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The dynamics of periodically driven nematic electroconvection, a classical dissipative pattern forming sys-
tem, is studied experimentally and theoretically. We demonstrate that for certain excitation wave forms, the
system’s dynamic response can be periodic with the excitation or subharmonic, depending on the periodicity of
the excitation as control parameter, while for some classes of wave forms, a subharmonic response seems to be
principally excluded. In particular, we describe influences of frequency and time symmetry of triangular
excitation wave forms. Two intrinsically different routes for the transition to subharmonic dynamics are
observed. The time characteristics of the system variables are determined by numerical solution of appropriate
model equations and a Floquet analysis. Experimental data are compared to calculations of the model system
of two coupled linear differential equations. Results of experiment and model are in excellent agreement.
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I. INTRODUCTION

Electrohydrodynamic convectionsEHCd represents a well
known and extensively investigated system for dissipative
pattern formation. After the first experimental description
sindependently by Williamsf1g and Kapustin f2gd, the
mechanism of the instability was revealed by Carrf3g and
Helfrich f4g. There has been a rapid progress in the further
development of the theoryf5–12g. Still today, EHC repre-
sents an attractive research field: Focus of recent experimen-
tal and theoretical studies has been laid, e.g., on EHC in
nonconventional materialsf13g, defects and localized states
f14–18g, spatiotemporal chaosf19,20g, patterns in homeotro-
pic geometry f21g, or systems with low dimensionality
f22,23g. The dynamics of the system variables in EHC pat-
terns has been studied in particular in Refs.f5,6,24–27g.

The two coupled dynamic variables that characterize the
electroconvection patterns in a sandwich cell are the periodic
director deflection in the cell and the charge density modu-
lation. The director deflection is directly connected with the
velocity of the convective flow in the cell. Figure 1 gives a
schematic view of the cell geometry and the structure of the
convection pattern.

Nematic electroconvection is conventionally studied un-
der ac excitation. The control parameters of the experiment
are amplitudes, frequencies, and wave forms of the applied
voltage. These parameters are conveniently accessible in the
laboratory, and even complex wave forms may be composed
with commercial synthesizers. This makes the nematic EHC
experiment particularly suitable for the study of the influence
of excitation wave forms on pattern dynamics.

It is well known in spatially extended pattern forming
dynamic systems that breaking of the time symmetry of the
excitation, like the temporal modulation of the controll pa-
rameters, can influence the appearance of the patterns quali-
tatively. For example, in Rayleigh-Benard convection a tem-
porally modulated control parameter can lead to the
stabilization of hexagonal patterns against parallel rollsf28g,

and to a coexistence of rolls and hexagons. In particular,
systems that undergo a Hopf bifurcation can be sensitive to
broken time translational symmetry. Stimulated by theoreti-
cal analysisf29g, the temporal modulation of control param-
eters has been used in EHC for the controlled conversion
between traveling convection roll patternsstraveling wavesd
and standing wavesf30g. We note, however, that the time
symmetries discussed in the present paper have only a very
indirect relation, if any, to the above cited studies of temporal
modulations of the control parameter. In order to derive the
wavelengths and dynamics of our convection patterns at on-
set in the different dynamic regimes, we do not need to em-
ploy amplitude equations, but rather perform a simple linear
stability analysis.

From a mathematical point of view, a particularly inter-
esting aspect is that a simple system of two coupled ordinary
linear differential equationssODE’sd can be used to construct
the pattern stability diagrams and the pattern dynamics at
onset. The structure of the dynamic equations is such that in
the classical experimentfelectric fieldE with the periodT
and time symmetryEstd=−Est+T/2dg, either the electric
charge distribution or the director field changes its sign in
each half period of the excitation. In the conduction regime,

FIG. 1. sColor onlined Sketch of the nematic cell with the direc-
tor and flow fields in the electroconvection rolls and definition of
the coordinate system.
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at low excitation frequencies, the time-dependent amplitude
wstd of the director deflection preserves its sign, it is sym-
metric in the two halves of the excitation period,wstd=wst
+T/2d. In the high-frequency, dielectric regime, on the other
hand,wstd is antisymmetric in time with respect to the two
halves of the excitation period,wstd=−wst+T/2d. The cutoff
frequencyfc separates the two dynamic regimesf7g.

The consequence of these symmetries is that the Fourier
transform of wstd in the conduction regime contains only
even multiples of the excitation frequencyf0=1/T, while in
the dielectric regime,wstd contains only odd multiples off0.
In both regimes, the system response isT-periodic, i.e., the
lowest frequency in the dynamics of the system variables is
f0.

It has been shown, howeverf27g, that a certain class of
wave forms, wherefEstdÞ−Est+T/2dg, can evoke a subhar-
monic sT-antiperiodicd response of the pattern. The subhar-
monic regime has been identified in that previous study upon
the application of two superimposed square waves with a
frequency ratio 1:4, where one of the frequencies was chosen
below the cutofffc for single-square-wave excitation, and the
second frequency abovefc. The discovery of this interesting
dynamic regime has motivated this study of the influence of
the excitation wave form on the dynamic response of EHC
patterns. We investigate the pattern dynamics at a particu-
larly simple excitation scheme. dc-free triangular wave exci-
tations swith frequency f0 and amplitudeE0d are used as
two-parameter functions, and the qualitative and quantitative
influences on the pattern state diagram are studied.

The problem of subharmonic dynamics has been dis-
cussed for different types of dynamic systems in literature
f31,32g, and it has been shown that in a large class of sys-
tems, viz. periodic excitation with a wave form of the sym-
metry Estd=Est+Td=−Est+T/2d, subharmonic dynamics is
suppressed. We will refer to this type of function as antisym-
metric excitation. Its Fourier expansion contains only odd
numbered harmonics of the ground frequencyf0=1/T. We
have therefore chosen an appropriate wave form, the trian-
gular wave

Etstd =5
s4t/TdE0 for 0 ø t , T/4

s2 − 4t/TdE0 for T/4 ø t , 3T/4

s4t/T − 4dE0 for 3T/4 ø t , T

Etst modTd elsewhere,
6 s1d

as an example of an antisymmetric excitation with respect to
a time shiftt→ t+T/2. The Fourier expansion of this excita-
tion gives the series

Etstd =
8

p2E0S 1

12sinvt −
1

32sin 3vt +
1

52sin 5vt 7 ¯D ,

with v=2pf0. As a “counterpole” of this antisymmetric
wave form, we have chosen the function in Eq.s2d, which
will be referred to in the following as “sawtooth” function,

Esstd = 5s2t/TdE0 for 0 ø t , T/2

s2t/T − 2dE0 for T/2 ø t , T

Esst modTd elsewhere.
6 s2d

The latter contains both even and odd numbered harmonics
of the ground frequencyf0=1/T,

Esstd =
2

p
E0S1

1
sinvt −

1

2
sin 2vt +

1

3
sin 3vt 7 ¯D .

In addition, we will consider the general triangular wave
form

Egstd =5
st/TsdE0 for 0 ø t , Ts

fsT/2 − td/sT/2 − TsdgE0 for Ts ø t , T − Ts

fst − Td/TsgE0 for T − Ts ø t , T

Egst modTd elsewhere,
6
s3d

with T/4øTsøT/2. As a measure of the asymmetry of the
excitation, we introduce the parameterp=4Ts/T−1, which
varies fromp=0 for the triangular wave in Eq.s1d to p=1
for the sawtooth in Eq.s2d. This general wave form allows us
to study a gradual transition from the antisymmetric case of
Eq. s1d toward the asymmetric sawtooth. Figure 2 visualizes
the general excitation wave form given by Eq.s3d.

We study a well-investigated standard liquid crystal mix-
ture with known material parameters, where the experimen-
tal data can be directly compared to the theoretical results.
The paper is organized in the following way: First, a descrip-
tion of the experimental conditions and the material is given.
In the theoretical part of the paper, we analyze a system of
model equations that describe the experiment. The dynamic
response of the system variables is calculated. With a Floquet
analysis we characterize the asymptotic stability of time-
periodic solutions in the periodically driven dynamic system.
The theoretical results are compared to experimental thresh-
olds and wavelengths. In the third part, we investigate ex-
perimentally the detailed temporal characteristics of the pat-
terns. We compare them to the calculated dynamics of the
system.

II. EXPERIMENTAL TECHNIQUES AND MATERIAL

The material used,Mischung 5, is a nematic liquid crystal
mixture of four alkyloxyphenylalkylsoxydbenzoates. The di-

FIG. 2. General triangular excitation wave form. ForTs

=T/4 sp=0d one obtains the antisymmetric triangle of Eq.s1d, and
for Ts=T/2 sp=1d the sawtooth function of Eq.s2d.
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electric anisotropy«a=«i−«' of this substance is negative,
the conductivity anisotropysa=si−s' is positive. Its nem-
atic range extends from 70.5 °C to below room temperature.
The relevant material parameters that enter the model equa-
tions f33–35g are given in the Appendix .

The electrohydrodynamic convection patterns are investi-
gated experimentally by using a commercial glass cell with a
cell gap ofd=48.5mm. The two glass plates of the cell are
coated with transparent indium-tin-oxidesITOd layers serv-
ing as electrodes, with an electrode area of 535 mm2.
Rubbed polyimide layers orient the director planarly at the
surfacesssee Fig. 1d.

A Linkam heating stage provides a constant sample tem-
perature of 30.0±0.1 °C. Excitation voltages of different
wave forms are synthesized with a function generatorsAgi-
lent 33220Ad, amplified and applied to the cell electrodes.
Any dc offset is avoided.

For the spatiotemporal characterization of the experimen-
tal patterns, two optical observation techniques are used. In
the transmission microscope, one has direct access to the
spatial structure of the convection pattern. The texture re-
flects the momentary state of the deflected director field. This
direct orthoscopic observation technique yields pattern
wavelengths and orientations of the rolls, and in addition
structures of defects and defect dynamics which are not rel-
evant here. Its disadvantage is a large data overhead when
one is interested only in the dynamics of pattern amplitudes.
Another problem is the limited temporal resolution with con-
ventional video technique, which is solved here by the use of
a fast video camerasCitius Imaging C10d. Experimental im-
age sequences are recorded with a frame rate between 1000
and 2000 s−1. The observation of optical textures is realized
by a polarization microscopesJenapol Dd in an orthoscopic
construction. It is used for a qualitative characterization of
the dynamics. In the parallel polarizer-analyzer arrangement
chosen for contrast optimization, only the extraordinary
transmitted light is detected. As the effective refractive index
of the birefringent nematic material for the normally incident
light is a function of the director field deformation, the ob-
served spatial intensity modulation of the transmitted light is
a measure of the periodic director deflection amplitude. The
time evolution of a cross section of the pattern, taken normal
to the stripe direction, is extracted from the videof26,30g.
The complete spatiotemporal behavior of the respective pat-
tern can be reduced to a two-dimensional plot without loss of
information under the condition that one has with normal
rolls at onset, i.e., the patterns are uniform along they direc-
tion, normal to the director easy axis. From these spatiotem-
poral data, a two-dimensionals2Dd Fourier transform is per-
formed, which yields a straightforward representation of the
pattern in the wave-vector–frequency domain. Because of
nonlinear optical characteristics, the observed texture de-
pends crucially upon the choice of the microscope focus
plane. Even if the director deflection along the easy director
axis is harmonic, the optical intensity modulation is more
complex. A large number of papers have been devoted to the
understanding of the optical properties of EHC patterns, e.g.,
Refs. f33,36–42g. A discussion of the optical textures and
their relations to the director field can be found, e.g., in Refs.
f36–38g.

A second setup is used to study laser diffraction patterns
created by the roll textures; details of the experiment are
given in Ref. f33g. The sample is irradiated with normally
incident laser light of 632.8 nm wavelength, and the intensity
at the second-order Fraunhofer diffraction peak is recorded
by a photo diode. The relation between diffraction intensities
and director deflection amplitudes is described., e.g., in Refs.
f33,40–42g. This diffraction experiment has the advantage of
a fast and quantitative access to the dynamics of the domi-
nant Fourier mode of the director pattern. It is performed for
a quantitative comparison of experimental trajectories with
the dynamics calculated in the model.

III. MODEL

For the calculation of the onset of convection, we analyze
the stability of the linearized electrohydrodynamic equations
f7,12,35,43g with the spatial mode ansatz of the director de-
flection w̃sx,z,td respective to the ground state. The linear
stability analysis of the uniform ground state yields the in-
stability thresholds, pattern wavelengths, and the pattern dy-
namics at onset.

The ground state is uniformly aligned alongx, and within
the two-dimensional model, homogeneity alongy is as-
sumed. They component of the wave vectorkW of the roll
pattern is set to zerosnormal rollsd. In our system, the ex-
perimental observations justify this assumption ofky=0 at
onset, with the exception of very low frequencies where ob-
lique rolls form the first instability. For the correct descrip-
tion of such oblique rolls withkyÞ0, the calculations would
have to be refined correspondingly. For the electric charge
field q̃sx,z,td, an ansatz with the same spatial periodicity as
the director field follows from the Maxwell equations:

w̃sx,z,td = wstdcosskxxdcosskzzd,

q̃sx,z,td = qstdsinskxxdcosskzzd. s4d

Coordinatesx,y are in the cell plane,z is along the cell nor-
mal sFig. 1d. The ansatzkz=p /d considers the ground mode
that satisfies rigid planar anchoring conditions for the direc-
tor at the polyimid coated glass plates,w̃sx, ±d/2 ,td=0. The
wave numberkx=2p /ldir reflects the spatial periodldir of
the director pattern.

Using the Navier-Stokes equation, the Maxwell equations
and the torque balance for the director one arrives at a sys-
tem of nonlinear partial differential equations where the flow
field in the nematic material can be eliminatedssee, e.g., Ref.
f12gd. Free boundary conditions for the flow field have been
used here. This approximation leads only to small quantita-
tive differences in the predicted threshold voltages and cor-
responding wave numbersf9g. The linearization in the dy-
namic model reduces the system to a set of two coupled
homogeneous ordinary differential equations for the two dy-
namic variables,

d

dt
jWstd + AstdjWstd = 0, s5d
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jWstd = Sqstd
wstd

D, Astd = S a1 a2Estd
a3Estd a4 + a5Estd2D , s6d

whereEstd is the electric field strength, related to the applied
voltage byEstd=Ustd /d, and the coefficientsai depend upon
the wave numberkx of the test mode and on material param-
eters; see the Appendix.

We sketch now in short the basis of the stability analysis,
for details the reader is referred to standard literature, e.g.,
Ref. f44gd. For systems of two and more coupled ODE’s, an
analytic solution in closed form exists only for a few special
types of matricesAstd. For time-independent matricesA,
the ODE systems5d reduces to a system with constant

coefficients with the formal solutionjWstd=XstdjWs0d, Xstd
=exps−Atd. This can be exploited to compose analytical so-
lutions for piecewise constant excitation wave forms. An ap-
plication to the analytical treatment of EHC at square wave
excitation is given in Ref.f27g.

Equations5d is equivalent to the matrix equation

Ẋstd + AstdXstd = 0. s7d

Using the fundamental matrix solutionXstd with the particu-
lar initial conditionXs0d=E, the unit matrix, the solution of

Eq. s5d is given byjWstd=XstdjWs0d. For a time-periodic matrix
Ast+Td=Astd, describing an excitationEstd with period T,
the Floquet theorem yields the particular form

Xstd = QstdeBt, s8d

where bothQstd=Qst+Td and B=const are 232 matrices,
and consequentlyXst+Td=XstdC, with the regular transfer
matrix C=XsTd=expsBTd of the periodically excited system.
The eigenvaluesmi of C are called characteristic multipliers,
and anyli such thatmi =eliT is called characteristic exponent
f44g. A necessary and sufficient condition for asymptotic sta-
blility of periodic systems is that allumiu,1. We will choose
um1uù um2u in the following.

The determination of the coefficients and eigenvalues of
C is as complex as the construction of the fundamental ma-
trix solution Xstd. We note that there is no simple relation
between the elements ofAstd and the multipliersmi, but it is
proven for homogeneous ODE systems like that given in Eq.
s7d that detsCd=m1m2=exps−e0

TTr Astddtd f44g. Since our
Astd has only real coefficients, this product is positive.

For all excitation wave forms considered here, we deter-
mine the elements and eigenvalues ofC by straightforward
numerical calculation of Eq.s7d over one period. At fixedT
and given excitation wave formEstd, the two parameters that
have to be considered are the amplitude of the excitation,
U0=E0d, and the wave numberkx of the test mode. The

regions of instability of the ground statejW0=s0,0d in the
sU0,kxd plane are defined byum1u.1 and bound by the neu-
tral curveN whereum1u=1. The global minimum of the neu-
tral curve respective toU0 defines the threshold voltageUc
=Ecd, with the corresponding critical wave numberkc. It is
evident that solutions withm1=1 reproduce the original state
after one period of the excitation field, we will therefore refer
to them asT-periodic solutions, the lowest frequency in their

Fourier expansionsground moded is f0. Solutions withm1
=−1 reproduce the original state only after two excitation
periods, their Fourier expansion containsf0/2 as the lowest
frequency, and they will be therefore referred to as subhar-
monic or T-antiperiodic in the following. Regions withm1
.1 in the stability diagram correspond to growing
T-periodic solutions, regions withm1,−1 correspond to
growing subharmonic solutions, forum1u,1, the ground state
is asymptotically stable.

Representative calculated stability diagrams are depicted
in Fig. 3, where we have selected exemplarily the antisym-
metric excitationsp=0d, one wave form with the intermedi-
ate asymmetry parameterp=0.6 and the sawtooth excitation
with p=1.0. Colored areas mark the parameter ranges where
um1u.1, i.e., parameter ranges where the ground state is un-
stable with respect to convection patterns.

At antisymmetric triangular excitationsp=0d we find nu-
merically that the multipliersm1,2 are both real and positive
for all parameter setssU0,kxd. The whole parameter space
can be separated in two areas, one with conductivelike and
the other with dielectriclike dynamics. In Fig. 3sad, which is
representative for frequencies below the cutoff, there are two
separate regions withm1.1. The region at lowkx corre-
sponds to patterns with the time symmetry of the conduction
regime, the area at highkx corresponds to dielectric patterns.
The conduction regime provides the global minimumsar-
rows atUc andkcd of the neutral curveN. In the experiment,
when the amplitudeU0 of the driving voltage is gradually
increased from zero, the pattern with the lowest threshold,
i.e., the conduction pattern with wave numberkc, becomes

FIG. 3. sColor onlined Representative calculated stability dia-
grams for EHC under different driving conditions,sad triangular
wave with p=0, f , fc, sbd triangular wave withp=0, f . fc, scd
general triangular wave withp=0.6, f , fc, and sdd–sfd sawtooth
excitation withp=1 at three selected excitation frequenciesf0, sdd
conduction regime with lowest threshold,sed subharmonic regime
with lowest threshold, andsfd dielectric regime with lowest thresh-
old. The excitation frequenciesf0 are given in the images. The
neutral curveN is drawn as a dashed line atm1=1, and as a solid
line at m1=−1. The dash-dotted line marks the separatrixS where
Rehm1,2j=0. Colored areas represent regions whereum1u.1, i.e.,
parameter regions where the ground state is unstable. Squares in
sdd–sfd mark the three parameter sets where the trajectories of Figs.
6 and 12 have been evaluated.
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unstable atU0=Uc. With increasing frequency, the instability
island of the conduction patterns shifts to higher voltages in
the sU0,kxd diagram. Atfc, it disappears completely or it has
shifted such that the global minimum ofN is found for the
dielectric regimefFig. 3sbdg. Although this reflects only the
long established classical EHC behavior, and is qualitatively
in complete coincidence with periodic sine or square wave
driving, we present both graphs here in order to show the
differences to the asymmetric wave forms presented in the
next graphs.

In presence of asymmetric contributionssp.0d to the ex-
citation, the topology of the stability diagram shows a dra-
matical qualitative changefFig. 3scdg. Already at very small
values ofp a subharmonic “island” appears between the con-
duction and dielectric regions. Within that island, bothmi are
negative. With increasingp, the parameter range covered by
the subharmonic solutions spreads. It is separated from the
classical regimes by a separatrixS sdash-dotted lined where
Rehm1,2j=0 sthe two multipliers are complex conjugated in a
narrow parameter range aroundS, otherwise realf45g d. Fur-
ther increase ofp leads to the formation of an unstable sub-
harmonic region withm1,−1 fdark sblued area in Fig. 3scdg.
However, below a certain value of the asymmetry parameter
spc<0.76d the global minimum ofN remains in the conduc-
tive or dielectric branch for any excitation frequency. The
uniform ground state becomes unstable with respect to one
of the classical regimes first, a subharmonic pattern is not
formed at onset. Whether the system could be forced into the
subharmonic regime at higher voltages, under certain exter-
nal obstructions, cannot be answered within our linear
model.

The images of Figs. 3sdd–3sfd show the stability diagrams
for excitation with the sawtoothsp=1d. Here, the conduction
regime exists for low frequencies, and it has the lowest
threshold of the three instability islands. With increasingf0,
the region of conduction patterns shifts upward in the
sU0,kxd and finally it disappears. At a first cutoff frequency
fc1, the subharmonic tongue extends below the conduction
and dielectric regions in thesU0,kxd diagram. The subhar-
monic region provides the global minimum ofN in a certain
intermediate frequency rangefFig. 3sedg, and a pattern with
subharmonic dynamics is observed in this range at onset.
With further increasing frequency, the tip of the subharmonic
tongue moves upwards to higher onset voltages. Above a
second cutoff frequencyfc2, the subharmonic tongue has
shifted above the dielectric range. Finally, the subharmonic
island also disappears from the stability diagram. There may
still exist a range where 0.m1.−1 in the diagram, but the
dielectric regime withm1.1 is the only remaining island of
instability. Consequently, abovefc2 the dielectric convection
pattern is observed in the experiment.

After construction and evaluation of the stability diagrams
for the complete frequency range under consideration, one
can collect threshold voltages and critical wave numbers for
given excitation wave forms, as is shown in Fig. 4. The
antisymmetric triangular wave excitation yields the classical
graphs shown in Fig. 4sad, with an increasing threshold volt-
age curve with frequency for the conduction roll pattern, and
the transition to the dielectric regime atfc. Furthermore, the

wave numbers show slight slopes in both regimes and a dis-
crete jump atfc. A qualitatively similar pattern is obtained
for slightly asymmetric wave formsfEq. s3d with low p; a
quantitative analysis is given belowg. Figure 4sbd shows the
same diagram for the sawtooth excitation withp=1. Be-
tween the individual regimes, discrete wave number jumps
are observed. Qualitatively similar diagrams are found for
excitation with the general triangular wave form of Eq.s3d
with sufficiently largep.

There is a superficial analogy of the diagram in Fig. 4sbd
with the graph presented in Ref.f27g, where the threshold
curve for superposition of two square waves has been deter-
mined in the same material. In Ref.f27g, the two parameters
were the amplitudesUh, Ul of the two square waves with
fixed frequencies and a 1:4 frequency ratio, where one of the
frequencies had been chosen above, the second one below
the cutoff frequency. In that situation, the compound wave
form varied continuously along the threshold curve. Here, in
contrast, the wave form is fixed, and the excitation frequency
alone determines the transition between the different dy-
namic regimes.

FIG. 4. sColor onlined Calculated and measured threshold
curves forsad the antisymmetric triangular wave excitation,p=0,
andsbd the sawtooth excitation,p=1. Solid lines give the calculated
threshold voltagesUc for the pattern onset, dashed lines show the
calculated critical wave numberskc at onset. The dots give the
corresponding experimental threshold voltages, open circles give
the wave numbers determined in the experimentssee next sectiond.
At p=0, only the conductive and dielectric regimes are present, the
cutoff frequency isfc=60 Hz. At p=1, the subharmonic regime
appears in a frequency range betweenfc1=37 Hz andfc2=73 Hz.
The squares mark the parameters belonging to the corresponding
graphs in Fig. 3.
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An important question is the influence of the asymmetry
of the excitation wave form on the appearance of the novel
subharmonic regime. In order to investigate this wave form
dependence in detail, pattern stability diagrams have been
calculated for various asymmetry parametersp in the com-
plete range 0øpø1. From these graphs, we have con-
structed the dependence of the cutoff frequenciesfc, fc1, and
fc2 upon the asymmetry of the excitation wave form. The
graphs are shown as solid lines in Fig. 5. It turns out that the
cutoff frequency between the conduction and dielectric re-
gimes is weakly dependent uponp for small asymmetries.
There is a slight shift to lower frequencies, because the
growing subharmonic tonguefcf. Fig. 3scdg increasingly sup-
presses the conduction pattern instability island. Only at
asymmetry parametersp above 0.76, the subharmonic re-
gime appears in the threshold diagram and the single cutoff
fc splits into fc1 and fc2. The remarkable result of this graph
is that it is possible in this dynamic model system to pass
from aT-periodic to a subharmonic response of the system at
constant excitation frequency, only by a continuous change
of the wave form, for example, when one varies the param-
eter p for the general triangular wave excitation, along any
horizontal line with 37 Hz, f0,73 Hz. In addition, the
transition betweenT-periodic andT-antiperiodic patterns can
be achieved by a change of the excitation frequency at con-
stant shape of the excitation wave form, e.g., by changing the
frequency parameter along a vertical path in Fig. 5.

Finally, after establishing the general time symmetry of
the pattern amplitudes, we discuss the numerically calculated
trajectories ofwstd and qstd at onset during a cycle of the
excitation. The asymptotic behavior is independent of the
initial conditions, except for the degeneracy of solutions
(wstd ,qstd)↔ (−wstd ,−qstd), cf. Eq. s5d. In case of the anti-

symmetric triangle excitationsp=0d, only the classical re-
gimes appear at onset, with theT-periodic dynamicsqst
+Td=qstd, wst+Td=wstd reflecting m1=1. Additionally, one
has the time symmetriesqst+T/2d=−qstd, wst+T/2d=wstd in
the conduction regime andqst+T/2d=qstd, wst+T/2d
=−wstd in the dielectric regime. In case of any asymmetry of
the excitationsp.0d, the time symmetry respective toT/2 is
broken in both regimes.

In the case of the sawtooth wave form withp=1, the
calculated dynamics is depicted in Figs. 6sad–6scd. In con-
trast to the excitation with the antisymmetric triangle, sine,
or square waves, both dynamic variables are no longer sym-
metric with respect to the half cycles of the driving field,
uwstduÞ uwst+T/2du, uqstduÞ uqst+T/2du. The graphs show that
in the conduction regimesad as well as in the dielectric re-
gime scd both the director and charge fields are modulated
with periodT. The subharmonic regime is easily identified in
the trajectories of Fig. 6sbd. It is characterized by the funda-
mentally new symmetrywstd=−wst+Td, qstd=−qst+Td,
where the amplitudes of both variables change their signs
after one periodT. This “antisymmetry” is a direct conse-
quence of the sign of the Floquet multiplierm1=−1.

IV. EXPERIMENTAL OBSERVATIONS

A. Fourier analysis of microscope textures

A direct evidence for subharmonic dynamics and the
evaluation of the theoretical predictions on the basis of ex-

FIG. 5. sColor onlined Transition frequencies between the con-
duction, dielectric, and subharmonic regimes in dependence of the
asymmetry parameterp of the triangular wave form. The calculated
ssolidd lines mark the frequencies where the time symmetry of the
pattern with the lowest threshold voltage changes. These frequen-
cies correspond tofc betweenscondd andsdield, fc1 betweenscondd
and ssubhd, and fc2 betweenssubhd and sdield. Dots show the cor-
responding experimental datassee next sectiond. The squares refer
to the parameters of Figs. 3sad, 3scd, and 3sed. The subharmonic
regime is found only at comparably large asymmetry parameters
sabovep<0.76d. Note that it is possible, according to this graph, to
switch the pattern from aT-periodic to aT-antiperiodic time depen-
dence only by a change of the wave form, when the ground fre-
quencyf0 is kept constant.

FIG. 6. sColor onlined Calculated dynamics of the director de-
flection amplitudewstd ssolid lined and the charge field amplitude
qstd sdashed lined for sawtooth excitation,p=1 sdashed-dotted lined,
with frequenciessad 30 Hz, sbd 60 Hz, scd 110 Hz. Note that the
periodicity ofqstd andwstd is 2T in the subharmonic casesbd. In the
conductionsad and dielectricscd regimes, the signs of bothwstd and
qstd are restored after one excitation period. Like for conventional
sine or square waves,wstd preserves its sign in the conduction re-
gime sad and alternates its sign twice during the excitation period in
the dielectric regimescd. Squares in Fig. 3 mark the parametersU0

andkx where the trajectoriessad–scd have been calculated.
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perimental data can be provided with an analysis of the op-
tical microscope textures, which are sensitive to the sign of
wstd. For that purpose, we record orthoscopic optical images
of EHC patterns with sufficient time resolution.

In this section, we focus on two-dimensional Fourier
transformss2D FT’sd of spatiotemporal plots of these experi-
mental patterns. The method used here has been described in
detail earlierf26g. The Fourier spectra are obtained by the
following approach: The dynamic patterns are recorded with
the high speed camera, the time resolution between indi-
vidual frames was chosen between 0.5 and 1 ms. Then, a
cross section alongx snormal to the rollsd is selected. A
spatiotemporal plot is constructed from the sequence of pro-
files along this section, extracted from a series of camera
images; see, for example, Fig. 8sad. These plots are Fourier
transformed digitally into the frequency-wave number do-
main, f represents the frequency axis,k is the wave number
along the director easy axisx. For better clarity, the axes of
all 2D FT spectra have been normalized with the director
ground modekdir in the wave number domain and with the
excitation frequencyf0 in the frequency domain. All images
show the absolute value of the complex Fourier transform.
The signal atsf =0, k=0d corresponds to the integral optical
intensity of the image. It does not contain information on the
investigated patterns, therefore it has been set to zero in all
Fourier transforms.

First, we recollect the classical time response of the direc-
tor field. At pure sine or square wave excitation, the response
of the director field is either strictly symmetricsconduction
regimed or antisymmetricsdielectric regimed with respect to
the two half periods of the driving field. Spatiotemporal pat-
terns and their 2D FT spectra have been investigated in Ref.
f26g. In the conduction regime, the pattern is nearly station-
ary at onset. The 2D FT yields the spatial ground modekdir
and higher spatial harmonics at zero frequency. Spatial har-
monics appear primarily because of the nonlinear relation
between the optical transmission profile and the director de-
flection profile: even if the director deflection contains only
the ground mode inx, the optical profile is not sinusoidal. In
the dielectric regime, the amplitudewstd of the spatial pattern
is modulated with the excitation frequency, consequently one
observes the dominating peak at the positionsf0,kdird. Again,
higher spatial harmonics reflect the optical nonlinearity of
the texture. Because of the time symmetrywstd=−wst
+T/2d, additional peaks appear only at odd harmonicss2n
+1df0 of the excitation frequency. In particular, since the
time integral ofwstd vanishes, there is no signal at the posi-
tion s0, kdird in a perfect pattern.

The situation for antisymmetric triangular wave excitation
with p=0 fEq. s1dg is qualitatively similar to sinus excitation.
In the pattern state diagram shown in Fig. 4sad, experimental
threshold fields and critical wave numbers are given as filled
and open circles, respectively. Figures. 7 and 8 exemplarily
show spatiotemporal patterns and 2D FT spectra in the two
classical dynamic regimes. The texture in the conduction re-
gime is a stationary stripe pattern alongy, the corresponding
spatiotemporal plot is a trivial array of stripes along the time
axis, it has been omitted here. The spatiotemporal plot of the
dielectric pattern near onset is shown in Fig. 8sad. The optical

texture alternates synchronous to the electric field. After each
half period, the pattern is shifted spatially byldir /2. This is a
consequence of the symmetryw̃sx,z,td=w̃sx+ldir /2 ,z,t
+T/2d.

The 2D FT spectra are shown in Figs. 7sconduction re-
gimed and 8sbd sdielectric regimed. In the conduction regime,
one observes the peak of the stationary spatial ground mode
and its higher spatial harmonics. Higher harmonics in the
frequency domain are practically absent. The dielectric 2D
FT pattern is dominated by the peak atsf0,kdird and higher
odd harmonics off0 in the time domain, an additional peak
at s3f0,kdird is seen. The signal ats0,kdird is practically ab-
sent because the time integral ofwstd, vanishes.

In the case of the asymmetric sawtooth excitation with
p=1, we find the pattern state diagram shown in Fig. 4sbd
where open and solid circles represent the experimental data.
The texture of conduction patterns is almost stationary, quali-
tative differences to antisymmetric excitation are practically
not observable. These differences become evident only in a

FIG. 7. 2D Fourier transform of an optical spatiotemporal pat-
tern for antisymmetric triangular excitation in the conduction re-
gime, f0=40 Hz, fc, U0=32.15 V,ldir=30.2mm. The optical tex-
ture is a nearly stationary stripe pattern, the spatiotemporal pattern
is not shown since it is trivial.

FIG. 8. sad Spatiotemporal patternIsx,td in the dielectric regime
at triangular wave excitationfEq. s1dg, f0=65 Hz. fc, U0

=139.3 V. The spatial periodicity isldir=5.7 mm. In order to in-
crease the signal-to-noise ratio, several images have been accumu-
lated synchronously. Note that the time periodicity of the patterns is
T=1/ f0 and there is a symmetryIsx,td= Isx+ldir /2 ,t+T/2d. sbd 2D
Fourier transform of the spatiotemporal pattern shown insad.
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laser diffraction experiment which is much more sensitive to
variations ofwstd, cf. next section. However, the qualitative
difference between asymmetric and antisymmetric excitation
is obvious when one compares the spatiotemporal patterns in
the dielectric regime; Figs. 8sad and 10sad. The director re-
sponses have different time symmetries. A temporal shift of
the spatiotemporal pattern byT/2 in time is no longer
equivalent to any spatial shift of the pattern at sawtooth ex-
citation. As is seen in Figs. 8sad and 10sad, the spatial texture
vanishes twice in each period of the driving field, i.e., the
director deflection passes zero and changes its sign twice in
each excitation period.

Figure 11sad shows that in the subharmonic regime; the
texture vanishes only once in each period of the driving field.
This is agreement with the calculated trajectory ofwstd in
Fig. 6, with only one sign change per period. In the spa-
tiotemporal pattern, there is a symmetryIsx,td= Isx
+ldir /2 ,t+Td, i.e., the pattern in subsequent cycles of the
excitation field is spatially displaced by half a director pe-
riod.

Figures 9 and 10sbd, and 11sbd show the Fourier trans-
forms of the optical patterns at sawtooth excitation. The pat-
tern in the conduction regime is almost stationary in the vi-
cinity of the threshold; higher harmonics in the frequency
domain are at the limits of experimental resolution. In the
dielectric regime, Fig. 10sbd, one finds a dominating peak at
sf0,kdird. This corresponds to an optical pattern with the pe-
riodicity of the director deflection, that alternates essentially
with the excitation frequency. In contrast to antisymmetric
excitation, additional peaks appear at even and odd harmon-
ics of the excitation frequency. In particular, the peak at po-
sition s0,kdird indicates that the time average ofwstd is in
general not zero for asymmetric excitation. The pattern am-
plitudes in the two half periods of the excitation are not the
samefFig. 6scdg. This has important consequences for the
interpretation of conventional shadowgraph images of the
convection patterns. Since the excitation frequencies are usu-
ally beyond the temporal resolution of the human observer or
conventional video technique, only the time-averaged images
are relevant there. The dielectric pattern at asymmetric exci-
tation leaves a time-averaged image with the periodicity of
the momentary images, while the spatial ground mode of the
conventional, antisymmetrically driven dielectric patterns is
averaged out. In that situation, one observes only an apparent
texture that reflects the second spatial harmonicssldir /2d of
the director field.

In the frequency range betweenfc1 and fc2 ssubharmonic
regimed in the pattern state diagram for sawtooth excitation
fFig. 4sbdg, the Fourier spectra of the spatiotemporal patterns
have the form shown in Fig. 11sbd. The dominant peak is
found atsf0/2 ,kdird, i.e., the pattern is periodic with 2T, and
additional peaks of the spatial ground mode appear at fre-
quenciess2n+1d /2f0, n=1,2,3,… . We note that peaks be-
longing to kdir and integer multiples of the excitation fre-
quency are absent. In particular, the spectrum atf0 is exactly

FIG. 9. 2D Fourier transform of an optical spatiotemporal pat-
tern for simple sawtooth excitation in the conduction regime,f0

=30 Hz, fc1, U0=34.35 V, ldir=29.7mm. The pattern is nearly
time-constant, one observes only the stationary spectrum containing
the director ground mode and higher spatial harmonics.

FIG. 10. sad Spatiotemporal patterns in the dielectric regime at
sawtooth excitationfEq. s2dg, f0=100 Hz. fc2, U0=162.95 V,
ldir=5.5 mm. In order to increase the signal-to-noise ratio, several
images have been accumulated synchronously. Note that the period
of the patterns isT=1/ f0, but the symmetrywstd=−wst+T/2d is
broken.sbd 2D Fourier transform of the optical spatiotemporal pat-
tern shown insad. Peaks with wave numberkdir appear atf =0 and
all harmonics of the excitation.

FIG. 11. sad Spatiotemporal pattern at sawtooth excitation in the
subharmonic regime, fc1, f0=40 Hz, fc2, U0=96.9 V, ldir

=9.6 mm. sbd 2D Fourier transform of the optical spatiotemporal
pattern shown insad. Peaks appear atkdir at f =0.5f0,1.5f0, … .
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zero. This is a consequence of the time symmetrywst+Td
=−wstd of the convection pattern amplitudefcf. Fig. 6sbdg.
The peaks at 2kdir and integer multiples off0 are, again, the
consequence of the nonlinear relation between the optical
contrast and the director deflection profile.

B. Laser diffraction experiments

Finally, we show that even the details of the system dy-
namics are qualitatively well reproduced by the model dif-
ferential equation system. For that purpose, we have mea-
sured the time dependence of the diffraction profile
generated by the modulated director field, with the setup de-
scribed in Ref.f33g. The sample is irradiated with normally
incident laser light, and the diffracted intensity at the second
order peak is recorded by a photo diode. Figure 12 shows the
time-dependent optical intensities for sawtooth excitation,p
=1, with exemplary excitation parameters in the conduction,
subharmonic and dielectric regimes, respectively,sdotted
linesd. The corresponding parameter values are indicated by
squares in Figs. 3sdd–3sfd. Since the diffraction pattern is not
sensitive to the sign ofw, the recorded signal in the subhar-
monic regime is of course equal in subsequent cycles of the
excitation field.

For a comparison with the model, we take the calculated
graphswstd of Fig. 6 and make use of the assumption that the

second order diffraction peak intensity is proportional to
wstd4 f33g. The corresponding trajectories are depicted in Fig.
6 as solid lines. Since the linearized model can calculate the
time dependence at threshold but not absolute values of the
dynamic variables, the calculated curves have been scaled to
the maxima of the experimental intensities. The details of the
calculated time dependence of the system variables are in
satisfactory agreement with the experiment.

V. SUMMARY

Summarizing, we have shown that time-asymmetric exci-
tation EstdÞ−Est+T/2d of electrohydrodynamic convection
in nematics can generate a subharmonic dynamic response of
the convection structure. By means of a spatiotemporal pat-
tern analysis, on the basis of a 2D Fourier transform of the
images, we have directly monitored the pattern dynamics. A
continuous variation of the asymmetry of the excitation wave
form has been investigated.

The analysis of the model equations shows that the island
of subharmonic solutions in the stability diagramm1sU0,kxd
is present already at very small deviations from a purely
antisymmetric excitationEstd=−Est+T/2d. The range of ex-
istence of the subharmonic pattern increases continuously
with the increasing asymmetry of the excitation wave form,
represented by the shape parameterp. On the other hand,
both experiment and theory show that the subharmonic pat-
tern appears as the first instability only when the asymmetry
parameterp has reached a value of approximately 0.76, i.e.,
when the wave form is already close to the sawtooth function
of Eq. s2d.

We have shown both in experiment and numerical model
calculations that a transition from aT-periodic response to a
T-antiperiodic, i.e., subharmonic, response of the investi-
gated dynamic system can be achieved along two different
routes. First, it occurs as an effect of increasing asymmetry
of the wave form at constant frequency of the driving volt-
age. This is evident from Fig. 5, where a change of the wave
form along a horizontal line in the phase spacesat constant
frequencyd can bring the system from the dielectric or con-
duction regimes into the subharmonic regime and back. Sec-
ond, it is evident from the same figure that for a constant
wave form, e.g., the sawtooth excitation, the transition be-
tween these regimes can be achieved by a change of the
frequency. This corresponds to the parameter change along a
vertical line in Fig. 5sconstpd. In a previous report, we have
shown that other types of excitation wave forms may lead to
subharmonic EHC patterns as well. A systematic investiga-
tion is under way to reveal global insight in the relation
between the structure of the involved differential equation
system, the excitation wave forms, and the dynamics of the
system variables.

APPENDIX: COEFFICIENTS AND MATERIAL
PARAMETERS

The coefficients in Eq.s6d in the cgs system are given by

a1 = 4p
sikx

2 + s'kz
2

«ikx
2 + «'kz

2 , sA1d

FIG. 12. sColor onlined Measured intensitiessdotted linesd of
the second-order laser diffraction peak of the patterns in thesad
conduction,sbd subharmonic, andscd dielectric regimes. The fourth
power of the calculated director deflection amplitudeswstd sFig. 6d,
scaled to the same maxima as the experimental curves, are shown
for comparisonssolid linesd. Except for slight quantitative devia-
tions, the qualitative features of the trajectories are satisfactorily
reproduced.
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a2 = −
ssi«' − «is'dskx

2 + kz
2d

«ikx
2 + «'kz

2 kx, sA2d

a3 = −
1

f
F1

2

sg1 − g2dkx
4 + sg1 + g2dkx

2kz
2

a1kx
2kz

2 + skx
2 + kz

2dsh1kx
2 + h2kz

2d

−
«akx

2

«ikx
2 + «'kz

2G 1

kx
, sA3d

a4 =
K33kx

2 + K11kz
2

f
, sA4d

a5 =
1

f
F − «a«'skx

2 + kz
2d

4ps«ikx
2 + «'kz

2dG , sA5d

with kz=p /d, «a=«i−«' and the abbreviation

f = g1 −
1

4

fsg1 − g2dkx
2 + sg1 + g2dkz

2g2

a1kx
2kz

2 + skx
2 + kz

2dsh1kx
2 + h2kz

2d
; sA6d

see also Ref.f35g. Most of the material parameters are
known from previous, independent experiments. The con-
ductivities ssi ,s'd are sensitively influenced by impurities
in the material, their absolute values vary between individual
cells. Therefore we fit these parameters for each individual
cell by comparing calculated threshold voltages and wave
numbers to measured data at simple triangle excitation. In
detail, all calculations have been performed using the param-
eter setsin cgs unitsd «i=5.6, «'=6.0, si=96 s−1, si /s'

=1.5, a1=0.2 g cm−1 s−1, g1=−g2=3.65 g cm−1 s−1, h1
=4 g cm−1 s−1, h2=0.4 g cm−1 s−1, K11=14.9
310−7 g cm s−2, K33=13.76310−7 g cm s−2.
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