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Influence of excitation wave forms and frequencies on the fundamental time symmetry
of the system dynamics, studied in nematic electroconvection
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The dynamics of periodically driven nematic electroconvection, a classical dissipative pattern forming sys-
tem, is studied experimentally and theoretically. We demonstrate that for certain excitation wave forms, the
system'’s dynamic response can be periodic with the excitation or subharmonic, depending on the periodicity of
the excitation as control parameter, while for some classes of wave forms, a subharmonic response seems to be
principally excluded. In particular, we describe influences of frequency and time symmetry of triangular
excitation wave forms. Two intrinsically different routes for the transition to subharmonic dynamics are
observed. The time characteristics of the system variables are determined by numerical solution of appropriate
model equations and a Floquet analysis. Experimental data are compared to calculations of the model system
of two coupled linear differential equations. Results of experiment and model are in excellent agreement.
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I. INTRODUCTION and to a coexistence of rolls and hexagons. In particular,
systems that undergo a Hopf bifurcation can be sensitive to
Electrohydrodynamic convectiditHC) represents a well  broken time translational symmetry. Stimulated by theoreti-
known and extensively investigated system for dissipativecal analysig29], the temporal modulation of control param-
pattern formation. After the first experimental descriptioneters has been used in EHC for the controlled conversion
(independently by Williams[1] and Kapustin[2]), the  between traveling convection roll pattertisaveling waves
mechanism of the instability was revealed by Cl@ and  and standing waveg30]. We note, however, that the time
Helfrich [4]. There has been a rapid progress in the furthesymmetries discussed in the present paper have only a very
development of the theorfs-12]. Still today, EHC repre- indirect relation, if any, to the above cited studies of temporal
sents an attractive research field: Focus of recent experimemodulations of the control parameter. In order to derive the
tal and theoretical studies has been laid, e.g., on EHC ivavelengths and dynamics of our convection patterns at on-
nonconventional materiald3], defects and localized states set in the different dynamic regimes, we do not need to em-
[14-18, spatiotemporal chad49,20, patterns in homeotro- ploy amplitude equations, but rather perform a simple linear
pic geometry[21], or systems with low dimensionality stability analysis.

[22,23. The dynamics of the system variables in EHC pat- From a mathematical point of view, a particularly inter-
terns has been studied in particular in R¢g56,24-217. esting aspect is that a simple system of two coupled ordinary
The two coupled dynamic variables that characterize théinear differential equation€ODE’s) can be used to construct
electroconvection patterns in a sandwich cell are the periodighe pattern stability diagrams and the pattern dynamics at
director deflection in the cell and the charge density moduonset. The structure of the dynamic equations is such that in

lation. The director deflection is directly connected with thethe classical experimenelectric fieldE with the periodT
velocity of the convective flow in the cell. Figure 1 gives aand time symmetryE(t)=-E(t+T/2)], either the electric
schematic view of the cell geometry and the structure of theharge distribution or the director field changes its sign in

convection pattern. o _ _ each half period of the excitation. In the conduction regime,
Nematic electroconvection is conventionally studied un-

der ac excitation. The control parameters of the experiment
are amplitudes, frequencies, and wave forms of the applied
voltage. These parameters are conveniently accessible in the
laboratory, and even complex wave forms may be composed
with commercial synthesizers. This makes the nematic EHC
experiment particularly suitable for the study of the influence
of excitation wave forms on pattern dynamics.

It is well known in spatially extended pattern forming
dynamic systems that breaking of the time symmetry of the
excitation, like the temporal modulation of the controll pa-
rameters, can influence the appearance of the patterns quali-
tatively. For example, in Rayleigh-Benard convection a tem- FIG. 1. (Color online Sketch of the nematic cell with the direc-
porally modulated control parameter can lead to thetor and flow fields in the electroconvection rolls and definition of
stabilization of hexagonal patterns against parallel @&, the coordinate system.
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at low excitation frequencies, the time-dependent amplitude E,
¢(t) of the director deflection preserves its sign, it is sym-
metric in the two halves of the excitation periogt) = ¢(t
+T/2). In the high-frequency, dielectric regime, on the other
hand, ¢(t) is antisymmetric in time with respect to the two
halves of the excitation periogi(t)=—¢(t+T/2). The cutoff
frequencyf. separates the two dynamic regini&@s.

The consequence of these symmetries is that the Fourier
transform of ¢(t) in the conduction regime contains only
even multiples of the excitation frequenéy=1/T, while in FIG. 2. General triangular excitation wave form. Fag
the dielectric regimeg(t) contains only odd multiples d,.  =T/4 (p=0) one obtains the antisymmetric triangle of Efj, and
In both regimes, the system responsé&-iperiodic, i.e., the for T,=T/2 (p=1) the sawtooth function of Eq2).
lowest frequency in the dynamics of the system variables is

(=)

amplitude E8(t)

F, T

fo.

It has been shown, howevg27], that a certain class of . (2UT)E for O=t<T72
wave forms, wher@E(t) # —E(t+T/2)], can evoke a subhar- Et) =1(2/T-2)E, for T2<t<T (2
monic (T-antiperiodi¢ response of the pattern. The subhar- ES(tmodT) elsewhere.

{Egn:pge"%g?ii: %Sf t;\?vin S'igg?lfggolggg astquzyéovvsa\slgusd)\/,vﬁﬁoghe latter contains both Even and odd numbered harmonics
frequency ratio 1:4, where one of the frequencies was chose?'f the ground frequencyo=1/T,
below the cutofff, for single-square-wave excitation, and the 2 (1 1 1
second frequency above. The discovery of this interesting ES(t) = _Eo( ~Sinwt = ~sin 2wt + ~sin 3wt + - )
. . : ) . T 1 2 3
dynamic regime has motivated this study of the influence of
the excitation wave form on the dynamic response of EHC In addition, we will consider the general triangular wave
patterns. We investigate the pattern dynamics at a particferm
larly simple excitation scheme. dc-free triangular wave exci-

tations (with frequencyf, and amplitudeE,) are used as (UTYEo for 0=<t<T;
two-parameter functions, and the qualitative and quantitative o — [(T2=-0)/(TI2-TYJE, for T,<t<T-T,
influences on the pattern state diagram are studied. B = [(t- T)/TJE, for T-Te<t<T

The problem of subharmonic dynamics has been dis-
cussed for different types of dynamic systems in literature
[31,32, and it has been shown that in a large class of sys- 3

tems, viz. periodic excitation with a wave form of the sym- .
l _ : - 2. with T/4<T,<T/2. As a measure of the asymmetry of the
metry E(t)=E(t+T) =-E(t+T/2), subharmonic dynamics is excitation, we introduce the parameter 4T,/ T-1, which

suppressed. We will refer to this type of function as antlsym-varies fromp=0 for the triangular wave in Eq1) to p=1

metric excitation. Its Fourier expansion contains only Oddforthe sawtooth in Eq2). This general wave form allows us

E:rlbter:g(rjefr;?(remcohnolgznota:]hg gr%u?%tféeq;eggfirln/:. tr\llgetr'a to study a gradual transition from the antisymmetric case of
v ppropriate wav ' ! IP|Eq. (1) toward the asymmetric sawtooth. Figure 2 visualizes

E%t modT) elsewhere,

gular wave the general excitation wave form given by E§).
We study a well-investigated standard liquid crystal mix-
(4T)E, for 0<t<T/4 tulredwith knO\l/)vn Crpate:ial paramegers, vr\l/herhe the 'exp:erimein-
tal data can be directly compared to the theoretical results.
El(t) = (2-4T)E, for T/4<t<3T/4 (1) The paper is organized in the following way: First, a descrip-
(MT-4E, for 3TA<t<T tion of the experimental conditions and the material is given.
El(tmodT) elsewhere, In the theoretical part of the paper, we analyze a system of

model equations that describe the experiment. The dynamic
. ] o ] response of the system variables is calculated. With a Floquet
as an example of an antisymmetric excitation with respect tqnalysis we characterize the asymptotic stability of time-
a time shiftt—t+T/2. The Fourier expansion of this excita- periodic solutions in the periodically driven dynamic system.
tion gives the series The theoretical results are compared to experimental thresh-
olds and wavelengths. In the third part, we investigate ex-

8 1 1 1 perimentally the detailed temporal characteristics of the pat-
El(t) = ?E()(Psin wt — —sin 3wt + ?sin Bt F ) terns. We compare them to the calculated dynamics of the
system.

. . . . Il. EXPERIMENTAL TECHNIQUES AND MATERIAL
with w=27f,. As a “counterpole” of this antisymmetric Q

wave form, we have chosen the function in E8), which The material usedVlischung 5is a nematic liquid crystal
will be referred to in the following as “sawtooth” function, mixture of four alkyloxyphenylalkybxy)benzoates. The di-
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electric anisotropy,=¢,—¢, of this substance is negative, A second setup is used to study laser diffraction patterns
the conductivity anisotropy,=o— 0o, is positive. Its nem- created by the roll textures; details of the experiment are
atic range extends from 70.5 °C to below room temperaturegiven in Ref.[33]. The sample is irradiated with normally
The relevant material parameters that enter the model equ@ncident laser light of 632.8 nm wavelength, and the intensity
tions[33-39 are given in the Appendix . _ at the second-order Fraunhofer diffraction peak is recorded
The electrohydrodynamic convection patterns are investipy a photo diode. The relation between diffraction intensities
gated experimentally by using a commercial glass cell with gynq director deflection amplitudes is described., e.g., in Refs.
cell gap ofd=48.5um. The two glass plates of the cell are 133 40-42. This diffraction experiment has the advantage of
coated with transparent indium-tin-oxiderO) layers Serv- 3 tagt and quantitative access to the dynamics of the domi-
Ing as elelctrOCjes,l with an elecrt]rodg area c|>t5r|nmz. h nant Fourier mode of the director pattern. It is performed for
SRJJr?:Ceg S(ggg'gédel ayers orient the director planarly at t € quantitat_ive compariso_n of experimental trajectories with
A Linkam heating stage provides a constant sample temt—he dynamics calculated in the model.
perature of 30.0+£0.1 °C. Excitation voltages of different

wave forms are synthesized with a function generétai- . MODEL
lent 33220A, amplified and applied to the cell electrodes. . )
Any dc offset is avoided. For the calculation of the onset of convection, we analyze

For the spatiotemporal characterization of the experimenthe stability of the linearized electrohydrodynamic equations
tal patterns, two optical observation techniques are used. IY,12,35,43 with the spatial mode ansatz of the director de-
the transmission microscope, one has direct access to tif€ction ¢(x,z,t) respective to the ground state. The linear
spatial structure of the convection pattern. The texture restability analysis of the uniform ground state yields the in-
flects the momentary state of the deflected director field. Thistability thresholds, pattern wavelengths, and the pattern dy-
direct orthoscopic observation technique yields patterrnamics at onset.
wavelengths and orientations of the rolls, and in additon The ground state is uniformly aligned alorgand within
structures of defects and defect dynamics which are not rethe two-dimensional model, homogeneity aloggis as-
evant here. Its disadvantage is a large data overhead whenmed. They component of the wave vectdr of the roll
one is interested only in the dynamics of pattern amplitudespattern is set to zerénormal roll9. In our system, the ex-
Another problem is the limited temporal resolution with con- perimental observations justify this assumptionkp#0 at
ventional video technique, which is solved here by the use obnset, with the exception of very low frequencies where ob-
a fast video cameréCitius Imaging C10. Experimental im-  lique rolls form the first instability. For the correct descrip-
age sequences are recorded with a frame rate between 1000n of such oblique rolls wittk, # 0, the calculations would
and 2000 st. The observation of optical textures is realized have to be refined correspondingly. For the electric charge
by a polarization microscop@enapol D in an orthoscopic field G(x,z,t), an ansatz with the same spatial periodicity as
construction. It is used for a qualitative characterization ofthe director field follows from the Maxwell equations:
the dynamics. In the parallel polarizer-analyzer arrangement
chosen for contrast optimization, only the extraordinary P(x,2,t) = p(t)cogk,x)cogk,z),
transmitted light is detected. As the effective refractive index
of the birefringent nematic material for the normally incident - ,
light is a function of the director field deformation, the ob- 4(x,zt) = qt)sin(kx)cogkz2). (4)
served spatial intensity modulation of the transmitted light is . . .
a measure of the periodic director deflection amplitude. Thé:oordlnatesgy are in the cell planez is along the cell nor-

time evolution of a cross section of the pattern, taken norma"@ (Fig- 1. The ansatk,=/d considers the ground mode

to the stripe direction, is extracted from the vid2s,30. that satisfies rigid planar anchoring conditions for the direc-
The complete spatiotemporal behavior of the respective pafo’ at the polylm_|d coated glass platggx, £d/2,t)=0. The
tern can be reduced to a two-dimensional plot without loss of/@ve numberk,=2m/\y; reflects the spatial periodly; of

information under the condition that one has with normalthe director pattern. , .
rolls at onset, i.e., the patterns are uniform alongytioérec- Using the Navier-Stokes equation, the Maxwell equations

tion, normal to the director easy axis. From these spatioten2nd the torque balance for the director one arrives at a sys-
poral data, a two-dimensioné&D) Fourier transform is per- tem of nonlinear partial differential equations where the flow
formed, which yields a straightforward representation of thei€ld in the nematic material can be eliminatege, e.g., Ref.
pattern in the wave-vector—frequency domain. Because dft2))- Free boundary conditions for the flow field have been
nonlinear optical characteristics, the observed texture dedS€d here. This approximation leads only to small quantita-

pends crucially upon the choice of the microscope focudive differences in the predicted threshold voltages and cor-

plane. Even if the director deflection along the easy directof€SPonding wave numbef§]. The linearization in the dy-
axis is harmonic, the optical intensity modulation is moren@mic model reduces the system to a set of wo coupled

complex. A large number of papers have been devoted to tHeomogeneous ordinary differential equations for the two dy-

understanding of the optical properties of EHC patterns, e.gh@mic variables,

Refs.[33,36—42. A discussion of the optical textures and q
Egzgglatmns to the director field can be found, e.g., in Refs. ag(t) +ADED) =0, (5)
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a(t) Y aE(t)

<p(t>>’ Am:(agE(t) a4+a5E(t)2)' ©

whereE(t) is the electric field strength, related to the applied Emo’
voltage byE(t)=U(t)/d, and the coefficienta; depend upon
the wave numbek, of the test mode and on material param-
eters; see the Appendix.

We sketch now in short the basis of the stability analysis,
for details the reader is referred to standard literature, e.g.
Ref.[44]). For systems of two and more coupled ODE’s, an
analytic solution in closed form exists only for a few special

50 Hz

£t = (

ation voltage Uy

£~

excl
=
o

types of matricesA(t). For time-independent matrices,
the ODE system(5) reduces to a system with constant

coefficients with the formal solutiorf(t):x(t)g(O), X(1)

=exp(—At). This can be exploited to compose analytical so-

lutions for piecewise constant excitation wave forms. An ap

plication to the analytical treatment of EHC at square wave, e with p=0, f<f,, (b)
) (3}

excitation is given in Ref{27].
Equation(5) is equivalent to the matrix equation

X (1) + A()X(t) = 0. (7)

Using the fundamental matrix solutiof(t) with the particu-
lar initial conditionX(0)=E, the unit matrix, the solution of
Eq. (5) is given byé&(t)=X(t)£(0). For a time-periodic matrix
A(t+T)=A(t), describing an excitatiof(t) with period T,
the Floquet theorem vyields the particular form

X(t) = Q(t)e®, 8

where bothQ(t)=Q(t+T) and B=const are X 2 matrices,
and consequentlX(t+T)=X(t)C, with the regular transfer
matrix C=X(T)=exp(BT) of the periodically excited system.
The eigenvalueg; of C are called characteristic multipliers,
and any\; such thatu;=eMT is called characteristic exponent
[44]. A necessary and sufficient condition for asymptotic sta
blility of periodic systems is that alj;| < 1. We will choose

| 41| = 5| in the following.

The determination of the coefficients and eigenvalues o
C is as complex as the construction of the fundamental ma.

trix solution X(t). We note that there is no simple relation
between the elements #éf(t) and the multipliersy;, but it is
proven for homogeneous ODE systems like that given in E
(7) that detC)=pu u,=exp—[{Tr A(t)dt) [44]. Since our
A(t) has only real coefficients, this product is positive.

For all excitation wave forms considered here, we deter
mine the elements and eigenvalues®by straightforward
numerical calculation of Eq.7) over one period. At fixed
and given excitation wave forif(t), the two parameters that

Ly
50 k0.5 1.0
wave number k, [um™]

FIG. 3. (Color online Representative calculated stability dia-
ams for EHC under different driving condition&) triangular
triangular wave withp=0, f>f_, (¢
general triangular wave witlp=0.6, f <f;, and (d)—(f) sawtooth
excitation withp=1 at three selected excitation frequendigs(d)
conduction regime with lowest threshol@) subharmonic regime
with lowest threshold, an€f) dielectric regime with lowest thresh-
old. The excitation frequencief, are given in the images. The
neutral curve\ is drawn as a dashed line ag=1, and as a solid
line at u;=—1. The dash-dotted line marks the separaftiwhere
Re{u1 2=0. Colored areas represent regions whigrd>1, i.e.,
parameter regions where the ground state is unstable. Squares in
(d)—(f) mark the three parameter sets where the trajectories of Figs.
6 and 12 have been evaluated.

o

Fourier expansioriground modg is f,. Solutions with uq
=-1 reproduce the original state only after two excitation
periods, their Fourier expansion contaifigé2 as the lowest
frequency, and they will be therefore referred to as subhar-
monic or T-antiperiodic in the following. Regions witl,

>1 in the stability diagram correspond to growing
T-periodic solutions, regions withu;<-1 correspond to
growing subharmonic solutions, fou,| <1, the ground state

jfs asymptotically stable.

Representative calculated stability diagrams are depicted
Fig. 3, where we have selected exemplarily the antisym-
metric excitation(p=0), one wave form with the intermedi-
ate asymmetry parametpe0.6 and the sawtooth excitation

Ywith p=1.0. Colored areas mark the parameter ranges where

|ua)>1, i.e., parameter ranges where the ground state is un-
stable with respect to convection patterns.

~ At antisymmetric triangular excitatio(p=0) we find nu-
merically that the multiplierse, , are both real and positive
for all parameter set§Ug,k,). The whole parameter space
can be separated in two areas, one with conductivelike and

have to be considered are the amplitude of the excitationy,e gther with dielectriclike dynamics. In Fig(s, which is

Up=Eyd, and the wave numbek, of the test mode. The

regions of instability of the ground stat§=(0,0) in the
(Ug,ky) plane are defined bly,|>1 and bound by the neu-
tral curve N where|u,|=1. The global minimum of the neu-
tral curve respective tt, defines the threshold voltadé.
=E.d, with the corresponding critical wave number It is
evident that solutions witlx; =1 reproduce the original state
after one period of the excitation field, we will therefore refer
to them asT-periodic solutions, the lowest frequency in their

representative for frequencies below the cutoff, there are two
separate regions witl,>1. The region at lowk, corre-
sponds to patterns with the time symmetry of the conduction
regime, the area at highy corresponds to dielectric patterns.
The conduction regime provides the global minimuar-
rows atU. andk;) of the neutral curveV. In the experiment,
when the amplitudéJ, of the driving voltage is gradually
increased from zero, the pattern with the lowest threshold,
i.e., the conduction pattern with wave number becomes
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unstable atJy=U,. With increasing frequency, the instability
island of the conduction patterns shifts to higher voltages in
the (Uy, k) diagram. Atf,, it disappears completely or it has
shifted such that the global minimum @f is found for the
dielectric regimgFig. 3(b)]. Although this reflects only the
long established classical EHC behavior, and is qualitatively
in complete coincidence with periodic sine or square wave
driving, we present both graphs here in order to show the
differences to the asymmetric wave forms presented in the
next graphs.

In presence of asymmetric contributiofs> 0) to the ex-
citation, the topology of the stability diagram shows a dra- 0 50 100
matical qualitative changgFig. 3(c)]. Already at very small
values ofp a subharmonic “island” appears between the con-
duction and dielectric regions. Within that island, bpthare
negative. With increasing, the parameter range covered by
the subharmonic solutions spreads. It is separated from the
classical regimes by a separattix(dash-dotted linewhere
Re{u, ot =0 (the two multipliers are complex conjugated in a
narrow parameter range arou§dotherwise real45] ). Fur-
ther increase op leads to the formation of an unstable sub-
harmonic region withu,; <-1 [dark (blue) area in Fig. &)].
However, below a certain value of the asymmetry parameter

150

=
[,

e [um]

100

=
o
wave number k

o1
=)

©

]

threshold voltage U, [V]

o
o

150,

[um™]

100

=
o

wave number k,

o1
=)
©
]

threshold voltage U, [V]

. |

o : . = Qoooq.fcl ifcz
(p:=0.76) the global minimum of\ remains in the conduc- 0 50
tive or dielectric branch for any excitation frequency. The frequency [Hz]
uniform ground state becomes unstable with respect to one
of the classical regimes first, a subharmonic pattern is not FIG. 4. (Color onling Calculated and measured threshold
formed at onset. Whether the system could be forced into theurves for(a) the antisymmetric triangular wave excitatiops0,
subharmonic regime at higher voltages, under certain extegnd(b) the sawtooth excitatiorp=1. Solid lines give the calculated
nal obstructions, cannot be answered within our lineathreshold voltages; for the pattern onset, dashed lines show the
model. calculated critical wave numbelg at onset. The dots give the

The images of Figs.(@)-3(f) show the stability diagrams corresponding experiment_al th_reshold voltgges, open circ_les give
for excitation with the sawtoottp=1). Here, the conduction the wave numbers determined in the experineee next section

regime exists for low frequencies, and it has the Iowesfa‘t p=0, only the conductive and dielectric regimes are present, the

threshold of the three instability islands. With increasfgg :‘;fga:;ei?]uzr}?é’q'j;;zgga:ze%eﬁ;ér;Sﬁghgg;on_'c7:;e|3'zme
2~ .

the region Qf COUdu;tlon patterns S.hlfts upward in theThe squares mark the parameters belonging to the corresponding
(Ug,ky) and finally it disappears. At a first cutoff frequency graphs in Fig. 3

fc1, the subharmonic tongue extends below the conduction
and dielectric regions in théUy,k,) diagram. The subhar- wave numbers show slight slopes in both regimes and a dis-
monic region provides the global minimum 4fin a certain  crete jump atf.. A qualitatively similar pattern is obtained
intermediate frequency rang€ig. 3(e)], and a pattern with  for slightly asymmetric wave formgEq. (3) with low p; a
subharmonic dynamics is observed in this range at onseguantitative analysis is given belgwFigure 4b) shows the
With further increasing frequency, the tip of the subharmonicsame diagram for the sawtooth excitation wjtk1. Be-
tongue moves upwards to higher onset voltages. Above tween the individual regimes, discrete wave number jumps
second cutoff frequency., the subharmonic tongue has are observed. Qualitatively similar diagrams are found for
shifted above the dielectric range. Finally, the subharmoni@xcitation with the general triangular wave form of E8)
island also disappears from the stability diagram. There mayvith sufficiently largep.
still exist a range where® u,>-1 in the diagram, but the There is a superficial analogy of the diagram in Fit)4
dielectric regime withu,; > 1 is the only remaining island of with the graph presented in Rd27], where the threshold
instability. Consequently, abovig, the dielectric convection curve for superposition of two square waves has been deter-
pattern is observed in the experiment. mined in the same material. In R¢R7], the two parameters
After construction and evaluation of the stability diagramswere the amplitudes),, U, of the two square waves with
for the complete frequency range under consideration, onixed frequencies and a 1:4 frequency ratio, where one of the
can collect threshold voltages and critical wave numbers fofrequencies had been chosen above, the second one below
given excitation wave forms, as is shown in Fig. 4. Thethe cutoff frequency. In that situation, the compound wave
antisymmetric triangular wave excitation yields the classicaform varied continuously along the threshold curve. Here, in
graphs shown in Fig.(4), with an increasing threshold volt- contrast, the wave form is fixed, and the excitation frequency
age curve with frequency for the conduction roll pattern, ancalone determines the transition between the different dy-
the transition to the dielectric regime &t Furthermore, the namic regimes.

o
©
o

100
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=
FIG. 5. (Color online Transition frequencies between the con- =
duction, dielectric, and subharmonic regimes in dependence of the % (c)
asymmetry parameterof the triangular wave form. The calculated AV W S P AT N 4 .-q(?)
(solid) lines mark the frequencies where the time symmetry of the [~ s J! o2
pattern with the lowest threshold voltage changes. These frequen- o =T | "0 L T Y E()
cies correspond tf, between(cond and(diel), f.; between(cond
and (subh, andf, between(subh and (diel). Dots show the cor- tmet ¢t

responding experimental datsee next section The squares refer
to the parameters of Figs(a, 3(c), and 3e). The subharmonic FIG. 6. (Color onling Calculated dynamics of the director de-
regime is found only at comparably large asymmetry parameterection amplitudeg(t) (solid line) and the charge field amplitude
(abovep=0.76). Note that it is possible, according to this graph, to q(t) (dashed lingfor sawtooth excitationp= 1 (dashed-dotted line
switch the pattern from &-periodic to aT-antiperiodic time depen- \yith frequencies@ 30 Hz, (b) 60 Hz, (c) 110 Hz. Note that the
dence only by a change of the wave form, when the ground freperiodicity ofq(t) ande(t) is 2T in the subharmonic cag). In the
quencyfy is kept constant. conduction(a) and dielectrio(c) regimes, the signs of both(t) and

i o . q(t) are restored after one excitation period. Like for conventional
An important question is the influence of the asymmetrysine or square waves(t) preserves its sign in the conduction re-

of the excitation wave form on the appearance of the nove§ime (a) and alternates its sign twice during the excitation period in
subharmonic regime. In order to investigate this wave formne dielectric regiméc). Squares in Fig. 3 mark the parameteks
dependence in detail, pattern stability diagrams have beesndk, where the trajectorieé)—(c) have been calculated.
calculated for various asymmetry parametgrs the com-
plete range &p<1. From these graphs, we have con-symmetric triangle excitatiolip=0), only the classical re-
structed the dependence of the cutoff frequentie;, and  gimes appear at onset, with theperiodic dynamicsq(t
fe2 upon the asymmetry of the excitation wave form. The.T)=q(t), o(t+T)=¢(t) reflecting u,=1. Additionally, one
graphs are shown as solid lines in Fig. 5. It turns out that the 55 the time symmetriggt+T/2)=—q(t), o(t+T/2)=g(t) in
cgtoff frequency between the conduction and dielect'ric the conduction regime andy(t+T/2)=q(t), e(t+T/2)
gimes 1s weal_<|y dep_endent upgnfor small_ asymmetries. =-¢(t) in the dielectric regime. In case of any asymmetry of
Ther_e is a slight S.h'ft to Iower_ freque_nues, _because th?he excitationp>0), the time symmetry respective 102 is
growing subharmonic tonguef. Fig. 3c)] increasingly sup- roken in both reaimes
presses the conduction pattern instability island. Only ap In the case ofgthe éawtooth wave form wigte 1, the
B e B s e o offACUted chramis s depicted n P8B40, n con
rast to the excitation with the antisymmetric triangle, sine,

f. splits intof,, andf.,. The remarkable result of this graph . :

. L Lo o . X or square waves, both dynamic variables are no longer sym-
is that it is possible in this dynamic model system to pass_ "~~~ ° e !

I X metric with respect to the half cycles of the driving field,
from aT-periodic to a subharmonic response of the system t(t)|¢| (t+T/2)|, [q(0)| # [q(t+T/2)|. The graphs show that
constant excitation frequency, only by a continuous chang % ¢ 14 N ' grap

of the wave form, for example, when one varies the param'—n. the conduction regimés) as well as in the dielectric re-

eter p for the general triangular wave excitation, along anyg'.me (C). both the director anq cha_rge flelds are mo_d_ulat.ed
horizontal line with 37 Hz=fo<73 Hz. In addition, the with periodT. The subharmonic regime is easily identified in

transition betweeif-periodic andT-antiperiodic patterns can the trajectories of Fig. @). It is characterized by the funda-

be achieved by a change of the excitation frequency at Cor{pentally new symmetry o(t)==¢(t+T), q(t)=-q(t+T),

stant shape of the excitation wave form, e.g., by changing th¥,yhere the amp”tUdes. of bqth variables_ Change their signs
frequency parameter along a vertical path in Fig. 5. after one periodl. This “antisymmetry” is a direct conse-

Finally, after establishing the general time symmetry ofduence of the sign of the Floquet multipligg =-1.

the pattern amplitudes, we discuss the numerically calculated IV. EXPERIMENTAL OBSERVATIONS
trajectories ofe(t) and g(t) at onset during a cycle of the _ . .
excitation. The asymptotic behavior is independent of the A. Fourier analysis of microscope textures

initial conditions, except for the degeneracy of solutions A direct evidence for subharmonic dynamics and the
(o(t),q(t)) < (—e(t),—q(1)), cf. Eq.(5). In case of the anti- evaluation of the theoretical predictions on the basis of ex-
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perimental data can be provided with an analysis of the op-

tical microscope textures, which are sensitive to the sign of

¢(t). For that purpose, we record orthoscopic optical images

of EHC patterns with sufficient time resolution. I
In this section, we focus on two-dimensional Fourier .

transformg2D FT’s) of spatiotemporal plots of these experi-

mental patterns. The method used here has been described in

detail _earlier[26]. The Fourier s_pectra are obtained by th.e FIG. 7. 2D Fourier transform of an optical spatiotemporal pat-
foIIow_lng approach: The dynamlc patterns _are recorded W'tr}ern for antisymmetric triangular excitation in the conduction re-
the high speed camera, the time resolution between 'nd'gime,f0=4o Hz< f,, Up=32.15 V,\gy=30.2 um. The optical tex-
vidual frames was chosen between 0.5 Qnd 1 ms. Then, tdre is a nearly stationary stripe pattern, the spatiotemporal pattern
cross section along (normal to the rolls is selected. A s ot shown since it is trivial.

spatiotemporal plot is constructed from the sequence of pro-

files along this section, extracted from a series of camer
images; see, for example, Figa® These plots are Fourier
transformed digitally into the frequency-wave number do-
main, f represents the frequency axisis the wave number
along the director easy axis For better clarity, the axes of +1/2).

all 2D FT spectra have been normalized with the director . 1 1€ 2D FT spectra are shown in Figs(cbnduction re-
ground modeky; in the wave number domain and with the 9iMe and &b) (dielectric regimg In the conduction regime,

excitation frequency, in the frequency domain. All images ©N€ observes the peak of the stationary spatial ground mode

show the absolute value of the complex Fourier transform@nd its higher spatial harmonics. Higher harmonics in the

The signal atf=0, k=0) corresponds to the integral optical frequency d_omain_are practically absent. The diele_ctric 2D
intensity of the image. It does not contain information on theF' T Pattern is dominated by the peak (&, kyi) and higher
investigated patterns, therefore it has been set to zero in #idd harmonics of, in the time domain, an additional peak
Fourier transforms. at (3fy,ky;) is seen. The signal &0 ,ky;,) is practically ab-

First, we recollect the classical time response of the direcSent because the time integral @fft), vanishes.
tor field. At pure sine or square wave excitation, the response In the case of the asymmetric sawtooth excitation with
of the director field is either strictly symmetriconduction ~P=1, we find the pattern state diagram shown in Figh) 4
regime or antisymmetriqdielectric regimg with respect to ~ Where open and solid circles represent the experimental data.
the two half periods of the driving field. Spatiotemporal pat_The texture of conduction patterns is almost stationary, quali-
terns and their 2D FT spectra have been investigated in Refative differences to antisymmetric excitation are practically
[26] In the conduction regime, the pattern is near|y Station.not observable. These differences become evident Only in a
ary at onset. The 2D FT yields the spatial ground mkge
and higher spatial harmonics at zero frequency. Spatial har-
monics appear primarily because of the nonlinear relation (a)
between the optical transmission profile and the director de-
flection profile: even if the director deflection contains only
the ground mode iw, the optical profile is not sinusoidal. In
the dielectric regime, the amplitudgt) of the spatial pattern
is modulated with the excitation frequency, consequently one
observes the dominating peak at the positinky;,). Again,
higher spatial harmonics reflect the optical nonlinearity of _IA_I_ spatial coordinate z
the texture. Because of the time symmetgyft)=—o(t dir
+T/2), additional peaks appear only at odd harmor{i2s |
+1)fy of the excitation frequency. In particular, since the (b) ”
time integral ofp(t) vanishes, there is no signal at the posi-
tion (0, ki) in a perfect pattern.

The situation for antisymmetric triangular wave excitation £l
with p=0[Eg. (1)] is qualitatively similar to sinus excitation.
In the pattern state diagram shown in Figa)4 experimental
threshold fields and critical wave numbers are given as filled
and open circles, respectively. Figures. 7 and 8 exemplarily g, g (a) Spatiotemporal pattertix,t) in the dielectric regime
show spatiotemporal patterns and 2D FT spectra in the tw@; triangular wave excitation[Eq. (1)], fo=65 Hz>f, U
classical dynamic regimes. The texture in the conduction re=139.3 v. The spatial periodicity i&q,=5.7 «m. In order to in-
gime is a stationary stripe pattern alopghe corresponding crease the signal-to-noise ratio, several images have been accumu-
spatiotemporal plot is a trivial array of stripes along the timelated synchronously. Note that the time periodicity of the patterns is
axis, it has been omitted here. The spatiotemporal plot of th&=1/f, and there is a symmetiyx,t)=1(x+\g;/2,t+T/2). (b) 2D
dielectric pattern near onset is shown in Figa)8The optical  Fourier transform of the spatiotemporal pattern showfajn

6
2 4
wave number k[ Kdic

Ztiexture alternates synchronous to the electric field. After each
half period, the pattern is shifted spatially By, /2. This is a
consequence of the symmetrg(x,z,t)="p(X+\y/2,2,t

ITlétime t

2
{Nave number /K
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wave number k¥ aic

FIG. 9. 2D Fourier transform of an optical spatiotemporal pat- ol ¥ Pr e
tern for simple sawtooth excitation in the conduction regirfige, —+——— spatial coordinate =
=30 Hz<f¢, Upg=34.35V, \4;;=29.7 um. The pattern is nearly Adir ‘\
time-constant, one observes only the stationary spectrum containing I

the director ground mode and higher spatial harmonics. (b)

laser diffraction experiment which is much more sensitive to .
variations ofe(t), cf. next section. However, the qualitative f/f, 1.0
difference between asymmetric and antisymmetric excitation
is obvious when one compares the spatiotemporal patterns in
the dielectric regime; Figs.(8 and 1@a). The director re-
sponses have different time symmetries. A temporal shift of . . . . .

FIG. 10. (a) Spatiotemporal patterns in the dielectric regime at

the spatiotemporal pattern by/2 in time is no longer L _ ~
equivalent to any spatial shift of the pattern at sawtooth ey Sawtooth  excitation[Eq. (2)], fo=100 Hz>fe,, Up=162.95V,

A . A - N\gir=5.5 um. In order to increase the signal-to-noise ratio, several
Sgﬁgsohne.sAtSV\llicheiinelgc?gpsé(igngf ﬁg:)’Jrri]\?"fgaﬁtﬁéteixéuretzheimages have been accumulated synchronously. Note that the period

di deflect d ch . . . ~of the patterns isT=1/f,, but the symmetryp(t)=-¢(t+T/2) is
Irector deflection passes zero and changes Its sign twice I(E}oken.(b) 2D Fourier transform of the optical spatiotemporal pat-

each excitation period. . ) . tern shown in(a). Peaks with wave numbég;, appear af =0 and
Figure 11a) shows that in the subharmonic regime; the 5 harmonics of the excitation.

texture vanishes only once in each period of the driving field.
This is agreement with the calculated trajectory¢tf) in

Fig. 6, with only one sign change per period. In the spayegimg in the pattern state diagram for sawtooth excitation
tiotemporal pattern, there is a symmetri(x,0)=I(X  rjg 4b)], the Fourier spectra of the spatiotemporal patterns
+Ngi/2,t+T), i.e., the pattern in subsequent cycles of thepave the form shown in Fig. 14). The dominant peak is
gxcitation field is spatially displaced by half a director pe-fgynd at(fo/2 k), i.e., the pattern is periodic withT2 and
r'Od'. . additional peaks of the spatial ground mode appear at fre-
Figures 9 and 1(®), and 11b) show the Fourier trans- q,encies(2n+1)/2f,, n=1,2,3,.. . We note that peaks be-
forms of the optical patterns at sawtooth excitation. The patronging to ky, and integer multiples of the excitation fre-

tern in the conduction regime is almost stationary in the Vi-; ,ancv are absent. In particular. the spectruri i exactl
cinity of the threshold; higher harmonics in the frequencyq y np ’ P My y

domain are at the limits of experimental resolution. In the

wave number k/Edir

In the frequency range betweégn andf., (subharmonic

dielectric regime, Fig. 1®), one finds a dominating peak at g
(fo.kgi)- This corresponds to an optical pattern with the pe- ‘(all ' ' 5 5 ' a lg
riodicity of the director deflection, that alternates essentially ; 8 u g ' ' s

with the excitation frequency. In contrast to antisymmetric

excitation, additional peaks appear at even and odd harmon- B B n 3 v B 8 3 ] 2T
ics of the excitation frequency. In particular, the peak at po- ' 5 n u 8 a a 5
sition (0,ky;) indicates that the time average oft) is in I T S T T oy S R
general not zero for asymmetric excitation. The pattern am- =—+——+— spatial coordinate =

plitudes in the two half periods of the excitation are not the dir

same[Fig. 6(c)]. This has important consequences for the (b)

interpretation of conventional shadowgraph images of the
convection patterns. Since the excitation frequencies are usu-
ally beyond the temporal resolution of the human observer or
conventional video technique, only the time-averaged images I/ 1o
are relevant there. The dielectric pattern at asymmetric exci-
tation leaves a time-averaged image with the periodicity of
the momentary images, while the spatial ground mode of the
conventional, antisymmetrically driven dielectric patterns is  FiG. 11. (a) Spatiotemporal pattern at sawtooth excitation in the
averaged out. In that situation, one observes only an apparegiibharmonic regime, fo; < fo=40 Hz<fo,, Up=96.9V, g
texture that reflects the second spatial harmofiigg/2) of  =9.6 um. (b) 2D Fourier transform of the optical spatiotemporal
the director field. pattern shown ir(a@). Peaks appear &t;, at f=0.5fy, 1.5f, ... .

2

1
wave number k/Kdir
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second order diffraction peak intensity is proportional to
©(t)*[33]. The corresponding trajectories are depicted in Fig.
6 as solid lines. Since the linearized model can calculate the
time dependence at threshold but not absolute values of the
dynamic variables, the calculated curves have been scaled to

B of T i S SIS the maxima of the experimental intensities. The details of the
%_ S S X X R Y R 7 S calculated time dependence of the system variables are in
< ) satisfactory agreement with the experiment.
(o]
8 V. SUMMARY
S .
- R Summarizing, we have shown that time-asymmetric exci-
= g ) tation E(t) # —E(t+T/2) of electrohydrodynamic convection
A A s sl IS in nematics can generate a subharmonic dynamic response of
= w7 X R VR X T B Y7 the convection structure. By means of a spatiotemporal pat-
= | tern analysis, on the basis of a 2D Fourier transform of the

images, we have directly monitored the pattern dynamics. A
continuous variation of the asymmetry of the excitation wave
form has been investigated.

The analysis of the model equations shows that the island
of subharmonic solutions in the stability diagram(Ug, k)
is present already at very small deviations from a purely
antisymmetric excitatiofiE(t)=—E(t+T/2). The range of ex-
istence of the subharmonic pattern increases continuously
with the increasing asymmetry of the excitation wave form,
represented by the shape parameieOn the other hand,

conduction,(b) subharmonic, an¢c) dielectric regimes. The fourth both experiment and.thelory shc_)w that the subharmonic pat-
power of the calculated director deflection amplitugés (Fig. 6, (€1 appears as the first instability only when the asymmetry
scaled to the same maxima as the experimental curves, are sholrametep has reached a value of approximately 0.76, I.C.,
for comparison(solid line9. Except for slight quantitative devia- When the wave form is already close to the sawtooth function
tions, the qualitative features of the trajectories are satisfactorihPf EQ. (2).
reproduced. We have shown both in experiment and numerical model
calculations that a transition fromTaperiodic response to a
T-antiperiodic, i.e., subharmonic, response of the investi-
gated dynamic system can be achieved along two different
routes. First, it occurs as an effect of increasing asymmetry
f the wave form at constant frequency of the driving volt-
ge. This is evident from Fig. 5, where a change of the wave
form along a horizontal line in the phase spdatconstant
frequency can bring the system from the dielectric or con-
duction regimes into the subharmonic regime and back. Sec-

. . ond, it is evident from the same figure that for a constant
Finally, we show that even the details of the system dy- 9

) o J'wave form, e.g., the sawtooth excitation, the transition be-
namics are qu_ahtatlvely well reproduced by the model d'f'tween these regimes can be achieved by a change of the
ferential equation system. For that purpose, we have me

Effequency. This corresponds to the parameter change along a

Zlérr?edratg]de b;mee rr?gglflg?:;(é?reg:)rtf?; q d\j\ﬁ{ﬁiﬂznse%gﬁ(ljeevertical line in Fig. 5(constp). In a previous report, we have
scribed in Ref[33]. The sample is irradiated with normally shown that other types of excitation wave forms may lead to

o . : . . ubharmonic EHC patterns as well. A systematic investiga-
incident laser light, and the diffracted intensity at the secon P y 9

. i ) ion i | global insight in th lati
order peak is recorded by a photo diode. Figure 12 shows th.rlgon 's under way to reveal global insight in the relation

time-d dent ontical intensities f wiooth tati etween the structure of the involved differential equation
ime-cependent optical Intensities for sawtooth exciaton, system, the excitation wave forms, and the dynamics of the
=1, with exemplary excitation parameters in the ConductlonS .
. . . . i ystem variables.

subharmonic and dielectric regimes, respectivétiotted
lines). The corresponding parameter values are indicated by
squares in Figs.(8)—3(f). Since the diffraction pattern is not
sensitive to the sign o, the recorded signal in the subhar- o _ _ _
monic regime is of course equal in subsequent cycles of the The coefficients in Eq(6) in the cgs system are given by
excitation field.

For a comparison with the model, we take the calculated
graphse(t) of Fig. 6 and make use of the assumption that the

time ¢ [s]

FIG. 12. (Color online Measured intensitiegdotted line$ of
the second-order laser diffraction peak of the patterns in(éhe

zero. This is a consequence of the time symmetfis+T)
=-¢(t) of the convection pattern amplitudef. Fig. 6b)].
The peaks at2;, and integer multiples of, are, again, the
consequence of the nonlinear relation between the optic
contrast and the director deflection profile.

B. Laser diffraction experiments

APPENDIX: COEFFICIENTS AND MATERIAL
PARAMETERS

2
O'Hki +o,k;

, Al
Suki‘* SLkg (AD

a1=47T
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(oyeL — 8o )G+ )

2 2
gk +e K

a,= K, (A2)

1{ 1 (y1— »Ki+ (v + 7)KKC

az=—-—-| =
2Tt 2,2+ (R +12) (mykE + k)
K2 1
_%}_, (A3)
gk + e kg | Ky
Kaak® + K 4K2
a4: 33Xf 11 Z, (A4)
. — 228 (IK+K) (A5)
f 4’7T(8H|(§+8Lk§) '

with k,=m/d, e,=¢;—¢, and the abbreviation

PHYSICAL REVIEW E1, 056307(2005

1 (- YIIC+ (71 + 1)K ]
4 kG + (K + KO (K + k)

f=y (A6)

see also Ref[35]. Most of the material parameters are
known from previous, independent experiments. The con-
ductivities (0,0, ) are sensitively influenced by impurities
in the material, their absolute values vary between individual
cells. Therefore we fit these parameters for each individual
cell by comparing calculated threshold voltages and wave
numbers to measured data at simple triangle excitation. In
detall, all calculations have been performed using the param-
eter set(in cgs unit$ g=5.6, &,=6.0, 0,=96 s, oy/c,
=15, «;=0.2gcm's? y=-9=365gcm's?

=4 gcmis? 7,=0.4 g cmts™, K;1=14.9
X107 g cms? Kg3=13.76x 107 g cm s2
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