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Quasienergy spectrum of kicked Harper model is found to exhibit a series of diabolic crossings. These
conical degeneracies reside mostly on the symmetry line of its two-dimensional parameter space and their
locations are found to coincide with the local maxima of the kinetic energy of the kicked system. Additionally,
there are exceptional point singularities, that are found by analytically continuing the kicking parameter in the
complex plane. The location of these singularities appear to be correlated with the localization of the quantum
wave packet. These studies suggest a correlation between the transport and the topological characteristics of
the system.
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I. INTRODUCTION

Double-cone or diabolo geometry characterizes the acci-
dental spectral degeneracies of a typical quantum systems
with a real Hamiltonian. Such degenerate points are referred
as Diabolic pointsf1g sDPd and correspond to the special
points where the eigenfunctions are not single-valued: as one
varies parameters in a closed loop enclosing the point, the
wave functions acquire a phase factor, known as Berry
phase, that depends on the history of the path and hence is of
purely geometric origin. It is interesting that the occurrence
of this crossing of eigenvalues in parameter space is sensed
by a circuit that does not pass through the degeneracy, but
simply encloses it. This is analogous to the electrostatics
where the Gauss sphere of arbitrary radius detects an electric
charge. In fact, the presence of a DP leads to monopole-type
singularity with a fictitioussgeometricd monopole at the dia-
bolic point f2g. The importance of DPs has been emphasized
in molecular as well as in nuclear spectraf2g.

Another type of singularity that has been the subject of
many recent studies is known as exceptional pointsEPd f3g.
At an EP, two eigenvalues coalesce and the corresponding
eigenvectors become parallel and hence the eigenspace of the
two coalescing levels becomes one-dimensional. As illus-
trated by Katof3g in his book, EPs can occur in real as well
as in complex plane and may correspond to a branch point of
an analytic function. However, as emphasized by Kato, an
EP need not be a branch point. For 2-level systems, EPs have
been found in the vicinity of level repulsion, when analytic
continuation in the complex space connects the two levels by
a branch pointf4g. The significance of EPs has been dis-
cussed in dissipative resonators and the experiments have
confirmed the topology underlying an EPf5g. Furthermore,
the influence of these points on transmission through quan-
tum dots was discussed recentlyf6g. The DPs and the EPs
are topological singularities that are the subject of this paper.
Here, we illustrate the importance of these topological sin-
gularities in the transport characteristics of a nonintegrable
system whose classical limit exhibits chaotic dynamics.

As pointed out by Berryf7g, when detached from their
original quantum mechanical context, the diabolic connec-
tion and the associated geometric phase is in fact a property
of matrices. In the simplest case of real symmetric 232

matrices, the eigenvectors change sign as one changes two
parameters around a closed circuit which encloses a diabolic
degeneracy. Essential aspects of DPs as well as EPs have
been discussed using 232 matricesf1,4g. As we discuss
below, the spectral characteristics of the kicked Harper
model f8,9g with Planck constant" /2p=1/N sN is an inte-
gerd, exhibit a series of topological singularities whose ex-
ploration involves the study ofN3N matrices. The special
case ofN=2 corresponds to one of the most dominant reso-
nance of the model. Here we study the spectral characteris-
tics of N=2 case analytically while the higherN cases are
analyzed numerically. Our studies complement earlier dis-
cussion of the DPs and the EPs as the matrices under inves-
tigation are unitary for real parameters and complex without
being symmetric for complex parameter values. Additionally,
we also discuss the band spectrum of the model and demon-
strate a relationship between the topology and transport in
the system. Furthermore, we briefly discussN.2 cases.
However, detailed analysis of the singularities in these cases
is very complicated.

This paper is organized as follows. In Sec. II, we briefly
discuss the kicked Harper model. In Sec. III, we provide
detailed spectral analysis of theN=2 resonance and discuss
the topological singularities of the spectrum in real and in
complex parameter space. The band spectrum and the trans-
port properties and their relationship with the topological
singularities are discussed in Sec. IV. Section V describes the
N=6 resonance and briefly discusses higherN cases. In Sec.
VI, we summarize our conclusions and discuss various open
issues.

II. KICKED HARPER MODEL

Periodically kicked Harper Hamiltonian characterized by
two parametersL andK is

Hstd = L cosspd + K cossqd o
k=−`

`

dst − kd. s1d

Here p and q are respectively the momentum and the posi-
tion operators. For thed-kicked system, the time evolution
operatorU for one period, withUcstd=cst+1d factors as
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U = expf− iL cosspd/"gexpf− iK cossqd/"g. s2d

Here," is typically an effective Planck’s constant. The first
term governs the free evolution between the kicks while the
second term describes the effect of kicking.

The model has been studied in various contexts in classi-
cal as well as in the quantum limitsf9g. In its two-
dimensional parameter space, the quantum dynamics of this
non-integrable mixed phase space system is extremely com-
plex. For incommensurate case, where" /2p is an irrational
number, the model exhibits localized as well as ballistic
transport forKÞL. In this case, intricately nested localized
and ballistic phases forL.K have their dual image of bal-
listic and localized phases forK.L f10g. This is a conse-
quence of self-duality along the symmetry line,K=L along
which the eigenfunctions and the spectrum exhibit fractal
characteristics.

For the case where" /2p is a rational number, the model
exhibits quantum resonances and the quasienergy states are
extended for almost all values ofK andL and the quantum
transport is ballistic. In this resonant regime, the significance
of self-duality is not clear. In this paper, we will only con-
sider this case and write" /2p=1/N, whereN is a positive
integer. Since the time evolution operatorU is periodic inp,
it can be reduced to aN3N matrix that depends upon the
Bloch vectork f11g. Varying k is like varying boundary con-
ditions, and summing over all boundary conditions give us a
band of states, and a band of eigenvalues. Special case of
k=0, corresponds to periodic boundary conditions. AsN in-
creases, the widths of the quasienergy bands decrease and
therefore higher order resonances are difficult to observe in
an experiment. In factN=1, 2 were the subject of very ex-
tensive theoretical and experimental studies in a kicked rotor
model f12,13g.

Due to the periodicity of Hamiltonian int, we consider
the floquet states,cstd=eivtfvstd. Herev is the quasienergy
of the system andfvstd=fvst+1d. This leads to an eigen-
value equation forU :Ufv=eivfv. Its matrix elements are
computed in the plane wave basiseimq where"m is the quan-
tized angular momentum of the unkicked system. We haveN
eigenstates, parametrized by the Bloch vectork. In this pa-
per, we explore the model analytically forN=2 and study
higher order resonances numerically. For investigating topo-
logical singularities, we study the model for real kicking pa-
rameterK as well as for the case whereK is analytically
continued in the complex plane.

III. SPECTRAL ANALYSIS FOR N=2 RESONANCE

For N=2, the one-step time evolution operator in the
plane wave basis is a 232 matrix,

S e−iL̄ cosszK̄d − ie−isL̄+kdsinszK̄d

− ieisL̄+kdsinszK̄d eiL̄cosszK̄d
D ,

whereK̄=K /" and L̄=L /" andz=cosskd. For realK andL,
this matrix is unitary.

The eigenvectors of the matrix can be written as

e1 = fcossbdeif,sinsbde−ifg, s3d

e2 = fsinsbde−if,− cossbdeifg. s4d

Hereb andf are given by

tansbd = fsinsL̄dcosszK̄dg +
Îf1 − cos2szK̄dcos2sL̄dg

sinszK̄d
,

s5d
f = − sp/2 + L̄/2d.

The corresponding eigenvalues are

eiv1,2 = cossL̄dcosszK̄d ± iÎf1 − cos2sL̄dcos2szK̄dg. s6d

As seen from Eq.s6d, the eigenvalues become degenerate
when the quantity in the square root vanishes. This happens

when L̄=np andzK̄=mp. Additionally, there is another de-

generacy when cossL̄dcosszK̄d= ±1 that occurs for complex
parameters. In this case, the two eigenvalues are branches of
one double-valued analytic function that meet at the branch
point. As we discuss below, these degeneracies are topologi-
cal singularities that are relevant in the transport properties
of the system.

We analyze the degeneracies of the 2-levelsfixed kd and
2-band swith 0økøpd system. In addition to analytic
analysis of these singularities, they are also shown graphi-
cally in the figures. This graphical representation ofN=2
spectrum facilitates detailed comparison withN.2 reso-
nances and and this in turn provides better understanding of
higher N resonances for which theoretical analysis is not
possible. Figures 1–3 show quasienergy spectrum for real as
well as for complex kicking parameterK, with main focus
being to illustrate the interesting topological structures asso-
ciated with the spectral characteristics of the model.

We first discuss thek=0sz=1d case. For realK andL, the
two levels are degenerate withvc=0fmods2pdg, at the criti-

cal values of the parameter,K̄c=np, L̄c=mp. The crossings
for k=0 atKc andLc are diabolic inK-L space. This can be

seen in two ways. First, since cossvd=cossK̄dcossL̄d ffrom

Eq. s6dg, linearizing about the critical pointsK̄c= L̄c, we get

sK̄−K̄cd2+sL̄− L̄cd2=sv−vcd2, which is the equation of a
cone. This implies conical intersection inv-K-L planessee
Fig. 2d. Secondly, the diabolic character of this point can also
be seen by considering a small parametric loop of radiusr
around this point:K=Kc+r cosu and L=Lc−r sinu as we
vary 0øuø2p. Linearizing in r, from Eq. s5d we get
tanb<−tansp /4−u /2d. Thus as we go around the crossing
pointsKc=Lc=np2, u→u+2p, andb→b+p and hence the
wave functions change sign.

We next discuss the crossings in the complex plane. As

seen from Eq.s6d, for k=0, this occurs when cossK̄d
=1/cossL̄d. With L real, and K imaginary sK→ iKd, the
quasienergies along the imaginaryK axes with uKu=L are
given by

eiv1,2 = cossK̄dcoshsK̄d ± iÎf1 − cos2sK̄dcosh2sK̄dg. s7d
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In the complexK plane, there is a degeneracy when

coshsK̄d=1/cossL̄d. For large K sK̄.1d, this happens in

close proximity toL̄=s2n+1dp /2. To see the relationship
between the crossings in the complexK plane and the
avoided crossings in the real parameter space, we note that
for k=0 on K=L line, the avoided crossings correspond to
the dv /dK=0. These exist mid way between the diabolic

crossings: that is atK̄= L̄=s2n+1dp /2, with n=1, 2, … .

The complex conjugate eigenvaluesv=vr ± ivi coalesce
when the quantity in the square root in Eq.s7d vanishes.
We will denote this quantity asD, where D=1

−cos2sK̄dcosh2sK̄d. It should be noted that whenD.0, vi

=0 and whenD,0, vr =0,p. The degenerate points in the
complexK plane are branch points whereD=0, vi =0 and
vr =0 or p. Unlike Diabolic crossing, the eigenvectors of the
two coalescing levels become parallel. Within an overall

constant, such an eigenvector is given bye=s1,ie−iK̄d. This
implies that the branch point singularities are exceptional
points due to theexceptionalproperties related to the incom-
pleteness of the function space.

As shown in Fig. 1, with the exception of the first point,
all other EPs come in pairs and we will refer them as twin
EPs. This is because asK increases,D is negative except in
the neighborhood ofK=s2n+1dp /2. We write K=s2n
+1dp /2+e swheree is smalld and linearizeD in e. This gives
D=0 when e< ±e−s2n+1dp/2, resulting in twin EPs. Clearly,
the parametric distance between the twin EPs goes to zero
exponentially asK becomes large.

The EPs in the complex plane are located in the vicinity
of the the avoided crossings whenK is analytically continued
in the complexK plane. As discussed earlier, for values of

K̄.1, the EPs occur exponentially close toK̄=s2n+1dp /2
along the imaginaryK axis, which are the locations of the
avoided crossings for realK.

The exceptional points are genuine crossings in the com-
plex K plane where both the real and the imaginary part ofv
coalesce. Additionally, there are crossings associated either

FIG. 1. For N=2, figure shows the quasienergy spectrum for
periodic boundary conditionssk=0d. The top figure corresponds to
real parameters on the symmetry linesK=Ld. The middle and the
lowest figures, respectively, show the real and the imaginary part of
the spectrum for imaginaryKsKr =0d with uKu=L. This choice is
dictated by the fact that EPs reside along this line in complexK
plane. The constancy ofvr as well asvi as seen in some parts of the
parametric windows is due toKr =0 as in the complexK plane; we
typically see two distinctvr andvi as clarified in Fig. 3.

FIG. 2. Diabolic geometry nearK=L=p2, v=0 showingv-K-
L surface fork=0 in N=2 case.

FIG. 3. Figure shows the topology associated withN=2
quasienergies when a closed circuit in complexK plane does not
enclose an EPstopd and encloses an EPsbottomd. The figures on the
left and right respectively correspond to the EPs nearK=1.89p and
K=4.75p. Note that sincevr is defined mod 2p, the figures on the
right correspond to two loops at the top and a single loop at the
bottom.
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with the real or the imaginary part of the quasienergies. Such
crossings have been referred as type I and type II, respec-
tively f13g. As seen in Fig. 1, along the imaginaryK axis, the
location of EPs coincide with that of type I and type II cross-
ings. To illustrate the changes in topologies due to EPs, we
follow quasienergies along a closed circuit in the complexK
plane, with or without enclosing the EPssFig. 3d. If no EP is
encircled, the eigenvalues trace out two disconnected loops.
However, when an EP is encircled, the two circuits merge
into a single circuit.

IV. BAND SPECTRUM AND TRANSPORT FOR N=2

We now discuss the quasienergy bands, the continuum of
the energy levels, obtained by varyingk in the closed inter-
val s0,pd ssee Fig. 4d. In addition to the quasienergy bands
for the real parameters along the symmetry line, we also
show the complex bands whenK is moved along the imagi-
nary axis. As discussed below, the DPs, the EPs as well as
the type I and type II crossings emerge with special signifi-
cance when viewed in the context of the band structure.

First, the location of diabolic crossings atKc=Lc corre-
sponds to the points where the two bands merge. These
crossings fork=0 become a family of avoided crossings as
the Bloch vectork becomes nonvanishing.fOnly exception
being thek=p /2sz=0d case, where the levels cross but this
crossing is not diabolic inK-L space.g As K is moved along
the imaginary axis, the diabolic crossing transforms into an
accumulation point of type II crossing. At this point, the real

part of the quasienergy band collapses. In other words, the
band at diabolic crossings move to the imaginary axis when
K becomes imaginary.

Secondly, in the vicinity of EPs, there is aband collapse
and hence an infinite-fold degeneracy for real as well as for
imaginaryK. For the real part of the spectrum, we have two
different accumulation points of type II crossings corre-
sponding to two bands. For the imaginary part of the spec-
trum, there is one accumulation point of type I crossing
where different levels, characterized by differentk meet. As
we will discuss later, all the above characteristics of the
quasienergy bands persist for higherN cases.

To investigate the importance of topological singularities,
we numerically calculate the kinetic energy of the model,
susing plane wave initial conditionsd for fixed number of
kicks. The quantum transport is found to be ballistic except
at parameter values where there is a band collapse. At these
isolated parameter values, the quantum wavepacket is found
to remain localized, that is, the momentum does not increase
with time. In view of the fact that for rational", the quantum
transport is ballistic for almost all values of the parametersK
and L, , we write the kinetic energy of the system as
kp2/2l=At2. For a fixed timet, asK varies, the changes in
the kinetic energy are due to changes in the parameterA.

As we vary the parameterK, the kinetic energy shows
oscillatory behavior with peaks and valleys that appear to be
correlated with the topological singularities. At diabolic
crossings, the kinetic energy exhibits a local maximum.
However, it should be noted that all local maxima in the
kinetic energy are not associated with the diabolic crossing.
Interestingly, as seen in Fig. 5, the kinetic energy exhibits
nonanalytic dependence onK at the diabolic points. The

peak atK̄=1 whereA varies smoothly withK is not associ-
ated with a diabolic crossing. However, peaks atK /p=p and
K /p=2p, wheredA/dK is nonanalytic, are in fact correlated
with the diabolic points.

In the vicinity of the EPs, the quantum transport is local-
ized in bothx and p. In other words, the momentum of the
system does not increase as the system is kicked. In contrast,
the presence of a DP does not affect the ballistic aspect of the
transport, but it leads to a nonanalytic dependence of kinetic
energy on the kicking parameter.

V. SPECRAL AND TRANSPORT ANALYSIS FOR N=6

As N increases, detailed analysis of the singularities be-
come very complicated. Our numerical analysis suggests that
various crossing scenarios and the associated EPs and DPs as
discussed above may continue to exist forN.2. Figures 6–9
illustrate this forN=6 resonance. The diabolic aspect of the
crossing atK<1.4p for k=0 is shown in Fig. 7. New aspect
here is that the conical intersection of two energy surfaces is
intercepted at the diabolic point, by an another energy sur-
face. This topological singularity leaves its fingerprints in the
complexK plane. WithK along the imaginary axis, we see a
pair of crossings symmetrically placed aboutvi =0 as seen in
Fig. 6 sbottomd and further in the complex plane in Fig. 8. In
addition, there are crossings atK<1.65pi and at K
<1.85pi, where we also have type I and type II crossings.

FIG. 4. Figure shows the quasienergies obtained using 30 dif-
ferent values ofk, covering most parts of the bands. Similar to Fig.
1, the top figure shows the band structure along the symmetry line
for real K. The middle and the bottom part of the figure shows the
real and the imaginary part of the energies whenK is moved along
the imaginary axis. In the top figure, we also show the kinetic
energy along the symmetry line.
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Changes in the topologies as we encircle such crossings are
shown in Fig. 8. The figure clearly illustrates the differences
in the crossings atK /p<1.4 and atK /p<6.5.

Figure 9 illustrates variations in the quasienergy bands as
well as in the kinetic energy forN=6 case asK is varied. In
analogy toN=2 case, the location of the diabolic crossing
coincides with the location of band merging which in turn
coincides with the location of maximum of the kinetic en-
ergy. ForK along the imaginary axis, the real part of the
corresponding quasienergy bands collapse as was the case
for N=2 resonance. Finally, analogous toN=2 case, the local
minimum of the kinetic energy is located in the vicinity of
the band collapse.

FIG. 5. Variation in the constantA son the log scaled, asK is
varied along the symmetry line. The solid line and the dots respec-
tively correspond tot=400 andt=800 kicks. The fact that the two
data sets coincide confirms the fact that the transport remains bal-
listic at almost all values ofK. The first peak atK /p=1 corresponds
to the point where the bandwidth exhibits a local maxima. However,
at this point, the bands do not cross and there is no diabolic point.
The characteristic “dips” in the figure correspond to localized trans-
port and occur in the vicinity of the EPs.

FIG. 6. Same as Fig. 1 withN=6. NearK<1.4p, we have a pair
of diabolic crossings fork=0, as well as a pair of crossings in the
complexK plane. Additionally, there are EPs atK<1.65p and K
<1.85p.

FIG. 7. The figure shows three of thev-K-L surfaces fork=0 in
N=6 resonance. Two of the surfaces show conical intersection at
K=L<1.4p while the third surface simply passes through the DP.

FIG. 8. The figure shows quasienergies for theN=6 case, when
the parameters are varied in closed loops centered atKi =L=1.4p
sleftd and Ki =L=1.6p srightd. The top figures correspond to the
cases when the closed circuits do not enclose the crossings while
the bottom figure corresponds to the loops that enclose the
crossings.
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As N increasessor " decreasesd, analysis of topological
singularities become difficult. Detailed study of topological
singularities in the semiclassical limit is beyond the scope of
this paper. However, we believe that the locations of DPs in
parameter space may be correlated with the location of the
accelerator modesf14g in the corresponding classical system
as "→0. This is due to the fact that in the semiclassical
limit, the enhancements in the quantum transport can be usu-
ally traced to the enhancements in the classical transport
which have their origin in the accelerator modes. An ex-
ample of this is shown in Fig. 10 where we compare the
classical and the quantum kinetic energy asN increases. We
would like to emphasize that the quantum transport is mostly
ballistic sdue to rationality of" /2pd, whereas the corre-
sponding classical transport depends strongly on parameters
and varies from subdiffusive, diffusive to superdiffusive. For
a fixed finite time, the variation in quantum transport is de-
scribed in terms of the parameterA while the appropriate
quantity for classical transport is the exponentb, defined as
kp2l< tb where 0øbø2. Narrow peaks in the classical
transport, due to accelerator modes have their fingerprints in
broad quantum peaks. The shift in the quantum peaks rela-
tive to the corresponding classical peaks is due to large". As
the Planck constant increases, the quantum system fails to
resolve the tiny accelerator islands associated with the clas-
sical system, however, the transientssfinite t dynamicsd ap-
pear to sense some signature of anomalous classical transport
that result in broad peaks.

Detailed study of various resonances in two-dimensional
K-L parameter space shows that the diabolic crossings are
mostly confined to theK=L line. In our numerical explora-
tion, all crossings withk=0 on the symmetry line were
found to be diabolic, irrespective of theN values. We would
also like to mention that diabolic crossings were also seen

for other values ofk. For example, forN=10, there exists a
DP at v=0, with K=L<p when k<0.275p. We have dis-
cussed crossings only on the symmetry line,K=L sor uKu
=L, for imaginaryKd. As we move away from the symmetry
line, KÞL, diabolic crossings forN=2 case were found only

at K̄=np and L̄=mp. However, avoided crossings continue
to exist throughout the the two-dimensional parameter space.

VI. SUMMARY AND CONCLUSIONS

In summary, the kicked Harper model provides an inter-
esting example of a nonintegrable system exhibiting topo-
logical singularities. The study of topological singularities in
N=2 resonance is somewhat analogous to earlier studies of
these singularities using 232 matrices. The aspect here is
the different perspective that emerges when topological sin-
gularities are viewed in the context of band structure and the
transport properties of the system. Importance of the diabolic
as well as the exceptional point singularities lies in the fact
that their locations appear to be correlated with the extrema
of the kinetic energy.

The EPs are found in the vicinity of the localized trans-
port of the system while the DPs occur at parameter values
where the kinetic energy exhibits local maximum, with a
characteristic nonanalytic behavior. Diabolic crossings when
continued in the complex plane, are found to be associated
with an accumulation point of type II crossings. Our study
unveils many interesting features of the quasienergy bands

FIG. 9. Same as Fig. 4 for theN=6 case showing six quasien-
ergy bands and the kinetic energy. FIG. 10. Figure shows the variation in kinetic energy as the

parameterK varies along the symmetry line. The upper and the
middle curve respectively corresponds toN=6 andN=20. The bot-
tom figure shows the classical exponent, whereb.1 indicates su-
perdiffusion. The origin of spikes atK /p=1 andK /p<1.48 is due
to period-2 accelerator modes while that atK /p=2 corresponds to
period-1 accelerator mode.
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and their relation with the topology. Analytical understanding
of the correlation between the band width enhancement, the
diabolic crossing and the nonanalytic character of the kinetic
energy remains an interesting open problem.

Importance of topology in delocalization of symmetric
kicked Harper was the subject of an earlier studyf8g. To
what extent, topological singularities influence localization
properties is therefore an important question. The generality
of the relationship between the EPs and the localization that
surfaced in our analysis here requires further investigation. It
should be noted that on the symmetry line, the localized
transport exists at isolated points. However, forN=2 case, it
is clear from Eq.s6d that L̄=s2n+1dp /2 describes a critical
line in K-L parameter space where we have infinite degen-
eracy and if one starts in a localized state inq or p, one stays
in such a state. In other words, at these points the kinetic
energy does not grow with time. Fate of these critical lines
swith localized transportd as N increases requires detailed
study of the model in two-dimensional parameter space.

The study of quantum transport in systems whose classi-
cal limit is chaotic is one of the most active frontiers. There-
fore, many key questions linking transport and topology arise
in the semiclassical limit. However, in this limit, detailed
analysis of the topological singularities is very complicated.

Therefore, the usefulness of this type of study in the semi-
classical limit remains open.

Various experimental realizations of kicked Harper have
been proposedf15g. In view of the experimental relevance of
the N=2 resonance in kicked particle problemf12g, the N
=2 resonance of the kicked Harper model may also be of
experimental interest. In fact the kicked particle or rotor in
the presence of gravity may be an important 2-parameter
model for investigating a relation between topology and
transport. In general, finding topological singularities, by nu-
merically detecting a crossing point can be quite demanding.
However, since their location coincides with the minimum or
the maximum of the kinetic energy, we have an easier
method to trace the topological singularities. By correlating
transport and topological singularities, one may have a new
experimental realization of the fascinating conical and
branch point topologies.
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