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Criticality in a Vlasov-Poisson system: A fermioniclike universality class
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A model Vlasov-Poisson system is simulated close to the point of marginal stability, thus assuming only the
wave-particle resonant interactions are responsible for saturation, and shown to obey the power-law scaling of
a second-order phase transition. The set of critical exponents analogous to those of the Ising universality class
is calculated and shown to obey the Widom and Rushbrooke scaling and Josephson’s hyperscaling relations at
the formal dimensionalityd=5 below the critical point at nonzero order parameter. However, the two-point
correlation function does not correspond to the propagator of Euclidean quantum field theory, which is the
Gaussian model for the Ising universality class. Instead, it corresponds to the propagator for the fermionic
vector field and to the upper critical dimensionaldy=2. This suggests criticality of collisionless Vlasov-
Poisson systems corresponds to a universality class analogous to that of critical phenomena of a fermionic
guantum field description.
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I. INTRODUCTION [7], also described by the same scaling between the saturated
amplitude and the growth rate, has the mean-field critical
The remarkable property of critical phenomena is the uniexponentg=1/2.
versal scaling appearing in a vast variety of systems; e.g., An analysis[8] assuming thermalization in a Vlasov-
magnets and gases follow simple power laws for the ordepoisson plasma or gravitating system leads to a critical ex-
parameter, specific heat capacity, susceptibility, compresgonent3< 1, and the exponeg=1/2 hasalso been hypoth-
ibility, etc. [1]. In thermodynamic systems, phase transitionsesized for the bump-on-tail instability in Ré®]. However,
take place at a critical temperatufg when the coefficients  detailed center-manifold analysis, which establishes the nor-
that characterize the linear response of the system to externgjal form for a weakly unstable perturbation in a one-
perturbationgliverge Then, long-range order appears, caus-component collisionless Vlasov-Poisson system, configms
ing a transition to a new phase due to collective behavior o£2 [10]. The exponen3=2 is also confirmed numerically

the entire systerh2]. [11,12.
The condition for nonlinear saturation in the test case of The Striking discrepancy between these exponents can be
the bump-on-tail instability in plasmds8] is better understood if we consider the structure of the phase
space corresponding to these cases. The expoiisnig 2
wp = 3.2y, (1) [7] andB<1[8] correspond either to saturation of a strongly

dissipativeinstability or to a thermalized system. In both
these cases the distribution function can be factorized as
f(q,p)=y(g)g(p), whereg(p) can be assumed to be Gauss-
ian, and the system is described by its momenta. The expo-
ent =2 corresponds to saturation due to nonlinear wave-
Qarticle interactions in a weakly unstableollisionless
System, where correlations between coordinates and im-
ulses are not destroyed by dissipative processes, so the de-

[4,5], wherewy, is the linear growth rate of a weakly unstable
Langmuir wave according to the Landau thef8y, and w,
=(eEKm)¥? is the frequency of oscillations for particles
trapped by the wave. These trapped particles generate a lon
range order of the wavelengty the saturated amplitude
can be considered as the order parameter, and the conditi
2;532&:32 rCSrT at;(ea i’re;nstittieg rEgi i\fi)ower law, typical for th scription cannot be reduced to moments of the distribution.

However, unlike thermodynamics this scaling contains ther o '\r/lé)sreenf,; rdmg"yégc?;?é);t'gfe gg%gi\ge&mﬁgggﬁﬁiﬁ?ﬂ'S
nonthermal control parameter, which is determined by the fur[iction f(x 3,[’) which depends onlv on the coordinat
slope of the distribution functionfy/dv at the phase speed %y b Y £

v;=wpe/k of the perturbation near the electron plasma fre-tht i‘Ot (i”dthe _veloi:ity;, '\I/':.{p’U'T(i’ vi\]/herep, v, andT are
quenty wp. [For thermodynamic systems like magnets, € local density, the velocity, and the temperature, respec-

for which the magnetizatiotM below the Curie poinfT,, tively. The evolutiori is a ﬂqV\gt which mapsM onto itself,
) . 0: M—M. In fact, in a neighborhood of the threshoig
is the order parameter, the scaling M«e?, where

; . e =0 the evolutiong;: M—M can be reduced to a normal
e=(T,,—T)/T, at T<T,.] Another difference is the critical form. which mapsgct)nly the order parametgir, n— n, where
exponent itself—relationl) predicts the very unusual expo- G ' !

- . : " n=RO (or €O whereC is the set of complex numbegysand
nent$=2; in contrast, the hydrodynamic Hopf bifurcation therefore the evolution is &ajectory n=n(t), or in other

words the setY=R*XxR®. The phase space of a one-
dimensional collisionless system iscantinuousset H=R
*Electronic address: ivanov@physics.usyd.edu.au XR and evolution can be represented as the flay
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H— H. (For periodic boundary conditions the phase space isritical dimensionsd.=4 for the Ising universality clag48]
isomorphic to a cylinde€=T X R, whereT is isomorphicto andd=6 for percolation.
a circle) The setsn andH (or C) have differentdimension- For a collisionless gravitating system, where the satura-
ality, and therefore renormalization of collisionless system intion mechanism is the same as for the bump-on-tail instabil-
a vicinity of threshold—i.e., transformation of the $¢tand ity in plasmas, the critical exponegt=1.907+0.006, and the
the mappingv—involves one or more additional dimension. critical exponentsy=1.075+0.05,6=1.544+0.002 can be
Further, it is shown below that scaling transformations closaletermined analogously to thermodynamics and calculated
to the threshold are inter-related with the additional velocityfrom the response to an external pupdf]. These exponents
coordinate, which disappears in hydrodynamic descriptiorare very different from the thermodynamic set, but neverthe-
because of integration of the distribution functiix,v,t) less satisfy the Widom equality, thus suggesting the validity
overu. of scaling laws. Josephson’s law also holds, but at a rather
From the theory of critical phenomena it is known that surprising dimensionality which is the fractal ords=4.68
dimensionalityd is an inseparable part of the threshold [19]. At the same time, the processes resultinggis 1.9
description—along with the critical exponents.g., Ref. differ qualitatively from those resulting in3=2, similar to
[13]). BesidesB, other critical exponentsy, v, 8, v, and 7, thermodynamics where spatial fluctuations of the order pa-
describe the following scalings of the Ising universality rameter, neglected in mean-field theories, resuj#0.33,

class: therefore suggesting other universality classes were not com-
(i) the specific heat capacity scales as pletely ruled out. These could be the wave-wave interactions,
responsible for the strong turbulence in plagi@@]), which
- x o | |- are next in dynamical importance and have fewer degrees of
C e 2
dT freedom[21].

In this paper, we use numerical simulations to study the

(i) the susceptibility as threshold scalings in a weakly unstable collisionless Vlasov-

M _ Poisson system. Depending on the sign of the Poisson equa-
X= (E) o [ ) tion, this set of equations describes either a plasma system or
B0 a gravitating system. The saturation mechanism in a colli-
(iii) the responséM at e=0 as sionless gravitating system is the same as for the bump-on-
1s. tail instability in plasmas, and threshold corresponds to the
M e B 4 condition v, =0 in both cases. We show in Sec. Il that the
(iv) the correlation length as eigenfrequency contains only an imaginary part, and there-
fore is the simplest model to study the threshold. Section Il
¢~ €™ and (5 describes the results of computations of the critical expo-

nents and demonstrates that the scaling laws describing satu-
ration are the same for plasma and gravitation. Section IV
et addresses the scaling transformations of the phase space and
G(r) ~ pd-2+n° (6) the scaling law, which appears as a result of this symmetry.
The exponent which describes correlations are obtained in
These exponents are not independent, but are inter-relat&kc. V, where Fisher’s equality=1(2-17) is also proved. In
via scaling laws, e.g., the Widom equality Sec. VI we show that the criticality in the system is de-
- _ scribed by the Dirac propagator for a fermionic field. We
y=h6-1) ™ obtain h i iti imen-
yperscaling laws and calculate upper critical dimen
[14]. These scaling laws also inclutigperscalingaws such  sionalities in Sec. VII.
as Josephson’s law

(v) the two-point correlation function as

II. BASIC EQUATIONS

vd=2-« (8)
[15], which involves the dimensionalitd along with the The e|g¢nfrequenC|es and eigenvectors .of oscllllatlons ina
exponents. Vlasov-Poisson system are given by the dispersion relation
For thermodynamics the mean-field exponents are of the elw(k),k]=0, ©)

Landau-Weiss sety=0, B=1/2, y=1, 6=3, v=1/2, andy ) o _ ) o

=0, and the scaling laws hold at the formal dimensionalityVhere & is the permittivity (dielectric permittivity in the
d=4. However, the possibilities of critical phenomena arePlasma case The boundary between stable and unstable
not exhausted by the Ising universality class—the percolac@ses is determined by the condition

tion critica_ll exponentdy 16], which. describe another.vast Im[&(e,k)] = 0 (10)
class of critical phenomena, are different from those in ther-

modynamics, and scaling laws hold at a different dimensionf22]. For the bump-on-tail instability conditiof10) simpli-
ality. In particular, for the Bethe latticer Cayley tre¢[17]  fies toy, =Im(w)=0, and criticality is related to the zero of
Josephson’s law holds at dimensionaldy 6. Despite the the imaginary part of the eigenfrequency. Therefore, we can
description being the same, this difference separates themploy a model which does not contain the real part; i.e.,
cases into differentiniversality classesvith differentupper Rew)=0. The simplest is the one-dimensional self-
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gravitating Vlasov-Poisson model, which is described by the For a Maxwellian distribution

equations L )2
of ot oD of fov) == eer(— —) (21)
T (11) 27 20°

the dispersion relation is

PD f ” 1a5(m) dzZ(0)
— = f(xv,t)dv-1, (12 b A A4 -
P 3 v,t)dv 1+2 2 a - 0, (22)

where f(x,v,t) is the distribution function, andb is the |\ herez is the plasma dispersion functi¢@e], §m=2m/\e"§,
gravitational potential. Boundary conditions are assumed tg_=, /(k. o), ando is velocity dispersion. In Eq22)
be periodic in thex direction and all quantities are dimen-

sionless.

Equationg(11) and(12) describe the mean-field evolution
of a self-gravitating model immersed in a homogeneous re- N o )
pulsive background. Analogous repulsion terms appear ii§ the critical(Jeang velocity dispersion for the modw, and
some cosmological simulatiofig3] as a result of the expan- Pg iS the background density. For smalt|<1 [ie.,
sion of the universe. Models of rotating stellar systems likeo™/ o5(m) < 1], the dispersion relation reads

1 1
Uﬁ(m) = 2 = et (23
m

disk galaxies provide other examples—*“repulsion” appears 2
as a result of the centrifugal force in the local rest frame e(wmKy) = 1-ﬁ‘<1+i \/Eﬂ) =0, (24)
(e.g., Ref.[24]). The system(11) and (12) could thus be o? 2kno
considered as an idealized model of the galactic corotatioBr
region where a nonaxisymmetric perturbation is responsible
for visible spiral structure, and stars orbit with the same an- 2 o - oﬁ(m)
gular speede.g., Ref.[25]), and only angular motions are Om="1 ;km‘f W ' (29
allowed. J
For the eigenfunctions which is remarkably simpler than in the plasma case, where
w the bump-on-tail instability and Landau damping appear due
_ ; to the wave-patrticle resonance at the phase velocity of the
X —mgwxmexp(lkmx), (13 wave vn=wp/ K. The frequency spectrum in the case of
gravitation does not contain a real part, so the resonance
where occurs ab =0; i.e., in the main body of the particle distribu-
X = [f(x,0,0),0x 0], (14)  tion. For allm, o%(m)>o5(m+1); thus, if we write o5(1)
=02, the distance from the instability threshold is
Xm= (0,0, @], (15) =
are the spatial Fourier components, the supersdriptands o= U(Z:r ' (26)
for transposek,,=27m/L is the wave vector, ant is the ) _
system length, we find analogously toe=(T-T,)/T,. Using(25) and(26), the lin-
. . ear damping or growth ratg_can be written as
fo+ikppfnti > if ™0 (16) 2
m=m’ +m'’ K J o w n=Im(wy) =- ;9- (27)

or, explicitly for the components1={0,1,2 and forL=27x Time is measured in units of the inverse|gf|, t' =t|y|.

: J
fo + ié,_(plf—l - p—lfl) = 0, (17) IIl. RESULTS
v

Dispersion relatior(25) shows that there are no unstable
. 9 1 modes above the thresholef,, o°> o2, and therefore the
fy+ivfy + i(9_<Plf0+ EPZf—l_ P—1f2> =0, (18  system remains invariant with respect to translatighs:x
v +7, where 7 is any number. Below the threshold the mode
m=1 becomes unstable, and therefore toatinuoussym-
P a1 . -
fo+i2vf,+ |—<—p2f0+p1fl> =0, (190  metry breaks and reduces to a lowdscreteone with re-
v \2 spect to translations’ — x+L. Therefore o2, can be consid-
ered as the critical point of a second-order phase transition,

h
where and the amplitude of the moden=1 as the order
” arameter—following the definition of Land&a].
e R @0 P 0 l
- A. Order parameter scaling
is the Fourier component of density, ahd =f;. Equations(11) and (12) with initial distribution
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FIG. 1. Amplitudes of the first four harmonics)=1,2,3,4, at
6=-0.04. Quantities are dimensionless.

_ FIG. 3. Distribution function(surface and its isocontourgdlines
f(x,0,0) = fo(v)[1 +Ag cokx)], (28) in thex-v plang in configuration space at the moment of saturation

_ ) _ t=ts,+ Quantities are dimensionless.
were integrated numerically using the Cheng-Knorr method

[27]. The amplitudesA,(t)=|py(t)| for m=1,2,3,4 are
shown in Fig. 1. The perturbatiom=1 grows exponentially |
with the growth rate predicted by dispersion relati@b).
Then, the growth saturates at some montert},, at the am-
plitude A=A (tsap - v2

Figure 1 also shows th@xponential growth of perturba- >+ AsaCogkiX) < Asay (30
tions with m>1, while (25 predicts exponential damping
for these modes. This growth occurs because of nonlineaseparatrix, as predicted for the bump-on-tail instability
coupling between modes in E(L6). For instance, since the [28,29. Outside this area the Fourier componéfiv,t) re-
term p,f,; dominates over the termyfy in Eq. (19) initially, mains modulated by the background Maxwellian distribution
when f,<f; and therefore for the mode=2, one hasy, as assumed dt0, and the components witin>1 remain
=2w, for the growth rateys,. negligible[19], so the dynamically important area lieswat

Figure 2 shows thahg,is independent o, for smallAg, < |vsed, Wherevge=+2VAg,, The width of the dynamically
but there exists some threshold value of the initial perturbaimportant area must be small comparedstaat maximum
tion Ag when it becomes dependent @g. This threshold amplitude(i.e., Asy vsep< o), Otherwise the background dis-
amplitude Ay, corresponds to the trapping frequeney,  tribution will be altered by evolution.
=\VAp = w1. At wp,=w; the processes due to trapping be- Assuming the above two criterid, is calculated as a
come as important as the resonance between wave and pé&unction of  and plotted in Fig. 4. From Fig. 4 we see that
ticles responsible for the linear Landau dampioggrowth  this dependence can be approximated by the power law
in collisionless media. Therefore, to rule out the influence of

The distribution functiorf(x,v,t) is plotted in Fig. 3 as a
rface at the momenttg,, Note that the distribution func-
tion f(x,v,t) becomes flat in the part of thev domain

trapping processes on linear growth the amplitdgemust Asar (= 0), (31
be small to provide while 8=1.9950+0.0034 fop< 0. Rewritten in terms of the
bounce frequencyw, and the linear growth rate,, the
wp < 7. (290 power law(31) becomes
il T T T T 102 ey . ———r . —
- /.,’
/,I
3L e 4
10 s
B /’/ ]
S0
,/.//
5 s -
10 o
10 by N M=
103 102 10"
-0
FIG. 2. The saturated amplitud, vs Ag for 6=-0.05. Circles FIG. 4. Amplitude As;; as a function ofd. Circles represent
are calculated values, the curve is a spline approximation. Quantealculated data; the dashed line is the power-law best fit. Quantities
ties are dimensionless. are dimensionless.
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FIG. 6. Asy as a function ofF;. Circles represent numerical

. . data; the dashed i th -l best fit. titi
FIG. 5. Plot of y vs |4]. Circles (¢>0) and triangles(#<0) dEnaensignlezss ed lines are the power-law best fit. Quantities are

represent numerical data; the dashed lines are the power-law bes
fits. Quantities are dimensionless.

2 2
Hio= S|V g+ igl2e (22 (30
wp=CYyL, (32) 2 2 4!
and the coefficient=3.22+0.01. These values are almostlwhere ¢ is the order parameter and®~(T-T.)/T.],
identical to=2, and to the coefficient 3.2 in relatigfh) as  Which describes the Ising universality class, and the equation
predicted and calculated for the bump-on-tail instability 1
[10,12,29. y= y{ Nyt O(y“)} , (37)
Ay
B. Response scaling which describes the amplitude of a weakly unstable pertur-
Subjecting the system to an external pump of the formbation in a one-species Vlasov-Poisson sysitg@). Accord-
F(x)=F,cogkx+¢) allows one to calculate the other two ing to (37) the maximum amplitudg, at y=0 scales with

critical exponents,y and &, which describe the response Y. aSYsa= - _ _
properties. The index describes the divergence of the sus- On the assumption that the system responds linearly to an

ceptibility, which can be written as external pumplF, one can obtain the respondg,,;to JF as
ool 0 3y;
x(6) = M ) (33 YL sat™ s;?t‘?ysat"' dF=0. (38)
(9F1 F,—0 4’)/L
for m=1. The results are shown by trianglég<0) and However, Eq.(37) is not valid aty, <0 since it predicts
circles (> 0) in Fig. 5. unlimited growth instead of damping in this case. At small

f initial perturbationy, the correct evolution is given by the

Computation ofy at somef requires at least five values of . o o
linear equatiory=1y,y, and the susceptibility

Az corresponding to the giveR,. At the same timel-; must

be small enough to avoid the effects Af,; depending non- Neat
linearly onF,. Again, it requires extensive calculation of all x(n) = o (39
guantities to high accuracy. In both casg®) is approxi-
mated by is

X |67, (34) x+=C=y)™ (40)
and y_=1.028+0.025 ford<0, v,=1.033+0.016 fory>0, and aty >0
giving y-= y,=vy=1. These exponents are very close to the Y= 27{1' (41)

corresponding results for Ref19], becausey is the only
linear coefficient, and this is common to both wave-particle At the critical point =0 (or 1, =0) the response is de-
and wave-wave interactions. scribed by another critical exponeéit

The exponenty is the same as for the mean-field thermo- A FUo (42)
dynamic models but, opposite to thermodynamics, the re- atm 1o
sponse istrongerat <0 than at9>0, as Fig. 5 shows. The The results of simulation are plotted in Fig. 6, givirg
susceptibilities are =1.503+0.005. This exponent cannot be obtained by the pre-

= 2x.. (35) \;;I'[O'}L/]S:S()Imple assumption froif87) because of its singularity
.=0.

This difference, as well as the appearance of scdllhg@nd
(32 with B=2 instead of3=1/2, can beexplained if one
takes into account the difference between the Landau- The remarkable property of the critical exponemsg,
Ginzburg Hamiltonian and § is that they satisfy the Widom equality) [14] with

IV. SCALING LAWS AND SYMMETRIES OF THE MODEL
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high accuracy. In thermodynamics the Widom equality is agrowth of an unstable perturbation due to the resonant wave-
consequence of the scaling of the Gibbs free energy undgrarticle interaction and the subsequent nonlinear saturation
the transformation of this process due to particle trapping—are inter-related.
a. AR — While there is no thermodynamic equilibrium in the col-
B(\€,\8B) =\ (€,B), (43) lisionless system considered here, one can define the quantity
from which it can be derived straightforwardly]. The func-  Which describes the response of the system to external ther-
tions which comply with the conditiof43) are calledgen- ~ Mal perturbation, just as the specific heat capacity describes
eralized homogeneous functigrend the condition itself is the response of a thermodynamic system to heat trarGfer,

termed ahomogeneitycondition. =0Q/dT. For the case considered here

The nature of this scaling for the marginally stable 50 dv
Vlasov-Poisson system is clear from Fig. 3, where the distri- =—=— (50)
bution functionf(x,v,t) is plotted at the momerit=t.,, The do  df

remarkable property of the critical dynamics is the topologi-whereV is the potential energy of the system. To calculate
cal equivalence of the phase portraits for differéntat the the specific heat capacity,, corresponding td\. is used.
moments of saturatioty andt, corresponding t@; and 6, The critical exponentx can be calculated straightforwardly
we can write from (50) and (31). Because perturbatioma>1 are negli-
gible for || <1, Veu* Aqq@sa Where dg,=—Agy; i.€., Veur

ay =

f(X, A%, 61,t7) = M (X0, 04,1, (44) «—(=0)%, §<0. and the heat capacity 1S given by

or
Cax=-(-07" (52)

fm()\al)v, 911tl) = )\fm(va 021t2)7 (45) Where
for the Fourier component. Transformation betwegné; _
andt,, 6, can be written a$’ — \%t, 8’ — \%6, so a=-(28-1). (52)

£ (N A0, \00) = Mo(L,0, 6). (46) The scaling lam(52) can be proven using the homogeneity

condition (47) (Appendix A). The critical exponentx does
A weak external pump in the forrR(x)=F; cogk;x+¢)  not depend on the sign of Poisson’s equation, and the result

creates a similar topology in the phase space because of tieethe same for the plasma case.
same mechanism of the saturation, and adds an additional Unlike thermodynamics, where the relation between ex-
variable to the distribution function. The transformation canponentsg, v, and « is given by Rushbrooke’s equality
be written asF; — \%:F,. Finally, for f =f.(t,v,6,F;) we  +28+y=2, the scaling law52) does not contain the critical
can write the homogeneity condition as exponent y. Nevertheless, the set of critical exponents

FOE N NSONFEL) = N (Lo, O,F ). 47) a=-2.990+0.006, 8=1.995+0.003, andy=1.031+0.021

satisfy Rushbrooke’s equality with high accuracy.
The critical exponent$, y, and  can be expressed via
the scaling exponent, a,, andag, from which the Widom
equality for the Vlasov-Poisson system can be proved di-

rectly (Appendix A\. They also provide a deep insight into  The correlation function of fluctuations for the field
symmetry properties of the system. According to expression

V. CORRELATION EXPONENTS

oD
A4 E=-2", (53)
_1+a, x
B= a, ' can be found from the fluctuation-dissipation theof&] as
rescaling the parameter éf(or growth ratg also rescales the (D)., = T Imle(wk)] (54)
distribution functionf(t,v,X) in the v direction. This situa- K™ 5w |e|? !

tion differs significantly from thermodynamics, where L i
[32], where the permittivitye is given by(24). Relation(54)

_1-ag 48 can be integrated using the Kramers-Kronig dispersion rela-
B= a, (48) tions, and in the static limitv— 0 (54) becomes
This expression rescales the normalized distance from the (E?), = 4mo? : 1 (55)
critical point with external fieldB. km ™ MoK e(0,ky) |’

SubstitutingA,; according to the power la81) for the i i i
order parameter to2, =4A. (-6)F, one can obtain(as- wherekg is the Boltzmann constant am, is the particle
suminga, = 1) sep mass. This equation can be rewritten as

e (- 05, (49 (=TT (56
from which the scaling exponent & =1 for =2 (a,=4 for Mpke fim
B=1/2). Remarkably, the two different processes—the lineawhere
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o - o%(m) gous to thermodynamic systems where the correlation length
= (57) is the only relevant scale near the critical pointeas 0.
To demonstrate that the criticality in the Vlasov-Poisson
The susceptibilityy can be written in terms o(fE2>k1 as system belongs to a different class, let us compare the critical
exponents corresponding to the Jeans instability in a self-
X =B = 67, (58)  gravitatinghydrodynamicakystem[30], using the same ap-
proach. The dispersion relation for this system is

()

y=1. The combination ot and w; gives the characteristic

length for the system from the dispersion relati@s) why = c2ke ~ 4mGpy, (65
o or
g=2m 59 o = (-2, (66
or, in terms of6 wherec?=47Gp/K, is the critical velocity of sound, corre-

i 2 _ P H i 2_-2
sponding tow:,=0. As for the kinetic case it?>cs=c,

there are no unstable modes, and the correlation length is
as 6—0. Therefore, the critical exponent that characterizes

the correlation length is=1. The correlation functiOI(E2>k1 &=
can be rewritten in terms d;=¢" Las

(B, > K7, (61)

Eocd, (60)

27Cg _ 10-1/2

, 67
w1 kl f ( )
where 6;=(c2-c2)/cZ is the reduced sound velocity in a
fluid. Here, we have the mean-field exponept1/2.

where 7 is another critical exponent which characterizes the Assumingm=1 and dividing both sides of the dispersion
correlation function. On the other hand, usif@f) one can relation(66) by cg, one can obtain the correlation function as

rewrite this expression as k? -1
G (k0 =(—“—0> : 68
(EDy, = 077577, (62) h (Kg, 06) e (68)
and, taking into accour(68) This is the propagator of Euclidean theory or of the scalar
gy~ gz 63) boson field[13], from which the Landau mean-field theory

follows automatically.

from which finally we obtain the equality On the other hand, dispersion relati@b) for the colli-
sionless case gives

y=12-17). (64) 5k 1
The last equality is known as Fisher’s equality and gives the G@ (ks 0) = (i \/iki - 9) . (69)
last critical exponenty=1. ™
For collisionless systems the propagator thus corresponds to
the vectorfermionicfield and describes different class of
VI. RELATION WITH OTHER UNIVERSALITY CLASSES critical phenomena. In the language of quantum field theory

. . . .. the parameter#; and # are bare massesSince
The correlation function56) looks rather counterintui- P B 0

tive, since atf,,>0 (damping waves one has<E2>km< 0,
and the noise ismaginary. Nevertheless, this unusual situa-
tion has an analog—for particle-particle annihilation reac- i
tions of the typeY+Y — 0 (corresponds to equatian/dt=  rom (68) and (69) one can obtainy=0 for the case of hy-
—arn,a>0), Y— 0 (dn/dt=—an) the correlation function is drodynamics andy=1 for collisionless system.

also negative because afiticorrelationof particles[33]. In VII. HYPERSCALING LAWS

the casef,,>0 the amplitudeA,—0 ast—0. It is also

shown that the criticality due to these annihilation processes The approach assumed in the previous section allows us
belongs to a certain universality class which is different from(© establish the hyperscaling law for the Vlasov-Poisson sys-

the Ising universality clasg33,34 and therefore is not de- tem which involves the dimensionality along with critical

scribed by the Landau-Ginzburg Hamiltonié36). exponents like Jo;ephson’s I8). Using propagato(6_9),
Another unusual quantity is the correlation lengtiand ~ Which is the potential energy, the specific heat capCity

the wave vectok,=& %, whose use allows us to establish the d-dimensional space @— 0 can be obtained as

validity of Fisher’'s equality for the collisionless system, 9

studied here. It is not related to the size of the systebut C~ %I d%.G?(k, 6), (71)

to thefluctuationsin the system which determine an average

path of correlated motion of particle in presence of thesavhich gives

fluctuations. As the system approaches the threshold, fluctua- C o g2 (72)

tions become correlated since the characteristic time of cor- ‘

relationsw '~ ¢ diverges ag)— 0. This behavior is analo- With relation (60) and(72) becomes

1
G@(k,0) = F?, (70)
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Co gV2d (73) Poisson model acts on the distribution function containing
o . . the additional dimension of velocity.
Taking into account the scaling las1) for the specific heat We have calculated numerically the critical exponents
capacityC, one can obtain the hyperscaling relation whichyhich describe the critical state of the model, and established
inter-relates the exponenis », and the dimensionality analytically that these exponents and the dimensionality are
a=u2-d). (74) int_er-related by the scaling and hyperscaling laws like thg
_ - _ Widom, Rushbrooke, and Josephson laws at the formal di-
The last equality reveal$=2 as theupper critical dimen-  mensionalityd=5. The upper critical dimensionality ig,
sionalityfor the Vlasov-Poisson system since the heat capac=2 and, sincel>d., the calculated exponents are the mean-
ity becomes divergent iti<2, thus indicating the impor- field exponents, different from those which one might expect
tance of fluctuations in the critical area. It also shows that th&vith the Landau-Weiss set of critical exponents correspond-
dimensionality corresponding to the critical exponeats ing to the Ising mean-field model whedg=4. This is related
-3 andr=1 is d=5, fluctuations aty~0 are insignificant, to the higher dimensionality of the Vlasov-Poisson kinetic
and thereforea=-3, =2, y=1, v=1, and »=1 are the problem associated with the velocity space and to the type of

mean-field exponents. _ the criticality of the Vlasov-Poisson systems, which belongs
~ The use of the scalar field propaga(6) instead of(69)  to a universality classifferent from the Ising universality
gives class.

_ The critical exponents we have found here are-3, 8
a=u4-d), (79 =2,v=1,6=1.5,v=1, andnp=1. The difference between this

and atae=0 the upper critical dimensionality th=4, which  set and the setr~-2.814, 8~1.907, y=1, 6=1.544,v

is the Landau mean-field theory case for the Ising universal=1, and»=1[19] is becausé\s, is about 50 times larger for

ity class. However, relatiofi75) is not valid for the Vlasov- the latter case, thus causingve-waventeractions to domi-

Poisson system because of its different propagator. On theate, thereby yielding a different universality class. More

contrary to relationg74) and (75) which are valid for spe- important, the later exponents satisfy scaling lawfattal

cific propagatorg68) and (69), Josephson’s law8) is uni-  dimensiond=4.68, indicatingreduceddimensionality be-

versal for all cases considered. With exponertsl andy;  cause wave-wave interactions have fewer degrees of freedom

=1/2 it givesd.=2 andd.=4 as the upper critical dimen- than wave-particle ong21].

sionalities for the collisionless and hydrodynamic cases, re-

spectively, andi=5 for the exponents of the Vlasov-Poisson ACKNOWLEDGMENTS

system calculated here. Without going into details here, we This work was supported by the Australian Research

note that this universality appears because the fundamentgly ncil and a University of Sydney SESQUI grant.
description is given by the same functional integrals in both

cases. In particular, for the free-scalar bosonic figld in- APPENDIX A: RELATION BETWEEN THE SCALING
teraction$ the partition function is AND CRITICAL EXPONENTS
From the homogeneity conditio@
ZG:fDq‘)exp{—JddxHo] genery oA

f (N2, NP0 N30, N 1F ) = N (t,v, 0,F7), (A1)
where H, is the Landau-Ginzburg Hamiltoniat(, 5 (36)
without the quadratic term. In the fermionic case the La-
grangian for a Dirac spinor field is used insteadHaf. N 2opmn(N3,N200,\%F1F ) = Np(t, 6,F 7). (A2)

for p,, components by integration over one has

For any twoAg,=p1(tse) and AL, =ps(ts,), one can write
VIIl. CONCLUSIONS )\_aUASal()\agai}\aFlFl) - )\Asal(aaFl) (A3)

We have studied numerically and analytically a model Assuming\=(-1/6)"2, the critical exponenj3 can be

Vlasov-Poisson system near the point of a marginal stabilityrewyritten in terms of the scaling exponemtsanda, as
The most important finding is that the criticality of the

Vlasov-Poisson model studied here belongs to a universality _1+a, A4
class described by the propagator corresponding ferrai- B= a, (A4)
onic vectorfield. This finding is in striking contrast with the o )
previous critical phenomena studies concerning system@ the similar way fory and 6, one can write
whose criticality belongs to universality classes correspond- -a,-1+ag
ing to the scalaibosonicfields, like the Ising universality y=———, (A5)
class. ay

This fundamental discrepancy emerges from doalita-
tive difference between objects considered: the Landau- ar,
Ginzburg Hamiltonian(36) takes into account spatial varia- = 1+a,’ (AB)

tions of the order parameter via the local differential operator
V, whereas the integro-differential operator for the Vlasov-and the Widom relation follows frorfA5) straightforwardly
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= ;aﬂ:— 1;:‘” +%=—ﬁ+ﬁ5=ﬁ(5—l)-
(A7)
Equations(A4)—(A6) can be rewritten in matrix form as
WA =X, (A8)
whereA=[a,,a,,a¢ ]", X=[1,-1,-]", and the matri is
B -1 0
w=|ly 1 -1 (A9)
0 6 -1
The determinant oV is
detW =- 8+ 88— y=0. (A10)

Using (A6) to eliminatea,, the system(A8) can be re-
duced to

Ba,- (A11)

561,:1 = 0,

1
vay+ 3—1 ag =0, (A12)

for which solution exists only if the Widom equality
=B(5-1) holds. Thereforea, and ag, can be formally con-
sidered as the eigenvectors\6f whose eigenvalue is=0.
In particular

1
B+y

ap= a'Fl! (A13)

which indicates that rescaling of the distribution function

PHYSICAL REVIEW E 71, 056406(2005

5QdV

T de de’

whereV is the potential energy of the system. To calculate
the specific heat capacity,,; corresponding td\y,; is used.

Because perturbationsi>1 are negligible for|6<1,
Vsat* Asa@Psan Whereq)sat: —Asap and

(B1)

Vsat Asat (B2)

From (A3) one can obtain

J -2a,p2 a ! J 272

—NTRAL (NN ) = —NAL(0F), (BI)

a0 a0
or

J
_)\—Zav—z 2 )\aga,)\aFF - 2 0,F B4
90 Asat( 1 1) é,aAsal( 1) ( )

Assuming\ =63 andF;=0, Eq.(B4) can be rewritten
as

S0~ 1,0]= 200, (©5)

or
Zav ZAS (1,06 2art = _Asal(a 0, (B6)

or
Z%_:Z AZ(-1,06@*1=C(9,0).  (B7)

Equation(B5) has the form of the power lavg(#,0) « 67,

under an external pump is equivalent to rescaling due to thit

field which appears for nonzero order parameter.

APPENDIX B: RUSHBROOKE'’S LAW
FOR VLASOV-POISSON SYSTEM

The heat capacity can be formally defined as

+1
a=-22" 2 1=08+1,

y

(B8)

The last relation corresponds to Rushbrooke’s equatity
+2B+vy=2 aty=1.
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