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Thermal convection in colloidal suspensions of nanosized particles is investigated. Representative examples
for such materials are ferrofluids, but since we do not imply any external magnetic field, the description applies
to nonmagnetic suspensions as well. With the grain size being large on molecular length scales, the particle
mobility is extremely small, allowing to disregard the concentration dynamics in most cases. However, due to
the pronounced Soret effect of these materials in combination with a considerable solutal expansion, this
cannot be done when thermal convection is under consideration. Here we consider the case when the separation
ratio sthe Soret coefficientd is negative. This case reveals a much richer variety of phenomena than that of
positive separation ratio. In particular, for heating from below we find a linear oscillatory instability, whose
amplitude, however, relaxes to zero on the long turn and is thus transient only and, at higher Rayleigh numbers,
a finite amplitude stationary instability coexistent with the linearly stable convection-free state. By heating
from above short-length-scale convective structures occur, whose wavelength depends on the Rayleigh number.
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I. INTRODUCTION

Thermal convection in binary mixtures has attracted much
research activity in the pastsseef1–3g for a reviewd. In com-
parison to the pure fluid case, the dynamics and the bifurca-
tion scenarios are more complicated due to the extra degree
of freedom associated with the concentration field. Thereby
solutal currents are not only driven by concentration gradi-
ents, they occur also in response to temperature inhomoge-
neities. This is denoted as the thermodiffusive or Soret effect.
Its influence on the convective buoyancy force is quantified
by the dimensionless separation ratioc.

When the thermal convection problem is considered in
colloidal suspensions rather than in molecular binary mix-
tures, one has to take into account the very distinct time
scales involved. The diffusion of colloidal particles is much
slower than a typical molecular diffusion and the diffusion
time is about two or three orders of magnitude smaller. This
is reflected in the value of the Lewis numberL, which in
colloidal suspensions isL,10−4–10−5 compared to
L,0.1–0.01 in molecular binary mixtures. In addition, the
two constituents of a colloidal suspensionsthe solvent and
the colloidal particlesd have very different densities. For ex-
ample, for ferrofluids with colloidal particles made of mag-
netite and dissolved in water the ratio of the two densities
can be as large as,5 f4g. As a result, there is a very high
separation ratio in these materials. The combination of these
two featuresshigh c and lowLd makes the consideration of
the convection problem in ferrofluids different from molecu-
lar binary mixturesf5–7g. In particular, the experimentally
relevant initial state of the concentration field is different
from the linear profile usually considered.

In the following we phrase our discussion in terms of
ferrofluids, since they are probably the most important appli-
cation for our investigations and there are many measure-
ments of material parameters available for ferrofluidsf8–12g.
In principle, this description is valid for nonmagnetic suspen-
sions, too, as long as no external magnetic field is involved.

In two recent publicationsf5,6g we have discussed the
thermal instability in ferrofluids with positive separation ra-

tio, without and with an external magnetic field, respectively.
However, the separation ratio of ferrofluids can be positive
or negativef8g depending on the nature of the system. Usu-
ally, ferrofluids with steric stabilization possess positive
separation ratioc, while for ferrofluids with electrostatic sta-
bilization c is expected to be negative. Examples for the
latter are maghemite and cobalt ferrite particles dissolved in
water and stabilized by H+ or citrate ionsf8g. The value ofc
depends linearly on the concentration and can reach absolute
values comparable to those of stericly stabilized similar fer-
rofluids f8g, i.e., ucu,100−1000. The present paper is de-
voted to the study of thermal convection in ferrofluids with
negative separation ratio without external magnetic fields.

The paper is organized as follows. In the following sec-
tion the problem is set up along with the governing equations
and boundary conditions. In Sec. III we present the linear
stability analysis for two different cases—heating from be-
low and from above—and in Sec. IV the nonlinear behavior
of the system is considered, where we restrict ourselves,
however, to 2-dimensional roll patterns, for simplicity. A
summary concludes the exposition.

II. SETTING UP THE PROBLEM

Let us consider a laterally infinite horizontal layer of an
incompressible ferrofluidsdensityr, kinematic viscositynd
bounded by two rigid impermeable plates. The setup is
heated from below or above with a temperature difference
DT between the plates. In the present paper we do not con-
sider magnetic field related effects, thus the evolution equa-
tions for non-magnetic binary mixtures can be adopted. Tak-
ing Csr ,td as the concentration of the solid constituent of the
suspension, the dimensionless equations for the Eulerian
fields of velocityvsr ,td, temperatureTsr ,td, andCsr ,td read
in Boussinesq approximationf13–15g for negativec

= ·v = 0, s1d
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]tv + v · = v = − = W+ Pr=2v + Pr RafsT − T̄d

+ ucusC − C̄dgez, s2d

]tT + v · = T = =2T, s3d

]tC + v · = C = Ls=2C + =2Td. s4d

Here we have scaled length by the layer thicknessh, time by
the characteristic heat diffusion timeh2/k, temperature by
DT, and the concentration bysDT/DcdDT. The scale for the
pressureW is k2r /h2. Therebyk, DC, DT are the coefficients
for heat, concentration and thermodiffusion, respectively.

The quantitiesT̄ and C̄ are reference values defined as the
mean values for temperature and concentration. Apart from
the Prandtl number Pr=n /k and the Lewis number
L=Dc/k there is a third dimensionless material parameter,
the separation ratio c=DTbc/ sDcbTd, where bT=
−s1/rd]r /]T andbc=s1/rd]r /]c are the thermal and solutal
expansion coefficient, respectively. The dimensionless Ray-
leigh number Ra=bTgh3DT/ sknd is the control parameter
measuring the strength of the thermal drive. In Eq.s3d we
have suppressed the Dufour effect asheat current driven by a
concentration gradientd, since it is significant in gas mixtures
only.

In addition to the equations of motion boundary condi-
tions are needed. Taking the bounding plates to be no-slip for
the velocity, highly heat conducting, and impermeable for
concentration currents we have at the uppersz=1/2d and the
lower sz=−1/2d plates

uvuz=±1/2 = 0, s5d

uTuz=±1/2 = T̄ 7
1

2
, s6d

us]zC + ]zTduz=±1/2 = 0. s7d

Equations7d guarantees that a concentration current cannot
penetrate the plates. Owing to the Soret effect the applied
temperature difference enforces a finite concentration gradi-
ent at the boundaries. Equationss1d–s4d together with the
boundary conditionss5d–s7d complete the system of hydro-
dynamic equations for the variablesv ,T,C.

There are two essentially different regimes—heating from
below sRa.0d and heating from abovesRa,0d. In the first
case we have an instability due to the temperature buoyancy
force while the concentration buoyancy stabilizes the system.
This can be considered in some sense as an extension of the
one component liquid convection with some additional ef-
fects due to the presence of the concentration buoyancy. In
the second case the driving force for the instability is the
buoyancy force due to the concentration field, while the ther-
mal buoyancy is stabilizing. This case has no analog in a one
component system.

In the following sections on linear and nonlinear stability
analysis, we first present the relevant equations valid for both
casessheating from below or from aboved as far as possible,
but then discuss the results for the different regimes, sepa-
rately.

III. LINEAR STABILITY ANALYSIS

A. Basic state and time scale separation

As shown inf5g, the appropriate state to start the investi-
gation of the convection instability in ferrofluids is a state
where the temperature profile is fully developed while con-
centration just starts to build up the layers near the bound-
aries. This is due to the very different time scales of the
concentration diffusion and heat conduction. So the initial
state is given by

v = 0, s8d

Tcondszd = T̄ − z, s9d

for the velocity and the temperature field. For the concentra-
tion field we have a slowly developing profile given by the
solution of the diffusion equation

]tC0 = L]z
2C0 s10d

with the inhomogeneous boundary condition

u]zC0uz=±1/2 = 1, s11d

according to Eqs.s7d and s9d. On the creeping time scale of
the evolution ofC0sz,td, t;Lt, Eqs.s10d and s11d are valid
for tùL.10−4. An exact solution of Eqs.s10d ands11d can
be found, for example, inf5g.

B. Linear deviations

To probe the stability of the ground state, deviations are
added whose time evolution is investigated. To that end we
imposef16g

Csr ,td = C0sz,td + csr ,td, s12d

Tsr ,td = Tcondszd + usr ,td, s13d

and a nonzero velocity fieldvsr ,td, whosez component is
wsr ,td. Linearizing the equations of motion for the convec-
tive perturbations of the formu ,c,w~elt coskx yields

ls]z
2 − k2dw = − Pr Rak2su + ucucd + Prs]z

2 − k2d2w,

s14d

lu − w = s]z
2 − k2du, s15d

lc + w]zC0 = Ls]z
2 − k2dsc + ud. s16d

The boundary conditions read

uwuz=±1/2 = 0, s17d

u]zwuz=±1/2 = 0, s18d
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uuuz=±1/2 = 0, s19d

us]zc + ]zuduz=±1/2 = 0. s20d

Note that this system of ordinary differential equations is not
autonomous, sinceC0sz,td involves an explicitz and time
dependence. But, as it is shown inf5g, one can takeC0
=const. or]zC0=0 suniform concentration distributiond for a
simplified analytical treatment. However, the discussion in
f5g also reveals that a linear stability theory, suitable to com-
pare with a convection experiment, has to be based on the
growth rates of the convective perturbations rather than on
the threshold value for the temperature gradient.

C. Linear growth rate for the case Ra.0

For the case Ra.0 we assume that the spatial profiles of
the velocity and the temperature are only slightly disturbed
by the concentration dynamics. Accordingly, we represent
their dependencies in terms of simple trigonometric test
functions of a form that automatically fulfills the boundary
conditionss17d–s19d

wsx,z,td = Astdcosskxdcos2spzd, s21d

usx,z,td = Bstdcosskxdcosspzd. s22d

In contrast, for the convective concentration fieldc we allow
for a steep boundary layer behavior, which we account for by
the following multimode expansion:

csx,z,td = − usx,z,td + cosskxdo
n=0

n=`

bnstdcoss2pnzd. s23d

For l@L1/3 anducu@1 and with the approximationk<p an
analytical expression forl as an implicit function of the
control sRad and the material parameterssc, L, Prd is ob-
tained from Eqs.s14d–s16d and s21d–s23d f5g

3Ra Prsl − 2p2Lucud = ls2p2 + lds27p2 Pr + 7ld. s24d

Without these approximations results are obtained nu-
merically and shown in Fig. 1 and Fig. 2 illustrating the
dependence of Resld and Imsld on the reduced Rayleigh
number«=Ra/Rac

0−1 for the separation ratioc=−10. The
dashed straight line bifurcating at«=0 indicates the refer-
ence case of a single-fluid convection.

For the case of a negative separation ratio the bifurcation
takes place at the same point as for the single-fluid case. But
in the present case there is a Hopf bifurcation at onset. When
« is increased the oscillatory frequency decreases and at the
point «<0.05 theslineard oscillatory instability becomes a
stationary one. Above that point there are two bifurcation
branches, of which only the most unstable is relevant, the
upper branchsfull lined in Fig. 1. If we increase« further,
this upper branch approaches asymptotically the bifurcation
line of the single component liquid casesc=0d.

To understand this behavior, it should be noted that the
initial state, whose stability is investigated, is one with an
almost homogenous concentration profile. Since in the case
of negativec the buoyancy force due to the concentration

field is stabilizing, the state with a fully developedslineard
concentration profile is stable. Taking into account that the
concentration profile develops in time there is the possibility
that the nonconvective state becomes stable, again. On the
other hand, the convective motion remixes the concentration
field, making it almost homogeneous and, thus, leaves the
system unstable. So the final state depends on the interplay
of these two effects—the concentration field evolution due to
the Soret effect, and the remixing of the concentration field
due to convection. To make a prediction of the final state of
this convection problem, one needs to solve the nonlinear
problem. This is done in Sec. IV.

D. Linear growth rate for the case Ra,0

Heating the system from abovesRa,0d while c,0 one
is tempted to use a similar linear stability analysis as for
Ra.0 andc.0 resulting in a threshold valuef14g

Rac =
− 1

1 + ucu
Rac

0, s25d

with Rac
0=1708. Since theslineard growth ratel of the most

unstable modes is very small near the threshold, we consider
the range Ra<−Rac

0 where convection can be observed ex-

FIG. 1. The linear growth rate Re(ls«d) for convective pertur-
bations as a function of the reduced Rayleigh number«=Ra/Rac

0

−1. Here Rac
0 is the threshold for the onset of convection in a

single-component fluid as shown by the dashed straight lineswithin
the present Galerkin approximation Rac

0=1752d. Full lines indicate
growth rates of unstablesor most unstabled modes. The parameters
arec=−10, Pr=7, andL=7310−4.

FIG. 2. The frequency of the oscillations Im(ls«d) for convec-
tive perturbations as a function of the reduced Rayleigh number
«=Ra/Rac

0−1; parameters as in Fig. 1.
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perimentally. However, sinceucu@1 for typical ferrofluids,
we cannot use the results24d for l, because the assumption
kc<p that holds in the case Ra.0 does not hold for the case
Ra,0. The critical wave number depends on Ra sensitively
so we need to findkc for each value of Ra. The asymptotic
behavior for large negative Ra can easily be foundscf. Ap-
pendixd almost independently of the special form of the
Galerkin profiless21d–s23d, with the result

kc
4 = auRau, s26d

wherea is given by

a = −
ucu + 2

2
+Îsucu + 2d2

4
− 1 + ucu < 1 for ucu @ 1.

s27d

To this sasymptoticd wave number belongs the maximum
sasymptoticd linear growth rate

l = LÎauRau
ucu − a − 1

1 + a
<

L

2
ucuÎuRau for ucu @ 1.

s28d

These asymptotic relations are valid forÎauRau@p2.
The physical reason why the wavelength of the most un-

stable mode becomes shorter and shorter when increasing the
Rayleigh number, can be understood as follows. There are
two buoyancy forces in the system—solutal and thermal
buoyancy. The thermal buoyancy is stabilizing, while the so-
lutal buoyancy is responsible for the instability. The diffusion
of the temperature field is large compared to the concentra-
tion diffusion. Thus, short scale convective structures smooth
out the temperature, while the concentration field follows the
short scale structures due to the small diffusion. As a conse-
quence, the thermal buoyancy cannot overcome the destabi-
lizing solutal buoyancy, in particular for small wavelength
fluctuations. If the thermal buoyancy increases, the critical
wavelength has to decrease. Indeed, the tendency to shorter
wavelengths for larger Rayleigh numbers has been observed
in experimentsf17,18g.

We should note, however, that the linear stability analysis
of a homogeneous concentration profile is relevant only, if
the growth rate of the most unstable mode is larger than the
evolution rate of the concentration profile, e.g., forl@L1/3

f5g. This is easily fulfilled for positive Rasat Ra<Rac
0d, but

in the case Ra,0 the growth rate is,LÎuRau fcf. Eq. s28dg
and large enough to fulfilll@L1/3 for very large Rayleigh
numbers, only. Thus, when the linear stability analysis given
above is relevant, the use of the asymptotic relations26d is
possible. On the other hand, when the growth ratesor uRaud is
not large enough, we need to consider the evolution of the
concentration profileC0 and the growth of the perturbation
simultaneously, in which case we are not able anymore to
make the time scale separation and to describe the linear
behavior of our system in terms of growth rates.

IV. NONLINEAR BEHAVIOR

A. Time evolution and numerical solution

To investigate the nonlinear behavior of the system we
use numerical methods described inf5g. To that end we make
the following ansatz of a 2-dimensional pattern, which is
laterally sin x directiond periodic with wave numberk

Csx,z,td = C0sz,td + c1sz,td coskx, s29d

Tsx,z,td = u0sz,td + u1sz,td coskx, s30d

wsx,z,td = w1sz,td coskx, s31d

with the x component of the velocity vxsx,z,td=
−s1/kd]zw1sz,td sinkx due to the incompressibility condi-
tion. We have chosen this convective roll pattern for simplic-
ity. Although other patternsse.g., square patternsd seem to be
possiblef19g, we do not think that the results are qualita-
tively different for different convection patterns. Substituting
s29d–s31d into the nonlinear equations of motions2d–s4d and
sorting for different lateral dependencies yields the following
system of equations,

1

Pr
]ts]z

2 − k2dw1 = sD2 − k2d2w1 − Rak2su1 − cc1d, s32d

]tC0 +
1

2
]zsw1c1d = L]z

2sC0 + u0d, s33d

]tc1 + w1]zC0 = Ls]z
2 − k2dsc1 + u1d, s34d

]tu0 +
1

2
]zsw1u1d = ]z

2u0, s35d

]tu1 − w1 + w1]zu0 = s]z
2 − k2du1, s36d

with the boundary conditions

u]zsc1 + u1duz=±1/2 = 0, s37d

u]zsC0 + u0duz=±1/2 = 1, s38d

uu1uz=±1/2 = uu0uz=±1/2 = 0, s39d

uw1uz=±1/2 = u]zw1uz=±1/2 = 0. s40d

To solve this boundary-value problem we adopt vertical pro-
files w1, u0, u1, C0, andc1 of the form

w1sz,td = Astd cos2spzd, s41d

u1sz,td = Bstd cospz, s42d

u0sz,td = Fstd sin 2pz, s43d

C0sz,td = z− u0sz,td + o
n=0

n=N

anstd sins2n + 1dpz, s44d
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c1sz,td = − u1sz,td + o
n=0

n=N

bnstd cos 2npz, s45d

which satisfy the boundary conditionss37d–s40d identically.
These equations describe a two-dimensional convective flow
in the form of parallel rolls along they axis in an infinite slab
of thickness 1. We point out that forc=0 the concentration
fields decouple from the temperature and the velocity pat-
tern. This reduces Eqs.s41d–s43d to the 3-mode model intro-
duced by Lorenzf20g to model the dynamics of convective
rolls in a single-component Rayleigh-Bénard convection. For
a non-zeroc, the convection pattern is modified by the con-
centration field, but we can keep the single mode expansions
for temperature and velocity without modifications, because
the diffusivities for heat and momentum are large enough to
prevent the appearance of strong gradients. By way of con-
trast, owing to the small Lewis number, the concentration
field does build up steep boundary layers, which we account
for by the multimode Fourier series given ins44d and s45d.
For C0 the modes are antisymmetric inz and resemble the
solution of the diffusion equation without advectionfcf., e.g.,
Eq. s13d in f5gg, while for c1 symmetric modes are appropri-
ate. The numberN of contributing modes was taken large
enough to ensure the results to be insensitive against a fur-
ther increase ofN. For the parameter values considered here,
N=50 turned out to be sufficient to get the correct time evo-
lution picture.

The equations for the mode amplitudesA, B, F, an, bn are
solved by a Runge-Kutta integration. The wave numberk,
usually taken to be the mode of maximum linear growth rate
lsk,Rad, varies between 3 and 3.5 within the investigated
Rayleigh number regime for the case Ra.0, while for
Ra,0 we need to findk for each value of Ra, separately. For
Ra.0 the final predictions of our model do not depend sen-
sitively on thek value chosen and we adopt in all our simu-
lationsk=p. All runs are started from an initial configuration
characterized by an undisturbed linear temperature profile
T=Tcond, a uniform concentration distribution]zC0=c1=0,
and small random velocity fluctuations.

B. The case Ra.0

According to the linear stability analysissSec. III Cd there
is an oscillatory instability in the interval of 0ø«&0.05.
The typical simulation run for this regime is shown in Fig. 3.
First, there is indeed an oscillating convective flow with an
exponential increase of the envelope amplitude. However,
the oscillation frequency increases with time indicating that
the linear stability analysis does no longer apply. This in-
crease of the frequency is a result of the growth of the con-
centration profile that piles up slowly with time. After some
time s,40d the envelope amplitude of the oscillating flow
pattern starts to decrease and is eventually damped out com-
pletely. This, again, is a result of the evolving concentration
field that increases the stabilizing solutal buoyancy force to
the extent that the system becomes stable again. The maxi-
mum amplitude that is reached is about one or two orders of

magnitude larger than the initial value of the perturbation,
while the time, at which that happens, is fairly independent
of the initial value of the perturbationssat least if they are
smalld.

For the regime of stationary instability«*0.05, the time
evolution of the velocity amplitudeAstd is presented in Fig. 4
for two typical simulation runs. There are two different time
evolution behaviors, depending on the initial value of the
amplitudeAs0d. The oscillating curvesSd in Fig. 4 corre-
sponds to a small initial valueAs0d=10−5, while for the
curve sLd with a large initial As0d=10−2 a stationary state
with finite amplitude is obtained. If one waits long enough,
the oscillationssSd die out and the case with no convection is
reached again. Thus there are two stationary states—the qui-
escent initial state and a stationary convective one. The bi-
furcation into the latter is possible by finite amplitude pertur-
bations only.

The explanation of the presence of these two stationary
states is straightforward. When the concentration profile is
fully developed the state without any convective motion is
stable, since for negativec the concentration gradient is sta-
bilizing. When the concentration field is homogeneous, the
convection-free state is unstable. When we start from an ini-
tially homogeneous concentration distribution, the concen-
tration profile builds up together with the development of the

FIG. 3. The time dependence of the velocity amplitudeAstd in
the linear oscillatory instability regimes«=Ra/Rac

0−1=0.025d in
terms of the thermal diffusion timesc=−10, Pr=7, andL=7
310−5d.

FIG. 4. Same as Fig. 3, but in the stationary instability regime
s«=Ra/Rac

0−1=0.085d for large sLd and smallsSd initial perturba-
tion amplitudes.
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instability. If the convective motion is already strong enough
sby starting with a finite convection amplituded, it can stop
the development of the concentration profile by advection.
So the decisive point is, whether the convective motion be-
comes strong enough to stop the buildup of the concentration
profile, or whether the concentration field has enough time to
build up its linear profile that stops convective motion. The
time of the instability evolution depends logarithmically on
the initial amplitude of the perturbation. Thus, the final state
that is reached depends on the initial value of the perturba-
tion amplitude.

The saturation amplitude of the stationary convective
state can also be obtained analytically. Inf6g we derived an
analytical formulafEq. s83dg for the saturation amplitude for
the case of a positive separation ratio in the presence of a
magnetic field. This formula is valid for negativec as well
and is adjusted to the present field-free case byM1=0=M2.
It can be written as

18p4

Ra
=

1

1 +
3

40p2A2

−
32p2

3A2 Lucu. s46d

A similar formula has been derived inf16g sEq. 4.1bd using a
5 mode Galerkin representation of the concentration field.
The bifurcation scenario is discussed using the amplitudeA
of the convective flow as a function of the Rayleigh number
sFig. 5d. There are two branches, one branchssolid lined
approaches the reference curve for pure liquids, while the
other branchsdashed lined goes asymptotically to a small
value ,ÎLucu for large Ra. According to our numerical so-
lutions only the upper branch corresponds to a stable solution
and can be realized experimentally.

C. The case Ra,0

When heating from above we need to determine the wave
numberkc of the most unstable mode for each value of the
Rayleigh number before we can solve the nonlinear problem.
As it was noted in Sec. III D, we can reliably use the linear

stability analysis only for large values ofuRau, where
kc

4,uRau. A typical simulation run for heating from above is
given in Fig. 6. Before the amplitude takes its stationary
value there is an overshoot, which is also observed in experi-
mentsf17,18g. The convection amplitude always saturates to
a finite value, independently of the initial conditions and the
kc value chosen. For moderate values of the Rayleigh num-
ber suRau,p4d, we cannot predict the wavelength of the
structure that is actually realized, but from the numerical
simulations we can infer that, qualitatively, the behavior of
the system is independent of the wavelength.

To find the saturation amplitude as a function of the Ray-
leigh number we cannot use the formulas46d since in that
formula we have already fixedk=p. If we repeat the proce-
dure inf6g that led tos46d for an arbitrary value ofk, we get
the general expression

3k4 + 8k2p2 + 16p4

4k2uRau
=

− 15

3A2 + 20sk2 + p2d
+

4Lucu
A2 . s47d

As discussed in Sec. III D our treatment is applicable for
large values ofuRau, only, in the case of negativec and
negative Ra. In that regime we can use Eq.s26d for the value
of kc and get the saturation amplitude

A2 .
16

3s1 + ad
LucuÎauRau. s48d

In Fig. 7 this asymptotic expressions48d is shown as a
solid line. Equations48d also reveals that this instability is
not of the standard pitchfork variety, sinceA scales with
uRau1/4 rather thanuRau1/2. One should keep in mind, however,
that Eq.s48d is valid for uRau@ uRacu, Eq.s25d, only, and does
not determine the possible form of an amplitude equation
close to onset. The unusual scaling of the pattern amplitude
in the experimentally relevant regime far aboveuRacu is a
consequence of the Ra dependence of the appropriate wave-
length. Close to onset such a feature would be quite uncom-
mon. Here, it is based on the huge difference between the
concentration and the thermal diffusion time scales, as dis-
cussed after Eq.s28d.

V. SUMMARY

When heating from below any binary mixture with nega-
tive separation ratio, the thermal and solutal density gradi-

FIG. 5. The saturation amplitudeAsat=Ast→`d as a function of
«=Ra/Rac

0−1 sparameters as in Fig. 3d. The gray thick line corre-
sponds to a single-component fluidsc=0d. The gray dots show
numerical solutions, while the solid lines are analytical solutions for
c=−10 fEq. s46dg and c=10 f5g. The dashed curve indicates an
unstable solution.

FIG. 6. The time dependence of the convection amplitudeAstd
by heating from abovesRa=−129983d; parameters as in Fig. 3.
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ents are opposed such that the linear stationary thermal in-
stability is suppressed forc,−1. Instead, this antagonistic
behavior leads to a linear convective instability of the oscil-
latory type at Rac

0, the critical Rayleigh number for the onset
of convection in the single fluid case. This feature is found
for ferrofluids, too, but the nonlinear treatment shows that
the linearly unstable oscillatory states are transients only and
decay after some time, rendering the final convection-free
state stable. Above a second threshold, somewhat higher than
Rac

0, a finite amplitude stationary instability is found, while

small amplitude disturbances do not destroy the convection-
free state.

When heating from above any binary mixture with nega-
tive separation ratioc,−1, a linear stationary instability is
found, which is basically driven by the solutal buoyancy and
only slightly modified by thermal variations. In ferrofluids,
however, the concentration and temperature dynamics show
completely different behavior. Thus, this stationary instabil-
ity sby heating from above and negative separation ratiod is
very different from that obtained by heating from below with
a positive separation ratio. In the former case small scale
structures arise at very high Ra numbers, whose wavelength
decreases strongly with increasing Ra. For smaller Ra num-
berssuRau,Rac

0d the present procedure, using the separation
of thermal conduction and concentration diffusion times,
breaks down.
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APPENDIX

In this appendix we derive the asymptotic relations
s26d–s28d. To that end we use the Galerkin representation
s21d–s23d and get thesnegatived Rayleigh number Ra, as a
function of the wave vectork and the growth ratel

− uRau =
sk2 + p2ds3k4 + 8k2p2 + 16p4dsLk2 + ldsLk2 + Lp2 + ld

3k2
„k4L2f1 + cg + Lk2s4Lp2f1 + cg + lf2 + cgd + lsl + Lp2f4 + cgd…

. sA1d

Here we have simplified the formula using the factl
!p2Pr. If we consider relationsA1d as an implicit function
lsRa,kd, we obtain the wavelength of the most unstable
mode by finding the maximum of this function with respect
to k for a given value of Ra. Analytically this procedure is
rather cumbersome, but it reveals rigorously thatl scales
with Lk2 and is, thus, rather small. The numerical maximiza-
tion of lsRa,kd shows thatk grows when Ra increases. For
large values ofk s@pd we can simplify formulasA1d and get

k2

uRau
=

− 1

k2 +
ucuL

l + Lk2 . sA2d

for negativec and negative Ra. If we fix Ra and considerl
as a function ofk, this function has a maximum given by
s26d, which corresponds to the most unstable mode. The
wave number of the most unstable mode and the growth rate
for this mode are given bys28d.

A simpler way of getting the asymptotic relations
s26d–s28d that also reveals the physical nature of this case, is
to consider Eqs.s14d–s16d far from the upper and lower
boundaries. In this region the fields are rather smooth. Due to
the smallness ofl,Lk2 we can neglect the terms containing
the growth ratel anywhere, except for the equation for the
concentration field and get

0 = − Rak2su − ccd + k4w, sA3d

w = k2u, sA4d

lc = − Lk2sc + ud. sA5d

Thus we have reduced the differential equations to algebraic
ones. That means that the dispersion relation decouples from
the problem of finding the field profiles. The condition to
have a nontrivial solution ofsA3d–sA5d, is identical to Eq.
sA2d.

FIG. 7. The saturation amplitudeAsat of the convective velocity
by heating from above as a function of the Rayleigh number times
10−6. Gray dots are numerical solutions, while the solid line is the
analytical solutions48d; parameters as in Fig. 3.

THERMAL CONVECTION IN COLLOIDAL SUSPENSIONS… PHYSICAL REVIEW E 71, 056303s2005d

056303-7



f1g J. K. Platten and J. C. Legros,Convection in LiquidssSpringer,
Berlin, 1984d.

f2g M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.49, 581
s1993d.

f3g M. Lücke, W. Barten, P. Büchel, C. Fütterer, St. Hollinger, and
Ch. Jung, inEvolution of Spontaneous Structures in Continu-
ous Systems, edited by F. H. Busse and S. C. Müller, Lecture
Notes in Physics, Vol. 55sSpringer, Berlin, 1998d, p. 127.

f4g R. E. Rosensweig,FerrohydrodynamicssCambridge Univer-
sity Press, Cambridge, England, 1985d.

f5g A. Ryskin, H.-W. Müller, and H. Pleiner, Phys. Rev. E67,
046302s2003d.

f6g A. Ryskin and H. Pleiner, Phys. Rev. E69, 046301s2004d.
f7g M. I. Shliomis and M. Souhar, Europhys. Lett.49, 55 s2000d.
f8g J. Lenglet, A. Bourdon, J.-C. Bacri, and G. Demouchy, Phys.

Rev. E 65, 031408s2002d.
f9g E. Blums, A. Mezulis, M. Maiorov, and G. Kronkalns, J.

Magn. Magn. Mater.169, 220 s1997d.
f10g E. Blums, S. Odenbach, A. Mezulis, and M. Maiorov, J. Magn.

Magn. Mater.201, 268 s1999d.
f11g E. Blums, J. Magn. Magn. Mater.149, 111 s1995d.
f12g S. Odenbach, J. Magn. Magn. Mater.149, 116 s1995d.
f13g J. Boussinesq,Théorie Analytique de la ChaleursGauthier-

Villars, Paris, 1903d, Vol. II, p. 172.
f14g J. K. Platten and G. Chavepeyer, Int. J. Heat Mass Transfer19,

27 s1976d.
f15g H. R. Brand, P. C. Hohenberg, and V. Steinberg, Phys. Rev. A

30, 2548s1984d.
f16g S. Hollinger, M. Lücke, and H. W. Müller, Phys. Rev. E57,

4250 s1998d.
f17g A. La Porta and C. M. Surko, Phys. Rev. Lett.80, 3759

s1998d.
f18g R. Cerbino, A. Vailati, and M. Giglio, Phys. Rev. E66,

055301sRd s2002d.
f19g B. Huke, M. Lücke, P. Buchel, and C. Jung, J. Fluid Mech.

408, 121 s2000d.
f20g E. N. Lorenz, J. Atmos. Sci.20, 130 s1963d.

A. RYSKIN AND H. PLEINER PHYSICAL REVIEW E71, 056303s2005d

056303-8


