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Two-loop calculation of the turbulent Prandtl number
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The turbulent Prandtl number has been calculated in the two-loop approximation ©e#tpansion of the
stochastic theory of turbulence. The strikingly small value obtained for the two-loop correction explains the
good agreement of the earlier one-loop result with the experiment. This situation is drastically different from
other available nontrivial two-loop results, which exhibit corrections of the magnitude of the one-loop term.
The reason is traced to the mutual cancellation of additional divergences appearing in two dimensions, which
have had a major effect on the results of previous calculations of other quantities.
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[. INTRODUCTION the coefficients of the expansion, and it is just these graphs
that turn out to be responsible for the large value of the
wo-loop contribution ad=3. This feature gave rise to the

of developed turbulence is currently the most develope . . "
technical means allowing for reorganization of the straight-19P€ th.at summation of these singularities may !eaq to quan-
itative improvement of the results of theexpansion in the

forward perturbation theory, whose huge expansion paramt- . ; . : .

eter at large Reynolds numbers renders it practically uselesi@ dimensiond=3. Such a summation was carried out in
At the same time the physical value of the artificial expan—t e framework of the RG method with the aid of the account
sion parametet introduced in the RG approach is not small
either. For some important physical quantities, such as th
critical dimension of the velocity and effective viscosity, it is

possible to prove with the use of of Galilei invariance of the

theory that the corresponding series anterminate at the pproximation, then next-to-leading singularitigswo-loop
Il_near terms. Therefore, fpr §uph qqantltles the RG approacgpproximatiom etc. Calculation of the Kolmogorov constant
yields exact answers coinciding with the prediction of thegnq skewness factor according to this program has demon-
phenomenological theory of Kolmogorov. For other interest-sirated an essential decrease of the relative impact of the

ing quantities, such as the Kolmogorov constant, skewnesgyo-loop contribution and led to a fairly good agreement
factor, turbulent Prandtl number and the like, the series, in - with the experimenf2)].

however, do not terminate. In this context, it has been often |n the present paper we shall analyze to what extent the
suggested that with the aid of the expansions, it is not singularities of thes expansion show for another important
possible to obtain a sufficiently good estimate of numericakcharacteristic quantity of turbulent systems, the turbulent
values of these quantities, although, until recently, there wer@randtl number. It was calculated in the framework of the
no calculations extending beyond the first order of the perRG and thes expansion in Refd.3,4] (strictly speaking, in
turbation theory(one-loop approximation The two-loop the earliest Refl3] the magneticPrandtl number was evalu-
calculation of the Kolmogorov constant and the skewnessited with rather good agreement with experimgst7]. We
factor in the inertial range carried out in R¢L] confirmed  have carried out a two-loop calculation of the Prandtl num-
this pessimistic point of view on the whole: the two-loop ber in order to check whether this agreement is partially co-
contribution turned out to be practically equal to the one-incidental.
loop contribution, although the trend of change of the quan- Let us recall that the Prandtl number is the dimensionless
tities calculated was correct i.e., towards the experimentalatio of the coefficient of kinematic viscosity, to the coef-
value from the one-loop result. ficient of thermal diffusivity x,. (In the formally identical

In Ref.[1] calculations were carried out for space dimen-problem of turbulent diffusion, the ratio of the coefficients of
sionsd different from d=3 as well. It turned out that the kinematic viscosity and diffusion is called Schmidt number
relative magnitude of the two-loop contribution decreases-or systems with strongly developed turbulence the process
with the growth ofd, and in the limitd— « is of the order of  of homogenization of the temperature is strongly accelerated,
10% only. At the same time, in the limit— 2 this contribu-  which is reflected in the value of the effective or turbulent
tion grows without limit. Such a behavior of the coefficients coefficient of thermal diffusivity. The ratio of the coefficient
of thee expansion may be related to that their singularities a®f turbulent viscosity and the coefficient of turbulent thermal
functionsd lie in the regiond=<2. The nearest singularity at diffusivity is the turbulent Prandtl number. Contrary to its
d=2 is connected with the divergence of some graphs in thenolecular analog, the turbulent Prandtl number is universal,
limit d— 2, which leads to the appearance of poled#® in  i.e., does not depend on individual properties of the fluid. For

The method of renormalization groyRG) in the theory

of the additional UV renormalization of the theory in the
icinity of d=2[2]. In the resulting “improved expansion,”
e low-order terms are calculated in the usual wag=a8,
while the high-order terms are approximately summed with
the account of their leading singularities @2 (one-loop
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the accurate determination of the turbulent Prandtl number ®ariational derivative with respect to the sourci Eq. (1):

set of conditions is required, especially when calculations are

carried out in the two-loop approximation. Therefore, apart Ce it _ Xg(x,1)

from the formulation of the stochastic problem, we shall pay Gx=x",t=t) = (x.0¢ (X", t))]t=0= X'\ t) | =0

proper attention to this problem as well. (5)
The present paper is organized as follows. In Sec. Il we

review the main features of the description of passive advecrna nonrandom source fiedof the passive scalar has been

tion of a scalar quantity in the stochastic theory of turbulence+roquced in actior(4) solely to recall relatior(5) and its
with special emphasis on the careful definition of the turbu-,

e ) - generalizations, and will therefore further be omitted.
!ent Prandtl number within the_model considered. Section " \15del (4) gives rise to the standard diagrammatic
is devoted to the analysis of

ed : renormalization ~ andiecpnique with the following nonvanishing bare propagators
renormalization-group equations of the model. In Sec. I\GtEtl—tz)i

details of the two-loop calculation are presented. Section

contains analysis of the results and concluding remarks. de(K)

(p(t)e(tr))o= yokz exp(— vokt]), (6)
Il. DESCRIPTION OF THE MODEL
’ — _ 2.
Turbulent mixing of a passive scalar quantity is described (o(t) ¢’ (t))o = (t)exp(= kD), (7)
by the equation

t) ¢ (t2)o = O(t)exp(— kok?t), 8
G+ (0,0 0= koA + . 1) (Pt (t2)o = B()exp(— xokt) (8)

The field¥(x, t) in Eq. (1) may have the meaning of both the N the (t,k) representation. The common factBfj(k) has
nonuniform temperaturéx, being the coefficient of thermal P€€n omitted in expressioi§) and (7) for simplicity. Inter-
diffusivity) and concentration of the particles of the admix- action In aCt,'O”(A') corresponds to the three-point vertices
ture (in this casey, is replaced by the coefficient of diffu- ~¢'(#9)¢= ¢/ Vijs@jes/2 with the vertex factos=i(k;dis
sion). The fieldf(x, t) is the source of the passive scalar field. *Ks&j), and /' (¢d) y=ikjy/’ ¢, wherek is the wave vector
In the stochastic model of turbulence the field of turbulentof fields ¢" and .

eddies of the velocity of the incompressible fluidx,t) sat- Turbulent processes lead to significantly faster attenuation
isfies the Navier-Stokes equation with a random force; i time of the response functiorige’) and (') than in
relations(7) and (8) due to the effective replacement of the
o+ (@95 @i = voA g = P + Fi, (2 molecular coefficients of viscosity and thermal diffusivity by

their turbulent analogs. At the same time, however, the

whereP(t,x) andF;(t,x) are, respectively, the pressure and . o .
; simple exponential time dependence is changed as(amdl
the transverse external random force per unit massFFar in a different manner fotee’) and(yy')). Therefore, it is

Gaussian distribution with zero mean and the correlation - L i
function necessary to choose a definite way of fixing the ratio of the

turbulent transport coefficients; i.e., the Prandtl numfmer
o ) d Schmidt number Henceforth, we shall use the following
(Filt)Fy(t',x")) = &t —t')(2m) fdkpij(k)dF(k) definition. Consider the Dyson equations for the response
functions in the wave-vector-frequency representation:
xXexgik(x =x")] 3

is assumed. Herel?ij(k):éij—kikj/k2 is the transverse pro-

jection operatorge(k) a function ofk= k| and parameters of

the model, andl the dimension of the coordinate space Glka)=T, ., (Ko)=—iow+rk-3 (k
The stochastic problen(1)<(3) is equivalent to the o (K@) =Ty (k@) @ wulk o),

quantum-field model with the doubled number of fields (10)
={p, ¢, ¢ ,y'} and the action

G, (ko) =T (ko) =~iw+uk? -3, Ko), (9)

where 3 are the corresponding self-energy operators, and

S(®) = ¢'Dee'12 + ¢'[- dip + voA e — (¢d) ¢] introduce the inverse effective Prandtl numhgg; by the
+ /[= i+ wodr= (@a)yr+ £, (4)  refation
in which D¢ is the correlation function of the random force [y (ko=0)
(3) and the necessary integrations oftek} and summations Ueff = I (ko=0) 11
over vector indices are implied. In mod@l)—(4) only corre- e
lation functions of the admixture field of the form Further, we shall be interested in the inertial rangé<k

Fiol 1N (! 3 I, <A (here,L is the external scale of turbulence and' the
lt L !t e Yt lt 1 !t e !t H -, . . . . s .
(Wx0,10), 0T - P ) X0 1) O ) - O t)) - o reristic length of the dissipating eddligs which the
with the meaning of multiple response functions are nonvaguantity u.¢ is independent of the wave numberThe bare
nishing. The simplest of them is determined by the followingvalue (without turbulencg ues=Ug= xo/ vo.
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I1l. RENORMALIZATION OF THE MODEL * w n
AND THE RG REPRESENTATION Z=1+ algueX=1+2 g"> a(ue™ (14
k=1 n=1 k=1
The self-energy operatois, ,(k,») andX, ,(k,w) ap-
pearing in Eqs(9) and (10) may be found in mode(4) in
perturbation theory. However, the expansion parameter turns ) d-1s.
out to be very large for developed turbulender AL>1). zZ,=1 +M +0(g?), a(ﬁ) =— ﬂ gj = S
The renormalization-group method allows one to carry out a € 8(d+2)
resummation in the straightforward perturbation theory. To (15)

apply it, it is necessary to use in relatig®) “the pumpin
fupnpcﬁonn de(K) of a Spgcim form PUITPIY \where S=27%92/T'(d/2) is the area of thed-dimensional

sphere of unit radius.
de(K) = Dok#8-22, (12) The correlation functions of the renormalized theory do
not contain poles ir. This feature, however, does not solve
In the infrared region, the power functi¢h?) is assumed to  the problem of finding the infrared asymptot®s k/u—0,
be cut off at wave numbeds<m=L"1. The quantitye >0  because the correspo_ndlng perturba}tlpn theory is a series in
in Eq. (12) is the formal small expansion parameter in thethe parametes > growing without limit in the region we are
RG approach with the value=2 corresponding to the physi- interested in. The problem is solved by passing to the RG

For Z, in Ref. [8] the following expression was obtained:

cal model. representation. To use it for the response functi@sand
The usual perturbation theory is a series in powers of thé10), rewrite them in the renormalized variables in the form
charge go=Dg/v, dimensionless ate=0 (logarithmic Ty (kw=0)= vk2R¢(s,g),

theory). At e — 0, ultraviolet divergences are brought about

in the graphs of the perturbation theory which show in the )

form of poles ine. Due to Galilei invariance of the model, Ly (ko =0)=urk®Ry(s,g,u), (16)
divergences ati>2 are present only in the one-irreducible
functions{p¢’) and (') and are of the formp’A¢ and
' Ay At d=2 the one-irreducible functiofy’¢’) also di-

where the dimensionless functioRg andR,, of dimension-
less arguments, g, andu are given by the expressions

verges. Fod> 2, the renormalized action may be written as 2o okw=0)
Ri(s9=Z,~— 5,
L vk
(P)=-¢'Dre’ + ¢'[- do+ vZ,Ap = (¢)¢]
HP)=5¢De ‘ R (5.0~ 7 Sk =0 w
+ /[ dp+ WZ AP~ (9)]. ASGW =L T e

The RG representation for functiori&6) is determined by

We obtain from actiori4), by the multiplicative renormaliza- _
the relations

tion of the parameters of the model,

I, (kw=0=1kR,(s=1,9),
Vo= VZV’ 9= gluzazgr Up= UZU, Zu = Zkzw_;l' Zg = 2;3 e ’

(13 Iy (ko=0)=uk’R,(s=1,g,U), (18

with two independent renormalization constadisandZ,.  whereg=g(s,g), v=(s,g,»), andu=u(s,g,u) are invariant
The quantitiesy, u, andg in Eq. (13) are the renormalized variables satisfying RG equations of the form

analogs of the coefficient of viscosity, the inverse Prandtl

(Schmidi number and the coupling constafthe chargeg [=Sds+ Bydy + Budu= ¥, ]b(s,9,u) =0,

being dimensionlegsThe renormalization mass is an ar-  gnd normalized by the conditiorg{1,9)=g, »(1,9,v)=v,
bitrary parameter of the renormalized theory, and the pumpangy(1,g,u)=u. The RG functions3 and y are defined by

ing function de(k) [Eq. (12)] determining the correlation e renormalization constants according to the relations
function of the random forc®¢ [Eq. (3)] is assumed to be

expressed in terms of the renormalized parameters Bg(@) = ud,log=9(-2e+3y,), By(Q,u)= ud,lou

= u K - v/
dr(K) = gorikA -2 = g 20 -2 (Y= %)

The dissipative wave numbér is determined by, accord- 70 = ’“'3’"0 Iz, vdow = 'W?“|° nZ,. (19

ing to the reIationA:gé’ZE. It may be also estimated by the where ud,|o denotes the operatqrd, acting at fixed bare

quantity u. Thus, the inertial range we are interested in cor-parameters),, v, andu,. The last equalities for thg func-

responds to the conditios=k/ u<1. tions in Eq.(19 are a consequence of the connections be-
In the scheme of minimal subtractioflS) used in the tween the renormalization constants in Etg).

following, the renormalization constants have the form of the = As shown in the one-loop approximation in R€#4,8,9,

Laurent expansion 1+poles in the invariant chargeg(s,g) andu(s,g,u) in the limit s—0
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tend to the infrared-stable fixed poing(s,g)— g-=0(e), The location of the fixed poinfg:, u) is determined by
u(s,g,u) —u.=0(&%, and the invariant viscosity has the the conditions By(g-)=8,(g-,u-)=0. The nontrivial fixed
powerlike asymptotic behavior point with g- # 0 is infrared stabl¢4], and from Eq/(19), the
B (Dok—23>1/3 (Dok—zs>1/3 relations
v=\T = - : 2s
g g* yv(g*) = Er (24)

Thus, the expression for the effective inverse Prandtl number
[Eqg. (11)] in the inertial range predicted by the RG represen-

tation with the account of relationd6) and(18) is y(Ge,Us) = 2 (25)
K ’ 3
Ry(s=1,g-,u:) o _
Ueff = Us : (200 follow at this fixed point.

Ry(s=1.0.) The UV finiteness of the RG functiongg,u) from Eq.
The quantityugss defined by Eq(11) is universal: the result (19) allows us to express them in terms of the coefficient of
of its calculation in the inertial range with the aid of relation the first-order pole ire in expression(14) for the renormal-
(20) does not depend on the renormalization scheme. Howization constants:

ever, different factors on the right-hand side of E20) do

not share this property separately. In particular, in the MS = (Bydg + Budu)In Z= = 29942y . (26)
scheme used by us, the quantitiRg and R, are different  The renormalization constait, at the second order of per-
from 1; therefore the invariant charge does not coincide turbation theory and the corresponding expression jipr
with the effective inverse Prandtl numbeg. At the lowest  were obtained in Ref1]. In particular, the two-loop contri-
order of perturbation theory, however, the correspondingtion a;”)gzls in Z, determining the functiory, is

valueu? is independent of the renormallza'uon scheme, be-

cause in this apprOX|mat|o|R(°)—Rf)—l andueff— u?. This (3= 2SN — _ S -
feature explains coincidence of value€ calculated within 217 128d+2)?’ 2m?
the RG approach in different renormalization schemes
[4,9,10. from which forg. [Egs.(26) and(24)], the result is
— 8(d+2)¢
IV. TWO-LOOP CALCULATION 9%= 34Ty (1+xe) +0(&%), (28
OF THE PRANDTL NUMBER
. . . where
The expansion of the functiorR, and R, [Eq. (17)] in
the coupling constarg is of the form A=-1101, d=3;
(v)
_ ai -2¢ 2 A=-— +c+0(d-2), d—2 29
R,= 1+g[ -As }+0(g) 3d-2) (d-2), . (29

From previous analyses, the renormalization consfans
ajf () known in the one-loop approximation onlig]:
R,=1+g -A WS |+0(@). (2D P app -
&

afg

Here, the quantitie#\, and A, are determined by the one- Z,=l+——+ ( + —>(g%)2+ o(g¥,
loop contrlbutlon tox ., and, ,, whereas the coefficients

a) andal? of representatlor(14) of the renormalization

constantsZ, and Z, are found from the condition of UV ald = — d-1)§ (30)
finiteness of expressior(ﬁl). Substituting relationg21) in 1 4dul +u)’
Eq. (20), we obtain (@ )( )Sg 4B () ( Sg f
Here, the notatiol©(u u andB(u u or
Uers = Us{1 +[a, — a,(u.)]g- + O(gd)}, (22)  the coefficients of? in e>?§an5|or(l4) have be?ezn introduced
for brevity. Their calculation is presented belpitvshould be
A A al oy = Ay(ls) - alf(u.) (23  noted that, like the one-loop factef?, the two-loop coeffi-
e T g T A e cients of the poles i@ in representatio30) are nonpolyno-

S B ) mial functions ofu]. According to Eq(26), the RG function
Bearing in mind thag. =O(s), we see that to findef at the ,, corresponding to Eq:30) is

leading order of the: expansion, it is enough to know the o
chargeu- in the one-loop approximation. At the second or- (d-1)gS ) s
der, apart from the more accurate valuesuofand g, it is Y= oy~ 4B(gS)”+0(gY).
o 2du(1 +u)
necessary to calculate the coefficieatsand a,(u-) of the
expansion of the scaling functioi$7) and(21) at the lead-  An iterative solution of Eq(25) with respect tai taking into
ing order ine as well. account relation(28) yields
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Z‘“ | | m
0 = L I I
¢ I I ZW‘V I I

FIG. 1. The one-loop self-energy graph By, . The lines cor-
respond to propagato(8) and(7). Slashes denote the end carrying res
arguments of the field’; plain end carries the arguments of the
field. Vertices correspond to the factdjs=i(k;dis+Kksdij).

FIG. 2. The one-loop self-energy graph . The lines cor-
pond to propagato(6) and(8). Slashes denote the end carrying
arguments of the field)’; plain end carries the arguments of the
field ¢ or . Vertices correspond to the factyfjs=ik;.

2(d+2)

U= U9 +uWe +0(e?), uO[1+u?]= r

We now turn to the calculation of the constaris a,,
and a, which determine the Prandtl number. In the one-
loop approximation the quantities€,, and X, , are
2 o' ')
= 2(d+2(2)){ _12&d+22) B(uﬁo))]. (32) represented by the graphs depicted in Figs. 1 and 2,
di1+2u7] 3d-1) respectively. In these graphs, the lines correspond to
Substituting relationg31) and (32) in Eq. (22) and taking Propagators(6), (7), and (8) with the convention that

(31)

into account Eq(28) we obtain ends with slashes corresponds to arguments of the fields
© 5 ¢’ andy’, plain ends ofe and . Vertices in Figs. 1 and 2
Uegr = U 1 +6 1+u { _128d+2) B(uﬁo))} correspond to the factorsVis=i(kjds+ksd;) and k;,
€ 1+ 209 3(d-1)? respectively. Upon contraction of indices, integration
over time, and introduction of dimensionless wave vector
I 8(d+2) —(a,-a,) ( |+ O(&?) (33) (in units of the external wave vect@) in the integrals we
3d-18 obtain
|
A= 1 dk k221 -A)[2k3¢ - (d - 3)k?> - 2k(d - 1)é- (d-1)] (34
¢ 2d-1) ) (2m)¢ (2K? + 2ké + 1) (K% + 2ké+ 1) ’
[
1 dk K= -£) kp on (2n-Dtt i1
=—. = , =0, (36
Adu)= J(Zw)d(1+u)k2+2uk§+u £= o = Gdr2-@ram-2 (36)

(39) we arrive at resul{15) for a(V> and (30) for a(lkl). In view of

The integrals(34) and (35) are UV divergent in the limie  the preceding argumentatlon the coefficieatsand a,, in
— 0, the residue at the pole is readily found by selecting thé=d. (23) at the leading order i may be written as
asymptotic atkk— oo contributions to the integrands and dis-

carding the inessential region of integratiks= 1. Thus, for

the coefficientsa, anda,, together with the renormalization a,= ;df ko dl2(1 -&)
constantZ, andZ, chosen to cancel divergences in expres- 4(d-1)(2m°J,
SIOI’]S(23) \;VE find 2k[2k3§— (d _ 3)k2 _ 2|((d — 1)5_ (d- 1)]
ayy _ f J k(1) (2K% + 2ke+ 1) (K% + 2Ké+ 1)
e 4(d- 1)(277)d Ki*2e 2
_ Ok-1)(2k§-d+3-6¢) 37)
X (2k¢-d+3-68), k '

(r)
ar(u) _ f f ~ o~k
dk(1 - k=-. w
e 2u(l+ u)(27r)d k2 1-8), k _ -1 .
: M 2uzme )y ) S
Replacing the integral over directions of the unit vedtdsy

the average over its directionfsdlz- -+=8(---) and taking x{ K _ ok~ 1)} _ (38)
into account that (L+u)k?+2uké+u k(1 +u)
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At d=3 from relations(37) and (38), we obtain

2= e TN Zz_m___
1 +¢5--3 ’ 2 R
—gfcdkfld (1-g)f 2 Al LA

%75, ©), f1-e (2K% + 2KE+ 1)(K? + 2ké+ 1) To= T B 24:—&- ’

3¢
_a(k—1)<§—7>}, 39 3 _ %+/<_C>f+\ o ox- m_ 7
Y K = LI\ zzm
ay= fo dkf_ldg(l 52){(1”)'(2 Fromlm o

+ 2uké+u

FIG. 3. The two-loop self-energy graphs far, ,. The lines
_ o(k-1) -3 gs _ i (40) correspond to propagato(8), (7), and(8). Slashes denote the end
k(1+u) |’ o T2’ carrying arguments of the field’ or ¢'; plain end carries the ar-
guments of the fieldp or ¢. Vertices correspond to the factor
Numerical evaluation of integral89) and (40) with u=u®  Vis=i(kjds+ksd)) or Vijs=ik;.
from Eq. (31) yields

_ - swo_ 98-V
a,=-0.047718;, a,=-0.0413%;. (41) 4gu(Z,+uz)Z,d
It is convenient to find the two-loop contributions to the ~ _ gS(d- 7%
renormalization constaizt, from the condition that the quan- "~ 4eu(1+u)d

tity R, from Eq.(17) is UV finite in the limitk— 0. In terms _
of the reduced quantity x{l —[ua(ﬁ) 2 +u)a(1”1)] 9 } +o(d), (44)
g(1+u)
Elpry,/,(w = O,k)
Couke (42) where 7=m/ u. Extracting the pole contributions i from
expressiong44) we obtain

3 = lim
k—0

this condition may be cast in the form _
w=_9%@=D 5 0L o sna
Z.(e) = 3(e) = O(&?). (43) R Enr] e R
The Iim.it k.—>O in expressiorni42) does exist, provided the IR % 9% (l -2In T) +0(£9). (45)
regularization of the graphs has been taken care of. In the (L+u)\e

MS scheme renormalization constants do not depend on the
method of such regularization. With our choice of the pump-Substituting relatior{45) in Eq. (43) and requiring cancela-
ing function (12) it is accomplished by the cutoff of the tion of pole contributions in the linear ig approximation,
propagator o), (6) at k<m. we return to expressio(80) for a(l"l). The terms of ordeg?

Let us choose further the wave vector of integration suchare required for the calculation of the renormalization con-

that in the lines(¢eg), it flows alone(for the graphsX, ,  stantin the two-loop approximation.

such a choice is always possipléntegration over all the _ The two-loop contributior®® to the self-energy operator
wave numbers will then be carried out within the limits from =, is determined by the sum of the graphs depicted in Fig.
m to . 3 [normalization according to Eq42) is implied]. When
The one-loop contribution t& is determined by the graph substituting propagatoré)—(8)—expressed in terms of the
of Fig. 2 as renormalized variables—in the graphs of Fig. 3 it is possible
to put Z,=Z,=1 with the necessary accuracy. Contracting
SW_ g dk (1-&)6(k-m) indices and integrating over time, we obtain
T o2u(z,+uzyz,) (2md Kd+2e — B _ .
2 _ s = (gSu)zu“af dk J dq J ae
=- % q f 2 J dk(1 - &) "o102aw? J kE S gt
2u(Z, +uz)Z,2m? ), k2
_ L -2, 1+u
2e [e’s} L] V= A = 1 ’
oS f A 1-2) [v(k?*+ ) + ukog] 2
2u(z,+uz)z,),, k&% ’ (46)
which, together with relation&l5), (30), and(36) yields where
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Ji=2¢%  J,=-12kq, (47)

and

R f J f
=" 960w kM2 ) gt

n=3-- (48)

(1 - fz)qun
S 2kgé + '

with
1
(K? + Kgé + %) (vk? + kaé + o)

1 1
, 49
R kg D) | A2+ kq§+q2>] 49

J3=k(k®+ 2k?q¢ - qgf)[

_ (K +2k%ge - g2

e kg | 0
5o KK+ ot + ke + 0P)] [ 2
° (K4 0P+ kag) (kP + o + 2kaé) | K2+ 2kag + P

1

*m]' (51)
e S
6_2(k2+kq§+l}q2) Uq2+k2+kqf+q2 y (52)

K2k + 3K - q3§){ 1
T 2R+ 2kae+ ) | uko(kKR+ D) + ukeg]
1
vk2(vk® + kaé + o)

1
I+ kG + P ok + ke + P } ' 53

_ k(2Kk® + 3K°gé - g°¢)
®7 2(k2 + kg + v (€ + o) + ukag]’
Integrals(46)—(54) may be represented as

= I I N

(54)
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o= £y 0(s9),

C| bi_4Ci|n7'

1= (0%)? +0(&9) |. (58)

For the functionsf;(z,k/q) with i=2,5---8 the equations
fi(z,0)=f,(z,)=0 hold, revealing that integrals ovkeandq

in Eq. (55) are separately convergent, so that the divergence
at e—0 in the corresponding,; is brought about by the
region, in whichk andq tend to infinity simultaneously. As a
consequence, the second-order pole is absent in Spah

=0 fori=2,5--8.

For X; with i=1,3,4f,(z,2)=0 as before, which means
absence of divergence in the integral oken Eq. (55). For
these graphs, howevdf(z,0)=const* 0, so that the integral
overq diverges at — 0 leading to the appearance of the pole
of second order in the full integral.

Expressiong56) may be simplified with the use of the
identity

02

%= 4e

(59

following from Eq. (57). Calculating the right-hand side of
Eqg. (59) with the aid of relationg56) and introducing the
dimensionless integration variables, we obtain

e/ na\2 [ d 1
5= 08 [T | adniem s
E 1 K -1
(60)

This operation has reduced the number of iterated integra-
tions and allowed for explicit extraction one pole dn For
i=2,5--8, the integral in Eq.60) is finite for e=0 and
determines the residue of the first-order pole:

1[“ dKfl
=0, bi=—| — [ dffi(&x) +fi(&1k)],
4], k)

i=2,5--8. (61)

or, after the corresponding stretching of integration variables,

as

:(g§j>2f it f = f def(6Ka), 7=mi,

(56)

or, finally, as
3= O'i(gg)zT_%y g = f k1+2£ 1+2£f défi(&k/a).
(57)

Fors; withi=1, 3,4, thecoefficient of the second-order pole
is obtained by the replacement of the functiph(é, «)
+1,(£,1/k)] in the integrand in Eq60) by its limiting value
at k—oo: fi(£,00)+1,(£,00=1,(£,0) [we recall thatf;(z,)
=0]. Integration over then becomes trivial, which yields

1 1
Ci:_j défi(¢,0), i=1,3,4. (62
8J1

The remaining integral with the chanddé, ) —[fi(£, k)

We are interested in the coefficients of the pole contributions-fi(§,0)] is finite ate=0 and determines the residue of the

to Ei(s):

first-order pole:
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TABLE I. Residues of the first-order poles énof the dimensionless integral§7) corresponding to the
two-loop graphs of Fig. 3.

i 1 2 3 4 5 6 7 8

b X 10° 0.1099 0.0944 0.8691 0.0057 -3.9382 0.0672 -1.9647 0.5899

1("dx [* Pi¥ =0.7179, Pr=0.7693, 66
bj = _f _KJ d4fi(z,x) + fi(z k) - fi(z0)], 1=1,3,4. ‘ ! (©9
4)y kJ in one-loop and two-loop accuracy, respectively.

(63) As seen from Eq965) and (66), the two-loop correction
) N 5 _ to the Prandtl number is small, even for the real valee.
Let us write condition(43) at orderg” for d=3. With the use  This smallness is a consequence of a nearly complete cance-

of the corresponding terms of the one-loop contributé®),  |ation of two large contributions: the term proportionalXo
the summed two-loop contributiort$8) and expressiof80)  in the brackets of Eq(33), determined by the renormaliza-
for the renormalization constad, we obtain tion constant of viscosityZ, [see Eq.(27)], and the term
cC B 1 proportional toB, determined by the renormalization con-
—+—== —_[ua(ﬁ) +(2+ u)a(l”l)]<— -21n T) stantZ, of the diffusion coefficient30). Indeed, ad=3, the
& & Beu(l +u)’Sy € second term is equal to -8B03=1.111, whereas, accord-

8 ing to (29), A=-1.101, and thus the whole expression in
+> (& + W) (64) brackets is equal ta—800B/3=0.010; i.e., by two orders
T \g? € smaller than each term separately. Inspection of individual
i , . i ) graphs of Fig. 3 determining the quant®yreveals that the
With the aid of expression@6)~(50) and(59) in Eq.(62), it |argest contribution is due to the gragh, and the corre-
is not difficult to find sponding coefficienbs (see Table)lis close to the value of
1 (3+U) the VKhOIe sunB:Eis:lbi. Ar;alysicsmfgovgs tha‘E/S |82t23 og)ly
== G, graph possessing a singularity thyg=-1/1 -2).
721 +u? 480u(1 +uw)’ A similar situation was met in the calculation of the quantity
\ in Ref.[1]: the largest contribution was given by a graph
- 1 d=3 having a pole ind—2. As follows from(28), the coefficient
480u(1 +u)’ ' of the singular contribution ta is such that as a whole the

. _ _ two-loop contribution tougss [see Eq.(33)] turns out to be
Substituting these values in E@4) and taking into account finite atd=2. Let us also point out significant compensation

; K) (v)
relations(30) and(15) for a;; anda,;, we see that the terms i, rg|ation (33) of smaller in magnitude and finite al=2

with In 7in Eq. (64) are automatically canceldds a conse-  qntributions in the expressiaa,—a, [see Eq(41)].
qguence of renormalizability of the modglwhereas for the

coefficientC of the second-order pole we obtain

3u?+9u+16

Cy

V. CONCLUSION

C= In the present problem—as is usual in perturbative field

- =
720u(1 +u) theories[11]—we are dealing with asymptotisemiconver-
For the coefficientsh; numerical integration of expres- 9gend series with the typical factorial growth of the number

sions (61) and (63) with u=u® from Eq. (31) yields the of graphs with the order of perturbation thedithe antici-

results quoted in Table I, which for the coefficiebtin Eq.  Patéd growth of the number of graphs has been explicitly
(64) lead to the value demonstrated for the simpler model of passive advection in a

given quenched Gaussian random velocity field in REZ]).
Semiconvergent series may be and are used for numerical
B(u) = E b= - 4.1666x 10°°. estimates as long as the magnitude of the correction of each
=1 subsequent order is much less than that of the preceding
Substituting this value in Eq33) as well asa, anda,, from order—a property WhiCh_f0f such a series is bound .to'break
Eq. (41) and\ from Eq.(29), we obtain the final expression down at some order, which, however, is not knoavpriori.

8

for the effective inverse Prandtl number: The most notable physical demonstration of the usefulness of
semiconvergent series is the quantum electrodynamics. In the
Uerr= U(1 - 0.0358) + O(&?), & expansion of critical exponents, different situations have
been met with both small and large corrections to leading-
0 _ \e’ﬁ% -1 B order valu«_eilS]. _
Us=—= 1.3930, d=3. (65) The main conclusion to be drawn from the two-loop value

of the effective inverse Prandtl numbgb) obtained in the
At the physical values=2, this yields for the turbulent present paper is that the correction term is strikingly small.
Prandtl number Rithe result Even at the real value=2, it is only 7% of the leading
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contribution. Apparently, this is the reason for the favorablemation in that it is based on an approximate calculatioallof
comparison of the one-loop value of the turbulent Prandthigh-order terms ire expansion(apart from exactly calcu-
number 0.773,4] with the experiment. This result is already |ated first two with the account of the leading terms of their
in the range 0.7-0.9 of measured values established quitel@urent expansion id-2. The success of such a summation
while ago[5]. Fairly recent experimental results in circular js related to the specific property of tleexpansion in the
turbulent jets emphasize the midpoint of this range: for theheory of turbulence: the presence of polesin2 in a cer-
region of approximately constant turbulent Prandtl numberiain class of graphs and the significant contribution of these
the value 0.81+0.05 is found in R¢6], whereas in Ref.7]  graphs ad=3. Our two-loop calculation of the Prandtl num-

: - in Nighyer has shown that such graphs exist in this problem as well,
Reynolds-number flows is put forward on the basis of theDut their poles ind—2 cancel each other, which might an

results in the region of slight variation of the turbulent ; - - . :
Prandtl number in the range 0.7-0.9. In view of these num_explanatlon of the first correction term in theexpansion of

bers, we are inclined to conclude that the already fairly gooéhe Flandi number. . .
one-loop result is improved by the two-loop correction, Thus, our results complement. the_ concIuS|or_1 made_ n
whose account66) leads to the value 0.77 for the turbulent Ref's.[1.,2]. In the two-loop gpprox[matmn. the main qqntn-
Prandtl number. bution is due to graphs having a singularitydat2 and it is
The obtained result is somewhat unexpected: similar twol€c€ssary to sum such graphs. For quantities in which this
loop corrections to the Kolmogorov constant and the skewSingularity is absent the two-loop contribution is relatively
ness factor are largEl]. When corrections are not small, Small and the results of the usualexpansion appear fairly
knowledge of large-order asymptotic behavior of the series igeliable at the level of accuracy suggested by the two-loop
required to construct resummation schemes useful for nucorrection.
merical estimates. In the theory sffatic critical phenomena,
the instanton approach together with Borel summation

has been widely used to this ehtil]. In case of dynamic ACKNOWLEDGEMENTS
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