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Thermal convection in colloidal suspensions with negative separation ratio
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Thermal convection in colloidal suspensions of nanosized particles is investigated. Representative examples
for such materials are ferrofluids, but since we do not imply any external magnetic field, the description applies
to nonmagnetic suspensions as well. With the grain size being large on molecular length scales, the particle
mobility is extremely small, allowing to disregard the concentration dynamics in most cases. However, due to
the pronounced Soret effect of these materials in combination with a considerable solutal expansion, this
cannot be done when thermal convection is under consideration. Here we consider the case when the separation
ratio (the Soret coefficientis negative. This case reveals a much richer variety of phenomena than that of
positive separation ratio. In particular, for heating from below we find a linear oscillatory instability, whose
amplitude, however, relaxes to zero on the long turn and is thus transient only and, at higher Rayleigh numbers,
a finite amplitude stationary instability coexistent with the linearly stable convection-free state. By heating
from above short-length-scale convective structures occur, whose wavelength depends on the Rayleigh number.
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I. INTRODUCTION tio, without and with an external magnetic field, respectively.

Thermal convection in binary mixtures has attracted muctiowever, the separation ratio of ferrofluids can be positive
research activity in the paétee[1-3] for a review. In com-  OF hegative[8] depending on the nature of the system. Usu-
parison to the pure fluid case, the dynamics and the bifurceﬁ,”y, ferrofluids with steric stabilization possess pOSItlve
tion scenarios are more complicated due to the extra degr@_eparation rati@y, while for ferrofluids with electrostatic sta-
of freedom associated with the concentration field. Therebyilization ¢ is expected to be negative. Examples for the
solutal currents are not only driven by concentration gradilatter are maghemite and cobalt ferrite particles dissolved in
ents, they occur also in response to temperature inhomogwater and stabilized by Hor citrate ionq8]. The value ofis
neities. This is denoted as the thermodiffusive or Soret effectdepends linearly on the concentration and can reach absolute
Its influence on the convective buoyancy force is quantifiedsalues comparable to those of stericly stabilized similar fer-
by the dimensionless separation ragio rofluids [8], i.e., |/ ~100—-1000. The present paper is de-

When the thermal convection problem is considered inyoted to the study of thermal convection in ferrofluids with
colloidal suspensions rather than in molecular binary mixnegative separation ratio without external magnetic fields.
tures, one has to take into account the very distinct time The paper is organized as follows. In the following sec-
scales involved. T_he diffusion of c_oII0|_daI particles is mL_lchtion the problem is set up along with the governing equations
slower than a typical molecular diffusion and the diffusion 5nq poundary conditions. In Sec. Ill we present the linear
time is about two or three orders of magnitude smaller. Thigapility analysis for two different cases—heating from be-
is reflected in the value of the LEW'S r;umbler which in 5., and from above—and in Sec. IV the nonlinear behavior
colloidal suspensions isL~10"-10~ compared to of the system is considered, where we restrict ourselves,

L~0.1-0.01 in molecular binary mixtures. In addition, the . . S
two constituents of a colloidal suspensi¢the solvent and however, to 2-dimensional roI.I .patterns, for simplicity. A
summary concludes the exposition.

the colloidal particleshave very different densities. For ex-

ample, for ferrofluids with colloidal particles made of mag-

netite and dissolved in water the ratio of the two densities Il. SETTING UP THE PROBLEM

can be as large as5 [4]. As a result, there is a very high

separation ratio in these materials. The combination of these | ot ys consider a laterally infinite horizontal layer of an

two featuresthigh ¢ and lowL) makes the consideration of ,compressible ferrofluiddensity p, kinematic viscosity»)

the convection problem in ferrofluids different from molecu- ) ,nded by two rigid impermeable plates. The setup is

lar binary mixtures[S—?]. In particular, the experimentally o404 from below or above with a temperature difference

relevant initial state of the concentration field is different y -\ o eon the plates. In the present paper we do not con-

from the linear proﬂle usually consude_red. L sider magnetic field related effects, thus the evolution equa-

f Inﬂth_g fol!owm% we phrast(;:- tcj)lur r<]j|scusspn In terms Olftions for non-magnetic binary mixtures can be adopted. Tak-

c(;rtricc))nu:‘of’;:rr]cii\teg zt?oarsf) ai dyt;e?emgrsg 'mgr?rtagégggrgng C(r,t) as the concentration of the solid constituent of the

ments of material pargmeters available for ferrofltﬁ&ile]. syspension, t.he dimensionless equations for the Eulerian

D i N . ) fields of velocityv(r,t), temperaturd(r,t), andC(r ,t) read

In principle, this description is valid for nonmagnetic suspen-, . L .

sions, too, as long as no external magnetic field is involved" Boussinesq approximatidii3-19 for negativey
In two recent publication$5,6] we have discussed the

thermal instability in ferrofluids with positive separation ra- V.v=0, (1)
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GV +V- Vv=—VW+Prvay +pr Rd(T—?) In the following sections on linear and nonlinear stability
o analysis, we first present the relevant equations valid for both
+|y|(C-C)le, (2)  casedheating from below or from aboyes far as possible,
but then discuss the results for the different regimes, sepa-
rately.
T+v: VT=V7T, (3)

I1l. LINEAR STABILITY ANALYSIS
aC+v- VC=L(V2C+V2T). (4) A. Basic state and time scale separation

As shown in[5], the appropriate state to start the investi-
gation of the convection instability in ferrofluids is a state
where the temperature profile is fully developed while con-
A . centration just starts to build up the layers near the bound-
pressuréV is «“p/h”. Therebyx, D, Dy are the coefficients gieq This is due to the very different time scales of the
for heat, concentration and thermodiffusion, respectively,,ncentration diffusion and heat conduction. So the initial
The quantitiesT and C are reference values defined as thestate is given by
mean values for temperature and concentration. Apart from

Here we have scaled length by the layer thickrigdsme by
the characteristic heat diffusion tint&/«, temperature by
AT, and the concentration bD1/D.)AT. The scale for the

the Prandtl number Prefx and the Lewis number v=0, (8)
L=D./« there is a third dimensionless material parameter,
the separation ratio ¢y=D;B./(D:B1), where B;= Teon o(Z):?— z, (9)

—=(1/p)dpl dT and B.=(1/p)dpl oc are the thermal and solutal ) )

expansion coefficient, respectively. The dimensionless Rayfr the velocity and the temperature field. For the concentra-
leigh number RaB;gh®AT/(kv) is the control parameter ton field we have a slowly developing profile given by the
measuring the strength of the thermal drive. In E3).we  Solution of the diffusion equation

have suppressed the Dl..IfOUI‘. e'ffeqfhea.t currgnt driven by a 4Co=L 0§Co (10)
concentration gradieptsince it is significant in gas mixtures
only. with the inhomogeneous boundary condition

In addition to the equations of motion boundary condi- Cyl -1 (11)
tions are needed. Taking the bounding plates to be no-slip for Z-0lz=21/27 =
the velocity, highly heat conducting, and impermeable foraccording to Eqs(7) and(9). On the creeping time scale of
concentration currents we have at the upfzerl/2) and the  the evolution ofCy(z,t), 7=Lt, Egs.(10) and(11) are valid
lower (z=-1/2) plates for 7=L=10". An exact solution of Eqg10) and(11) can
be found, for example, if5].

V|=21/2=0, (5
B. Linear deviations
-1 To probe the stability of the ground state, deviations are
Tlmap=TF > (6)  added whose time evolution is investigated. To that end we
impose[16]
C(r,t) =Cy(z,t) +c(r,t), (12
(azC + &ZT)|Z=il/2 =0. (7) 0
T(r,t) = Teond2) + 6(r 1), (13

Equation(7) guarantees that a concentration current cannot
penetrate the plates. Owing to the Soret effect the appliednd a nonzero velocity fiels(r,t), whosez component is
temperature difference enforces a finite concentration gradin(r ,t). Linearizing the equations of motion for the convec-

ent at the boundaries. Equatiofl—4) together with the tive perturbations of the forng,c,wo e coskx yields
boundary conditiong5)—(7) complete the system of hydro-

dynamic equations for the variablesT,C. M - Kw = - Pr Rak?(6 + |yc) + Pr(JZ — k22w,
There are two essentially different regimes—heating from (14)

below (Ra>0) and heating from abovEéRa<0). In the first

case we have an instability due to the temperature buoyancy NO—wW= (ﬁg ~12)6, (15)

force while the concentration buoyancy stabilizes the system.
This can be considered in some sense as an extension of the )
one component liquid convection with some additional ef- NC+Wd,Co=L(3;~ K*)(c+6). (16)
fects due to the presence of the concentration buoyancy. lhe boundary conditions read

the second case the driving force for the instability is the

buoyancy force due to the concentration field, while the ther- W|=21/2=0, (17)
mal buoyancy is stabilizing. This case has no analog in a one
component system. OMW|p=s12=0, (18)
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Ola112=0, (19) 2.5! Re(})
2t
(ﬁzc + ‘920)|z:t1/2 =0. (20) ,’,
1.5} s
Note that this system of ordinary differential equations is not o
autonomous, sinc€y(z,t) involves an explicitz and time 1r ot
dependence. But, as it is shown [if], one can takeC, 0.5t /
=const. 0rd,Cy=0 (uniform concentration distributigrfor a L ~—
simplified analytical treatment. However, the discussion in -0.1 = 1““1———5;
[5] also reveals that a linear stability theory, suitable to com- —\;0}.25//, 0.05 0. 0.15 0.
s I-0.5

pare with a convection experiment, has to be based on the
growth rates of the convective perturbations rather than on

the threshold value for the temperature gradient. FIG. 1. The linear growth rate Re(¢)) for convective pertur-

bations as a function of the reduced Rayleigh numbeRa/RfS
-1. Here R is the threshold for the onset of convection in a
single-component fluid as shown by the dashed straighi(Viithin

For the case Ra0 we assume that the spatial profiles of the present Galerkin approximation 8%&752). Full lines indicate
the velocity and the temperature are only slightly disturbedfrowth rates of unstableor most4unstabbemodes. The parameters
by the concentration dynamics. Accordingly, we represenf®¥=-10, Pr=7, and.=7x10"
their dependencies in terms of simple trigonometric test
functions of a form that automatically fulfills the boundary field is stabilizing, the state with a fully developeihean
conditions(17)—(19) concentration profile is stable. Taking into account that the

concentration profile develops in time there is the possibility

C. Linear growth rate for the case Ra>0

w(x,2,t) = A(t)cogkx)cos(m2), (21)  that the nonconvective state becomes stable, again. On the
other hand, the convective motion remixes the concentration
0(x,z,t) = B(t)cogkx)cog 77z). (22 field, making it almost homogeneous and, thus, leaves the

system unstable. So the final state depends on the interplay
of these two effects—the concentration field evolution due to
Xhe Soret effect, and the remixing of the concentration field
due to convection. To make a prediction of the final state of

In contrast, for the convective concentration fielde allow
for a steep boundary layer behavior, which we account for b
the following multimode expansion:

n=0 this convection problem, one needs to solve the nonlinear
c(x,z,t) = = 6(x,z,t) + cogkx) D b,(t)cog27nz). (23 problem. This is done in Sec. IV.
n=0

For > L% and|y]{>1 and with the approximatiok= 7 an

analytical expression fok as an implicit function of the
control (Ra) and the material parametetg, L, Pr) is ob-

tained from Eqs(14)—(16) and (21)—(23) [5]

3Ra P\ — 272L|¢]) = N(272 + N) (2772 Pr+ ™). (24)

Without these approximations results are obtained nu-
merically and shown in Fig. 1 and Fig. 2 illustrating the
dependence of Re) and Im\) on the reduced Rayleigh
numbere:Ra/R@—l for the separation ratigg=—10. The
dashed straight line bifurcating at=0 indicates the refer-
ence case of a single-fluid convection.

For the case of a negative separation ratio the bifurcation
takes place at the same point as for the single-fluid case. But
in the present case there is a Hopf bifurcation at onset. When
e is increased the oscillatory frequency decreases and at the
point e =0.05 the(linean oscillatory instability becomes a
stationary one. Above that point there are two bifurcation
branches, of which only the most unstable is relevant, the
upper brancHfull line) in Fig. 1. If we increase: further,
this upper branch approaches asymptotically the bifurcation
line of the single component liquid casg=0).

To understand this behavior, it should be noted that the
initial state, whose stability is investigated, is one with an

D. Linear growth rate for the case Ra<0

Heating the system from aboy&a< 0) while /<0 one

is tempted to use a similar linear stability analysis as for
Ra>0 and>0 resulting in a threshold valyd 4]

L+]yf

R, (25)

Ra, =

with R32=1708. Since thélinear growth rate of the most
unstable modes is very small near the threshold, we consider
the range Ra—Rd where convection can be observed ex-

Im(3)
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FIG. 2. The frequency of the oscillations (k{¢)) for convec-

almost homogenous concentration profile. Since in the cas@e perturbations as a function of the reduced Rayleigh number

of negativey the buoyancy force due to the concentratione=
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perimentally. However, sinc/{>1 for typical ferrofluids, V. NONLINEAR BEHAVIOR
we cannot use the resuy24) for \, because the assumption
k.=~ 7 that holds in the case Ra0 does not hold for the case
Ra< 0. The critical wave number depends on Ra sensitively To investigate the nonlinear behavior of the system we
so we need to find, for each value of Ra. The asymptotic use numerical methods described5i To that end we make
behavior for large negative Ra can easily be foucfd Ap- the following ansatz of a 2-dimensional pattern, which is
pendiX almost independently of the special form of the laterally (in x direction periodic with wave numbek

Galerkin profiles(21)—(23), with the result

A. Time evolution and numerical solution

C(x,zt) = Cy(z1) + c4(z,t) coskx, (29
a_
ke=alRd, (26) T(X,2,t) = 65(z,t) + 6,(z,1) coskx, (30
wherea is given by W(X,z,t) =w;(z,t) coskx, (3D
gl +2 [+ 27 with the x component of the velocityv,(X,z,t)=
p=-*2 \/ W27 1 =1 for |y>1.  ~(1/Kam(zD sinkx due to the incompressibility condi-
2 4

tion. We have chosen this convective roll pattern for simplic-
(27) ity. Although other patternée.g., square patternseem to be
possible[19], we do not think that the results are qualita-
tively different for different convection patterns. Substituting
(29—(32) into the nonlinear equations of moti¢®)—(4) and
sorting for different lateral dependencies yields the following
system of equations,

To this (asymptoti¢ wave number belongs the maximum
(asymptoti¢ linear growth rate

— | —a-1 L —
)\:L\a|Rd|l’ll|Tx§|z/x|V|Rd for |yl >1. 1, s ,
@ Eat(ﬁz—k)wlz(D = k9w - Rak(6, - ycy), (32)
p
(28)
. . =T 1
These asymptotic relations are valid fow|Rd > 2. 8Co + 5,;;Z(chl) = LoA(Cy + 6p), (33)

The physical reason why the wavelength of the most un-
stable mode becomes shorter and shorter when increasing the
Rayleigh number, can be understood as follows. There are ey + Wq3,Co= L(&g— k)(c, + 6y), (34)
two buoyancy forces in the system—solutal and thermal
buoyancy. The thermal buoyancy is stabilizing, while the so- 1
lutal buoyancy is responsible for the instability. The diffusion 360+ Eaz(wlal) = %565, (35)
of the temperature field is large compared to the concentra-
tion diffusion. Thus, short scale convective structures smooth > 1o
out the temperature, while the concentration field follows the 0y = Wy +Wyd,00 = (d, = K°) 0y, (36)
short scale structures due to the small diffusion. As a conseyjith the boundary conditions
quence, the thermal buoyancy cannot overcome the destabi-

lizing solutal buoyancy, in particular for small wavelength 9{Cy+ 01)|=51/2= 0, (37)
fluctuations. If the thermal buoyancy increases, the critical

wavelength has to decrease. Indeed, the tendency to shorter ICo+ 00)|,=s12=1, (38)
wavelengths for larger Rayleigh numbers has been observed

in experiment§17,18. O1lz=11/2= Oolz=21/2= 0, (39

We should note, however, that the linear stability analysis
of a homogeneous concentration profile is relevant only, if
the growth rate of the most unstable mode is larger than the
evolution rate of the concentration profile, e.g., forL*3  To solve this boundary-value problem we adopt vertical pro-
[5]. This is easily fulfilled for positive Réat Ra~ R&), but  files Wi, 6o, 61, Co, andc, of the form
in the case Ra 0 the growth rate is~Ly|R4 [cf. Eq. (28)]

Wilzs1/2= 0 Wq|p=s1/2= 0. (40

and large enough to fulfilh >L for very large Rayleigh wy(z,1) = A() cos(m2), (41)
numbers, only. Thus, when the linear stability analysis given

above is relevant, the use of the asymptotic relaf@®) is 01(z,t) = B(t) cosmz, (42)
possible. On the other hand, when the growth (atéRa) is

not large enough, we need to consider the evolution of the 6o(z,t) = F(t) sin 27z, (43
concentration profileCy and the growth of the perturbation

simultaneously, in which case we are not able anymore to n=N

make the time scale separation and to describe the linear Colzt) =z 6y(zt) + >, ay(t) sin2n+ 1)7z,  (44)
behavior of our system in terms of growth rates. n=0
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n=N

Ci(z,t) = - B1(z,t) + > by(t) cos Dz, (45) L-S1A®)

n=0

which satisfy the boundary conditiori87)—(40) identically.

These equations describe a two-dimensional convective flow

in the form of parallel rolls along thg axis in an infinite slab

of thickness 1. We point out that fa¥=0 the concentration -0.
fields decouple from the temperature and the velocity pat-

tern. This reduces Eq§1)—(43) to the 3-mode model intro-

duced by LorenZ20] to model the dynamics of convective 1.5
rolls in a single-component Rayleigh-Bénard convection. For

a non-zeroy, the convection pattern is modified by the con- £ 3. The time dependence of the velocity amplitud® in
centration field, but we can keep the single mode expansionge |inear oscillatory instability regimés=Ra/R4-1=0.025 in

for temperature and velocity without modifications, becauserms of the thermal diffusion timéy=-10, Pr=7, andL=7

the diffusivities for heat and momentum are large enough to< 10°5).

prevent the appearance of strong gradients. By way of con-

trast, owing to the small Lewis number, the concentrationmagnitude larger than the initial value of the perturbation,
field does build up steep boundary layers, which we accounihile the time, at which that happens, is fairly independent
for by the multimode Fourier series given (#4) and (45).  of the initial value of the perturbation@t least if they are
For Cy the modes are antisymmetric mand resemble the smal).

solution of the diffusion equation without advectift., e.g., For the regime of stationary instabilie/=0.05, the time
Eq. (13) in [5]], while for c, symmetric modes are appropri- evolution of the velocity amplitudé(t) is presented in Fig. 4
ate. The numbeN of contributing modes was taken large for two typical simulation runs. There are two different time

enough to ensure the results to be insensitive against a fueyolution behaviors, depending on the initial value of the
ther increase oN. For the parameter values considered hereamplitude A(0). The oscillating curve(S) in Fig. 4 corre-

N=50 turned out to be sufficient to get the correct time evosponds to a small initial valu&(0)=10"5, while for the

lution picture. _ curve (L) with a large initial A(0)=1072 a stationary state
The equations for the mode amplitud&sB, F, a,, by are  \yith finite amplitude is obtained. If one waits long enough,

solved by a Runge-Kutta integration. The wave numker e gscillationdS) die out and the case with no convection is

: o ) . Geached again. Thus there are two stationary states—the qui-

\(k,Ra), varies between 3 and 3.5 within the investigatedggcent initial state and a stationary convective one. The bi-

Rayleigh number regime for the case R@, while for  frcation into the latter is possible by finite amplitude pertur-
Ra< 0 we need to find for each value of Ra, separately. For p5tions only.

Ra>0 the final predictions of our model do not depend sen-  Thg explanation of the presence of these two stationary
sitively on thek value chosen and we adopt in all our simu- g¢atag s straightforward. When the concentration profile is
lationsk= . All runs are started from an initial configuration fully developed the state without any convective motion is

characterized by an undisturbed linear temperature profilgiapie since for negative the concentration gradient is sta-

T=Teong @ uniform concentration distributiod,Co=¢,=0, pjlizing. When the concentration field is homogeneous, the
and small random velocity fluctuations. convection-free state is unstable. When we start from an ini-
tially homogeneous concentration distribution, the concen-
tration profile builds up together with the development of the

B. The case R&>0
According to the linear stability analysiSec. 11l C) there A0
is an oscillatory instability in the interval of €¢=<0.05.
The typical simulation run for this regime is shown in Fig. 3.
First, there is indeed an oscillating convective flow with an
exponential increase of the envelope amplitude. However, ﬂ I’
the oscillation frequency increases with time indicating that 10 30 ) 5 10

L s

N W

the linear stability analysis does no longer apply. This in-  _;!{
crease of the frequency is a result of the growth of the con-
centration profile that piles up slowly with time. After some
time (~40) the envelope amplitude of the oscillating flow -3t
pattern starts to decrease and is eventually damped out com- _,t
pletely. This, again, is a result of the evolving concentration

field that increases the stabilizing solutal buoyancy force to FIG. 4. Same as Fig. 3, but in the stationary instability regime
the extent that the system becomes stable again. The maxi=Ra/R&-1=0.0895 for large (L) and small(S) initial perturba-
mum amplitude that is reached is about one or two orders afon amplitudes.
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Agar A
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FIG. 6. The time dependence of the convection amplitéde

FIG. 5. The saturation amplitudi,=A(t— ) as a function of  py heating from abovéRa=-129988 parameters as in Fig. 3.
s=Ra/R£—1 (parameters as in Fig,).3The gray thick line corre-

sponds to a single-component fluigZ=0). The gray dots show - .
numerical solutions, while the solid lines are analytical solutionsfors’tablllty analysis only for large values OIRd' where

=-10 [Eq. (46)] and =10 [5]. The dashed curve indicates an I¢~|Rd A.typical simulation run fgr heating frqm aboye is
unstable solution. given in Fig. 6. Before the amplitude takes its stationary

value there is an overshoot, which is also observed in experi-
ments[17,18. The convection amplitude always saturates to
a finite value, independently of the initial conditions and the

(by starting with a finite convection_ amplitu_)jdt can stop k. value chosen. For moderate values of the Rayleigh num-
the development of the concentration profile by advectlonber (IR~ %), we cannot predict the wavelength of the
So the decisive point is, whether the convective motion be- '

¢ h to stop the build f1h trati structure that is actually realized, but from the numerical
comes strong enough o stop the buridup of the concentraliog, ., ations we can infer that, qualitatively, the behavior of
profile, or whether the concentration field has enough time t

; L . ) 4 the system is independent of the wavelength.
build up its linear profile that stops convective motion. The To find the saturation amplitude as a function of the Ray-

time of the instability evolution depends logarithmically on leigh number we cannot use the formu#6) since in that

the initial amplitude of the perturbation. Thus, the final state; )\ ula we have already fixeki . If we repeat the proce-
that is reached depends on the initial value of the perturbadure in[6] that led to(46) for an arbitrary value ok, we get

tion amplitude. ;
. . . . the general expression
The saturation amplitude of the stationary convective g P

state can also be obtained analytically[& we derived an 3K* + 8k?m? + 167* -15 4L |y
analytical formuld Eq. (83)] for the saturation amplitude for 4K%R4 T 3A2+ 20(K2 + 72 MYV
the case of a positive separation ratio in the presence of a

magnetic field. This formula is valid for negativeas well ~As discussed in Sec. Il D our treatment is applicable for
and is adjusted to the present field-free casavy=0=M,.  large values ofiRd, only, in the case of negatives and

instability. If the convective motion is already strong enough

(47)

It can be written as negative Ra. In that regime we can use E§) for the value
of k. and get the saturation amplitude
187* 1 ~ 327’2L|1,//| 46) 16
Ra 1+ 3 A2 3A2 . AZ = 31+ )L|¢| Va|R4. (48)
4072 “

In Fig. 7 this asymptotic expressigd8) is shown as a
solid line. Equation(48) also reveals that this instability is
not of the standard pitchfork variety, sinde scales with
|R&** rather tharjRg'2. One should keep in mind, however,
"that Eq.(48) is valid for|Rd>|RaJ, Eq.(25), only, and does
not determine the possible form of an amplitude equation
lose to onset. The unusual scaling of the pattern amplitude
in the experimentally relevant regime far aboWRe, is a
consequence of the Ra dependence of the appropriate wave-
féngth. Close to onset such a feature would be quite uncom-
mon. Here, it is based on the huge difference between the
concentration and the thermal diffusion time scales, as dis-

C. The case Ra<0 cussed after E(28).

When heating from above we need to determine the wave
numberk. of the most unstable mode for each value of the
Rayleigh number before we can solve the nonlinear problem. When heating from below any binary mixture with nega-
As it was noted in Sec. Ill D, we can reliably use the lineartive separation ratio, the thermal and solutal density gradi-

A similar formula has been derived 6] (Eq. 4.1b using a

5 mode Galerkin representation of the concentration field
The bifurcation scenario is discussed using the amplitide
of the convective flow as a function of the Rayleigh numbe
(Fig. 5. There are two branches, one branaolid line
approaches the reference curve for pure liquids, while th
other branch(dashed ling goes asymptotically to a small
value ~+/L|¢| for large Ra. According to our numerical so-
lutions only the upper branch corresponds to a stable solutio
and can be realized experimentally.

V. SUMMARY
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small amplitude disturbances do not destroy the convection-
free state.

When heating from above any binary mixture with nega-
tive separation ratigp<<-1, a linear stationary instability is
found, which is basically driven by the solutal buoyancy and
only slightly modified by thermal variations. In ferrofluids,
however, the concentration and temperature dynamics show
completely different behavior. Thus, this stationary instabil-
ity (by heating from above and negative separation yasio

6 very different from that obtained by heating from below with
10 Ra a positive separation ratio. In the former case small scale
6 . 2 -3 ) = e structures arise at very high Ra numbers, whose wavelength
decreases strongly with increasing Ra. For smaller Ra num-

FIG. 7. The saturation amplitud&, of the convective velocity bers(|Ra~Ra) the present procedure, using the separation
by heating from above as a function of the Rayleigh number time®f thermal conduction and concentration diffusion times,
10°8. Gray dots are numerical solutions, while the solid line is thebreaks down.
analytical solution48); parameters as in Fig. 3.
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ents are opposed such that the linear stationary thermal i
stability is suppressed fay<-1. Instead, this antagonistic
behavior leads to a linear convective instability of the oscil-
latory type at R the critical Rayleigh number for the onset
of convection in the single fluid case. This feature is found
for ferrofluids, too, but the nonlinear treatment shows that

the linearly unstable oscillatory states are transients only and In this appendix we derive the asymptotic relations
decay after some time, rendering the final convection-fre¢26)—(28). To that end we use the Galerkin representation
state stable. Above a second threshold, somewhat higher th§a1)—(23) and get the(negativeé Rayleigh number Ra, as a
Ra@, a finite amplitude stationary instability is found, while function of the wave vectok and the growth rata

APPENDIX

_ (k2 + %) (3k* + 8K?? + 167) (LK? + ) (LK? + L + \)
T3KAKALYL + ] + LKR(AL 71 + ]+ N[2 + ¢]) + NN+ L[4 + ¢]))

-IR4 (A1)

Here we have simplified the formula using the fact A simpler way of getting the asymptotic relations
< ?Pr. If we consider relatioiiAl) as an implicit function  (26)—(28) that also reveals the physical nature of this case, is
M(Ra k), we obtain the wavelength of the most unstableto consider Eqs(14)—(16) far from the upper and lower
mode by finding the maximum of this function with respectboundaries. In this region the fields are rather smooth. Due to
to k for a given value of Ra. Analytically this procedure is the smallness of ~ Lk? we can neglect the terms containing
rather cumbersome, but it reveals rigorously thascales the growth rate\ anywhere, except for the equation for the
with Lk? and is, thus, rather small. The numerical maximiza-concentration field and get

tion of A(Ra k) shows thak grows when Ra increases. For _ 200

large values ok (> ) we can simplify formulgAl) and get 0=-Ralc(d- yc) +K'w, (A3)

w = k26, (A4)

k2 -1 |y
R K& n+LI2 (A2) 2
Ac=-Lk(c+0). (A5)

for negativey and negative Ra. If we fix Ra and consider Thus we have reduced the differential equations to algebraic
as a function ofk, this function has a maximum given by ones. That means that the dispersion relation decouples from
(26), which corresponds to the most unstable mode. Thehe problem of finding the field profiles. The condition to
wave number of the most unstable mode and the growth ratieave a nontrivial solution ofA3)—(A5), is identical to Eq.

for this mode are given b{28). (A2).
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