, ift* , t̃, i.e., for ion core radii satisfyingRøÎ3,
the charging process continues until almost complete deple-
tion of the electron population.

Finally, we note that the time-dependent electron energy
distribution predicted in the collisionless regime is highly
nonthermal. The fact that the electron evaporation only oc-
curs for those particles with kinetic energyE satisfying E
ùf0ut causes a depletion of the high-energy tail of the elec-
tron distribution function, as will be examined in detail in
Sec. III.

III. PIC SIMULATIONS AND COMPARISON WITH THE
ANALYTICAL RESULTS

Our PIC simulations are initialized with the electron and
ion density profilesne, ni given by Eq.s1d. The initial elec-
tron distribution function is Maxwellian with temperatureT0.
At time t=0, the electrons are allowed to move. During their
expansion, the electrons that reach the border of the simula-
tion box with positive total energy are removed. Therefore,

as the total number of electrons decreases with time, the
plasma acquires a net positive charge and an electrostatic
potential sets up. Finally, a stationary state is reached where
no more electrons reach the boundary. We denote by
N` , n` , E` , NE,` the electron number, the electron density,
the electric field profile, and the electron kinetic energy dis-
tribution once SSC has been reachedf58g. As expected, our
simulations show that these quantities depend on the ion core
radiusR.

The results regarding the profile of both the electric field
E` and of the electron densityn` for two different ion
plasma radiiR are presented in Fig. 1. As one can see in Fig.
1sbd, the electrons which are outside the ion sphere are con-
fined in a region whose width is of the order of a few Debye
lengths.

The numerical results regarding the electron kinetic en-
ergy distribution in the stationary state are presented in Fig.
2. In the figure, the ratioNE,` /NE,0 is shown versus the elec-
tron kinetic energyE in semilogarithmic scale, for several
values of the ion plasma radiusR. These results show that
the electron kinetic energy distribution is highly nonthermal.
It exhibits a cut in its high-energy tail, and the cutoff energy
increases with the ion plasma radiusR.

FIG. 1. Spatial profile of the electric fieldE` fpanel sadg and
electron densityn` fpanel sbdg for R=10 ssolid lined and R=40
sdashed lined. For comparison they are plotted together with the
profile that would be obtained in the semi-infinite casesdotted linesd
f6g. The straight line in panelsad corresponds to the maximum value
of the electric field in the semi-infinite case, i.e.,E=Î2/e.
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Regarding the comparison with the semi-infinite, planar
case, our results show that both the electric field and the
electron density are very similar to those presented inf6g
only as long as the ion core radius is greater than several tens
of Debye lengths. Since, contrary to a one-dimensional con-
figuration, in the case of a three-dimensional configuration
the energy required for the electrons to evaporate is finite,
the differences observed are mainly due to the cutoff in the
electron high-energy tail. Such a cutoff is responsible for the
electron density depletion observed outside the ion corefsee
Fig. 1sbdg and, consequently, for the corresponding electric
field profile. As shown in Fig. 1sad, in the limit R@1 the
value of the dimensionless electric field at the surface of the
ion core is almost independent ofR, thus the net dimension-
less charge confined within the ion core scales approximately
as 1/R.

The comparison between the charge valueQ`=1−N` ob-
tained numerically and that predicted analytically is shown
in Fig. 3 for different values of the ion core radiusR. Note
that the value ofQ` obtained numerically includes all SSC
electrons, i.e., the electrons inside the ionic sphere and those
in the surrounding halo. It is seen that the agreement among
the numerical results and the values obtained in the collision-

less regime is very good in the whole range 5-40. With re-
gard to the thermal model adopted for the collisional regime,
we remark that for small radii it predicts a moderately larger
value ofQ`, but the two different regimes lead to very close
valuesQ` in the case of large radii.

Our results indicate that collisions can affect the
charging-up process only for small ion core radii. This result
can be explained by noting that the potential due to the elec-
tron expansion scales asR2. Thus, as the potential barrier
increases, the fraction of the electron population that, be-
cause of Coulomb collisions, reaches a positive total energy
and can thus leave the ion core decreases. However, the col-
lisional thermalization of the distribution function assumed
in Sec. II A can only be expected to apply when the ion core
radius is much larger than the electron mean free path,
whereas in most plasma conditions the mean free path due to
Coulomb collisions is much greater than the Debye length.

It is worth noting that a precise fit of the numerically
obtained plasma charge state is given by the following Padé
approximation:

Q` .
1 + aR

1 + bR+ cR2 , s13d

with a=5.6310−3, b=1.4310−1, andc=5.5310−2.
With regard to the high tail of the electron kinetic energy

distribution, we define the cutoff energyEcut as the energy
satisfying the relationsNE,` /NE,0duE=Ecut

=10−1. The analytical
and numerical results obtained forEcut are shown in Fig. 4
for different values of the ion core radiusR. Taking into
account these results, we remark that the collisionless model,
although not capable of reproducing the fine details of the
whole electron kinetic energy distribution observed in the
simulations, nevertheless predicts the cut in the distribution
high-energy tail with great accuracy.

IV. CONCLUSIONS

In this paper, we have investigated the charging-up pro-
cess of a spherically symmetric plasma configuration in
vacuum in the limit of immobile ions. Two different simpli-

FIG. 2. Behavior of the ratio between the final and the initial
electron kinetic energy distributions for different ion plasma radii.

FIG. 3. Comparison between the stationary state value of the
dimensionless charge inside the ion core predicted by the collisional
model strianglesd, the collisionless modelssquaresd, the PIC simu-
lations sstarsd, and the numerical solution of Eq.s9d ssolid lined. A
magnification of the region 15,R,45 is also shown in the figure.

FIG. 4. Comparison between the cutoff energyEcut as a function
of the ion core radiusR predicted by the collisionless model
ssquaresd and by the PIC simulationssstarsd.
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fied models have been presented. With the help of these
models, we have established scaling laws relating the steady-
state total charge and electron energy distribution on the ra-
dius of the ion core, normalized in terms of the initial elec-
tron Debye length. These scalings have been validated by
means of spherical one-dimensional PIC simulations. The
agreement we find is overall very good.

Charged plasma configurations such as those investigated
in this paper occur naturally in the interaction of ultraintense
laser pulses with matter and are of interest, e.g., for setting
the initial conditions in the study of Coulomb explosions and
ion acceleration from small clusters irradiated by ultraintense
laser pulses.

In particular, regarding the problem of cluster expansion,
the analytical and numerical results that we have presented

show that a spherically symmetric configuration of cold ions
and hot electrons, which is the typical starting configuration
in cluster expansion experiments, does not evolve towards a
neutral configuration, in contrast with the one-dimensional
planar case. This charging-up effect can strongly modify the
maximum energy that the ions can gain and the typical time
scale on which their acceleration occurs.
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