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Topological singularities and transport in kicked Harper model
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Quasienergy spectrum of kicked Harper model is found to exhibit a series of diabolic crossings. These
conical degeneracies reside mostly on the symmetry line of its two-dimensional parameter space and their
locations are found to coincide with the local maxima of the kinetic energy of the kicked system. Additionally,
there are exceptional point singularities, that are found by analytically continuing the kicking parameter in the
complex plane. The location of these singularities appear to be correlated with the localization of the quantum
wave packet. These studies suggest a correlation between the transport and the topological characteristics of

the system.
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[. INTRODUCTION matrices, the eigenvectors change sign as one changes two

Double-cone or diabolo geometry characterizes the acciParameters around a closed circuit which encloses a diabolic
dental spectral degeneracies of a typical quantum systenfigeneracy. Essential aspects of DPs as well as EPs have
with a real Hamiltonian. Such degenerate points are referreBeen discussed usingx2 matrices[1,4]. As we discuss
as Diabolic pointg1] (DP) and correspond to the special below, the spectral characteristics of the kicked Harper
points where the eigenfunctions are not single-valued: as on@odel[8,9] with Planck constant/27=1/N (N is an inte-
varies parameters in a closed loop enclosing the point, thgen, exhibit a series of topological singularities whose ex-
wave functions acquire a phase factor, known as Berryploration involves the study dl <N matrices. The special
phase, that depends on the history of the path and hence is efse ofN=2 corresponds to one of the most dominant reso-
purely geometric origin. It is interesting that the occurrencenance of the model. Here we study the spectral characteris-
of this crossing of eigenvalues in parameter space is senséigs of N=2 case analytically while the highét cases are
by a circuit that does not pass through the degeneracy, b@nalyzed numerically. Our studies complement earlier dis-
simply encloses it. This is analogous to the electrostaticeussion of the DPs and the EPs as the matrices under inves-
where the Gauss sphere of arbitrary radius detects an electtigation are unitary for real parameters and complex without
charge. In fact, the presence of a DP leads to monopole-typeeing symmetric for complex parameter values. Additionally,
singularity with a fictitious(geometri¢ monopole at the dia- we also discuss the band spectrum of the model and demon-
bolic point[2]. The importance of DPs has been emphasizedgtrate a relationship between the topology and transport in
in molecular as well as in nuclear specfed. the system. Furthermore, we briefly discuds>2 cases.

Another type of singularity that has been the subject ofHowever, detailed analysis of the singularities in these cases
many recent studies is known as exceptional pt#ER) [3].  is very complicated.

At an EP, two eigenvalues coalesce and the corresponding This paper is organized as follows. In Sec. Il, we briefly
eigenvectors become parallel and hence the eigenspace of tiscuss the kicked Harper model. In Sec. Ill, we provide
two coalescing levels becomes one-dimensional. As illusdetailed spectral analysis of tiN=2 resonance and discuss
trated by Katd 3] in his book, EPs can occur in real as well the topological singularities of the spectrum in real and in
as in complex plane and may correspond to a branch point gfomplex parameter space. The band spectrum and the trans-
an analytic function. However, as emphasized by Kato, arport properties and their relationship with the topological
EP need not be a branch point. For 2-level systems, EPs hag#ngularities are discussed in Sec. IV. Section V describes the
been found in the vicinity of level repulsion, when analytic N=6 resonance and briefly discusses higerases. In Sec.
continuation in the complex space connects the two levels byl, we summarize our conclusions and discuss various open
a branch poinf4]. The significance of EPs has been dis-issues.
cussed in dissipative resonators and the experiments have
confirmed the topology underlying an EB]. Furthermore,

the influence of these points on transmission through quan-

tum dots was discussed recenff]. The DPs and the EPs  Periodically kicked Harper Hamiltonian characterized by
are topological singularities that are the subject of this papetwo parameters andK is

Here, we illustrate the importance of these topological sin- .

gularities in the transport characteristics of a nonintegrable

system whose classical limit exhibits chaotic dynamics. H(t) =L cogp) +K cos(q)k_z At = k). @)

As pointed out by Bernf7], when detached from their -
original quantum mechanical context, the diabolic connecHerep andq are respectively the momentum and the posi-
tion and the associated geometric phase is in fact a propertion operators. For thé-kicked system, the time evolution
of matrices. In the simplest case of real symmetrig 2 operatorU for one period, withU(t) =¢(t+1) factors as

Il. KICKED HARPER MODEL
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U =exd—iL cogp)/filexd - iK coqq)/%]. (2)

Here, 7 is typically an effective Planck’s constant. The first

term governs the free evolution between the kicks while the

second term describes the effect of kicking.

The model has been studied in various contexts in classi-

cal as well as in the quantum Ilimitf9]. In its two-

dimensional parameter space, the quantum dynamics of this
non-integrable mixed phase space system is extremely com-

plex. For incommensurate case, whér@sr is an irrational
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&, =[sin(B)e”'?, - cog B)e’]. (4
Here 8 and ¢ are given by
tan(B) = [sin(L)cod ¢K)] + VI1- CO§(§K_)co§(|_)] |
sin(¢K)
5)

b= (w2 +L/2).

number, the model exhibits localized as well as ballistic

transport forK # L. In this case, intricately nested localized
and ballistic phases fdr>K have their dual image of bal-
listic and localized phases fd€>L [10]. This is a conse-
quence of self-duality along the symmetry line=L along

which the eigenfunctions and the spectrum exhibit fractal

characteristics.
For the case wher&/2 is a rational number, the model

exhibits quantum resonances and the quasienergy states are

extended for almost all values &f andL and the quantum
transport is ballistic. In this resonant regime, the significanc
of self-duality is not clear. In this paper, we will only con-
sider this case and write/27=1/N, whereN is a positive
integer. Since the time evolution operatdiis periodic inp,

it can be reduced to Bl X N matrix that depends upon the
Bloch vectork [11]. Varying « is like varying boundary con-
ditions, and summing over all boundary conditions give us
band of states, and a band of eigenvalues. Special case
x=0, corresponds to periodic boundary conditions N\m-
creases, the widths of the quasienergy bands decrease

an experiment. In fadN=1, 2 were the subject of very ex-
tensive theoretical and experimental studies in a kicked rot
model[12,13.

Due to the periodicity of Hamiltonian im, we consider
the floquet statesj(t)=€“'¢, (). Herew is the quasienergy
of the system andp,(t)=¢,(t+1). This leads to an eigen-
value equation folJ:Ug,=€“¢,,. Its matrix elements are
computed in the plane wave basi€% wherezimis the quan-
tized angular momentum of the unkicked system. We hdve
eigenstates, parametrized by the Bloch veetom this pa-
per, we explore the model analytically foi=2 and study

higher order resonances numerically. For investigating topo

logical singularities, we study the model for real kicking pa-
rameterK as well as for the case whet¢ is analytically
continued in the complex plane.

Ill. SPECTRAL ANALYSIS FOR N=2 RESONANCE

For N=2, the one-step time evolution operator in the
plane wave basis is a>22 matrix,

|

whereK=K/# andL=L/# and {=cog«). For realK andL,
this matrix is unitary.
The eigenvectors of the matrix can be written as

e, =[cog B’ sin(B)e?],

- ie‘i(f"")sin(g’_)

dcos¢K)

et cosg¢K)

— ie!+9gin(ZK)

3

a
therefore higher order resonances are difficult to observe i

The corresponding eigenvalues are

d@12= cogL)cog {K) + i \/[1 - co2(L)cog(K)].  (6)
As seen from Eq(6), the eigenvalues become degenerate
when the quantity in the square root vanishes. This happens
whenL=n7 and {K=ma. Additionally, there is another de-

generacy when cok)coq(K)==+1 that occurs for complex

parameters. In this case, the two eigenvalues are branches of

one double-valued analytic function that meet at the branch
point. As we discuss below, these degeneracies are topologi-
cal singularities that are relevant in the transport properties
of the system.
We analyze the degeneracies of the 2-Ief¥idkd «) and

-band (with O0< k<) system. In addition to analytic
%tﬁalysis of these singularities, they are also shown graphi-
cally in the figures. This graphical representationNof2
SREctrum facilitates detailed comparison with>2 reso-

ances and and this in turn provides better understanding of

igher N resonances for which theoretical analysis is not

0[possible. Figures 1-3 show quasienergy spectrum for real as

well as for complex kicking parametég, with main focus
being to illustrate the interesting topological structures asso-
ciated with the spectral characteristics of the model.

We first discuss th&=0({=1) case. For redK andL, the
two levels are degenerate with,=0[mod27)], at the criti-

cal values of the parametd{.=n, L,=ma. The crossings
for k=0 atK; andL. are diabolic inK-L space. This can be
seen in two ways. First, since das=cogK)cogL) [from
Eqg. (6)], linearizing about the critical point&.=L,, we get
(K=Ko2+(L-Lo)2=(w-w.)?, which is the equation of a
cone. This implies conical intersection inK-L plane(see
Fig. 2). Secondly, the diabolic character of this point can also
be seen by considering a small parametric loop of radius
around this pointK=K.+r cosf and L=L.-r sin§ as we
vary 0<#<2s. Linearizing inr, from Eqg. (5) we get
tanB~-tan(w/4-6/2). Thus as we go around the crossing
pointsK.=L.=n7?, #— 6+27, andB— B+ and hence the
wave functions change sign.

We next discuss the crossings in the complex plane. As

seen from Eq.(6), for =0, this occurs when c@K)
=1/cogL). With L real, andK imaginary (K—iK), the
quasienergies along the imaginay axes with |K|=L are
given by

d12= cogK)coshK) + i \/[1 - cog(K)cosR(K)]. (7)
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FIG. 3. Figure shows the topology associated whih=2
quasienergies when a closed circuit in compleplane does not

FIG. 1. ForN=2, figure shows the quasienergy spectrum for ¢nciose an ERop) and encloses an EBottom. The figures on the

periodic boundary conditionsc=0). The top figure corresponds to
real parameters on the symmetry litl€=L). The middle and the

left and right respectively correspond to the EPs éaf.897 and
K=4.75r. Note that sincev, is defined mod 2, the figures on the

lowest figures, respectively, show the real and the imaginary part qfight correspond to two loops at the top and a single loop at the

the spectrum for imaginarK(K,=0) with |K|=L. This choice is
dictated by the fact that EPs reside along this line in comlex
plane. The constancy af, as well asw; as seen in some parts of the
parametric windows is due 1§,=0 as in the compleX plane; we
typically see two distincts, and w; as clarified in Fig. 3.

In the complexK plane, there is a degeneracy when
COSHK):1/C09{L)._FOI’ large K (K>1), this happens in

close proximity toL=(2n+1)#/2. To see the relationship
between the crossings in the compl& plane and the

avoided crossings in the real parameter space, we note th
for k=0 onK=L line, the avoided crossings correspond to

the dw/dK=0. These exist mid way between the diabolic
crossings: that is &=L=(2n+1)#7/2, withn=1, 2, ... .

10
9.95
9.9
9.85
9.8
9.75

FIG. 2. Diabolic geometry neat=L=72 »=0 showingw-K-
L surface fork=0 in N=2 case.

bottom.

The complex conjugate eigenvalues w,+iw; coalesce
when the quantity in the square root in E) vanishes.
We will denote this quantity asA, where A=1

—-cog(K)cosH(K). It should be noted that wheA >0, w
=0 and whemA <0, w,=0,7. The degenerate points in the
complexK plane are branch points whete=0, ;=0 and
w,=0 or 7. Unlike Diabolic crossing, the eigenvectors of the
two coalescing levels become parallel. Within_an overall

&gnstant, such an eigenvector is givendsy(1,ie7¥). This
implies that the branch point singularities are exceptional
points due to thexceptionabroperties related to the incom-
pleteness of the function space.

As shown in Fig. 1, with the exception of the first point,
all other EPs come in pairs and we will refer them as twin
EPs. This is because #&sincreasesA is negative except in
the neighborhood ofK=(2n+1)7/2. We write K=(2n
+1)7r/2+e€ (wheree is smal) and linearizeA in e. This gives
A=0 whene=~ e @72 resulting in twin EPs. Clearly,
the parametric distance between the twin EPs goes to zero
exponentially ak becomes large.

The EPs in the complex plane are located in the vicinity
of the the avoided crossings whins analytically continued
in the complexK plane. As discussed earlier, for values of

K>1, the EPs occur exponentially close Ke=(2n+1) /2
along the imaginanK axis, which are the locations of the
avoided crossings for re&.

The exceptional points are genuine crossings in the com-
plex K plane where both the real and the imaginary paub of
coalesce. Additionally, there are crossings associated either
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part of the quasienergy band collapses. In other words, the
band at diabolic crossings move to the imaginary axis when
K becomes imaginary.

Secondly, in the vicinity of EPs, there isband collapse
and hence an infinite-fold degeneracy for real as well as for
imaginaryK. For the real part of the spectrum, we have two
different accumulation points of type Il crossings corre-
sponding to two bands. For the imaginary part of the spec-

S trum, there is one accumulation point of type | crossing
3 F where different levels, characterized by differanineet. As
Q- we will discuss later, all the above characteristics of the
. quasienergy bands persist for high¢icases.
‘Z = To investigate the importance of topological singularities,
. we numerically calculate the kinetic energy of the model,
R E (using plane wave initial conditiondor fixed number of
3 OoEF kicks. The quantum transport is found to be ballistic except
ok at parameter values where there is a band collapse. At these
E isolated parameter values, the quantum wavepacket is found
-4 E to remain localized, that is, the momentum does not increase

—

with time. In view of the fact that for rationdl, the quantum
transport is ballistic for almost all values of the paramekers
and L, , we write the kinetic energy of the system as
FIG. 4. Figure shows the quasienergies obtained using 30 dif¢p?/2)=At?. For a fixed timet, asK varies, the changes in
ferent values of, covering most parts of the bands. Similar to Fig. the kinetic energy are due to changes in the paranfeter
1, the top figure shows the band structure along the symmetry line As we vary the parametef, the kinetic energy shows
for real K. The middle and the bottom part of the figure shows theoscillatory behavior with peaks and valleys that appear to be
real and the imaginary part of the energies wheis moved along  correlated with the topological singularities. At diabolic
the imaginary axis. In the top figure, we also show the kineticcrossings, the kinetic energy exhibits a local maximum.
energy along the symmetry line. However, it should be noted that all local maxima in the
kinetic energy are not associated with the diabolic crossing.
with the real or the imaginary part of the quasienergies. Suclmterestingly, as seen in Fig. 5, the kinetic energy exhibits
crossings have been referred as type | and type Il, respe@ionanalytic dependence df at the diabolic points. The
tively [13]. As seen in Fig. 1, along the imaginakyaxis, the  peak atk=1 whereA varies smoothly withK is not associ-
location of EPs coincide with that of type | and type Il cross-gteq with a diabolic crossing. However, peak&tr= and
ings. To illustrate the changes in topologies due to EPS, Wg /=27, wheredA/dK is nonanalytic, are in fact correlated
follow quasienergies along a closed circuit in the complex \ith the diabolic points.
plane, with or without enclosing the ERiSig. 3). If no EP is In the vicinity of the EPs, the quantum transport is local-
encircled, the eigenvalues trace out two disconnected 100p§;eq in bothx and p. In other words, the momentum of the
However, when an EP is encircled, the two circuits mergesystem does not increase as the system is kicked. In contrast,

into a single circuit. the presence of a DP does not affect the ballistic aspect of the
transport, but it leads to a nonanalytic dependence of kinetic
IV. BAND SPECTRUM AND TRANSPORT FOR N=2 energy on the kicking parameter.

We now discuss the quasienergy bands, the continuum of
the energy levels, obtained by varyiagn the closed inter-
val (0,) (see Fig. 4 In addition to the quasienergy bands  As N increases, detailed analysis of the singularities be-
for the real parameters along the symmetry line, we als@ome very complicated. Our numerical analysis suggests that
show the complex bands whé&his moved along the imagi- various crossing scenarios and the associated EPs and DPs as
nary axis. As discussed below, the DPs, the EPs as well afiscussed above may continue to existNor 2. Figures 6-9
the type | and type Il crossings emerge with special signifi-llustrate this forN=6 resonance. The diabolic aspect of the
cance when viewed in the context of the band structure. crossing aK =~ 1.44r for k=0 is shown in Fig. 7. New aspect
First, the location of diabolic crossings =L, corre-  here is that the conical intersection of two energy surfaces is
sponds to the points where the two bands merge. Thedatercepted at the diabolic point, by an another energy sur-
crossings fork=0 become a family of avoided crossings asface. This topological singularity leaves its fingerprints in the
the Bloch vectork becomes nonvanishinfOnly exception  complexK plane. WithK along the imaginary axis, we see a
being thex=7/2({=0) case, where the levels cross but this pair of crossings symmetrically placed abayt 0 as seen in
crossing is not diabolic ifk-L space] As K is moved along Fig. 6 (bottom and further in the complex plane in Fig. 8. In
the imaginary axis, the diabolic crossing transforms into araddition, there are crossings & ~1.657i and at K
accumulation point of type Il crossing. At this point, the real =1.85xi, where we also have type | and type Il crossings.

V. SPECRAL AND TRANSPORT ANALYSIS FOR N=6
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5 —
O | —
<5 7
_10 — —
- . FIG. 7. The figure shows three of theK-L surfaces foi=0 in
B . N=6 resonance. Two of the surfaces show conical intersection at
5 r 7 K=L=1.44r while the third surface simply passes through the DP.
o I 1 1 1 I Il 1 1 | 1 1 1 I 1 1 1 I 1=

0 5 1 6 5 Changes in_ the topolqgies as we e_ncircle such crpssings are
shown in Fig. 8. The figure clearly illustrates the differences
K/m in the crossings a/m7=~1.4 and aK/7=6.5.
Figure 9 illustrates variations in the quasienergy bands as

o o o e A s sl nth et crrgy =5 case a s vried. I
: 9 y . y - : P analogy toN=2 case, the location of the diabolic crossing
tively correspond ta=400 andt=800 kicks. The fact that the two S - - : N

- . . oincides with the location of band merging which in turn
data sets coincide confirms the fact that the transport remains ba?—

listic at almost all values df. The first peak aK/ =1 corresponds coincides with the Ioca_ltlon .Of maximum of the kinetic en-
ergy. ForK along the imaginary axis, the real part of the

to the point where the bandwidth exhibits a local maxima. However, . .
at this point, the bands do not cross and there is no diabolic poinf.:orresDondlng quasienergy bands collapse as was the case

The characteristic “dips” in the figure correspond to localized transf0r N=2 resonance. Finally, analogousNe 2 case, the local

port and occur in the vicinity of the EPs. minimum of the kinetic energy is located in the vicinity of
the band collapse.
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1.4 1.6 1.8
K/7T FIG. 8. The figure shows quasienergies for M6 case, when

the parameters are varied in closed loops centerd€| =t =1.47
FIG. 6. Same as Fig. 1 with=6. NearK = 1.4, we have a pair  (left) and K;=L=1.6x (right). The top figures correspond to the
of diabolic crossings fok=0, as well as a pair of crossings in the cases when the closed circuits do not enclose the crossings while
complexK plane. Additionally, there are EPs Kt=1.657 andK the bottom figure corresponds to the loops that enclose the
~1.85m. crossings.
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FIG. 9. Same as Fig. 4 for tHd=6 case showing six quasien-
ergy bands and the kinetic energy. FIG. 10. Figure shows the variation in kinetic energy as the

parameterK varies along the symmetry line. The upper and the
middle curve respectively correspondshe6 andN=20. The bot-

singularities become difficult. Detailed study of topological toenr1 d:;?uusrii:h%\:vesgzgir?'g?i';ﬁleixﬁ?:inlt’ ;’:’xf/e;;nf':gﬁs d?;ue-
Slhgularltles in the Semldass.'lcal limit is beyom_:l the scope (.)fo period-2 ;’;lccelerator modes while thatdtr=2 corrésponds to
this paper. However, we believe that the locations of DPs i eriod-1 accelerator mode
parameter space may be correlated with the location of th '

accelerator modd44] in the corresponding classical system B )
as#—0. This is due to the fact that in the semiclassicalfor other values of. For example, foN=10, there exists a

limit, the enhancements in the quantum transport can be ust?P t@=0, with K=L~m when «~0.2757. We have dis-
d crossings only on the symmetry likesL (or |K|

ally traced to the enhancements in the classical transpoft!SS€d Cros:
which have their origin in the accelerator modes. An ex-—L» for imaginaryK). As we move away from the symmetry

ample of this is shown in Fig. 10 where we compare thein€ K# L, diabolic crossings foN=2 case were found only
classical and the quantum kinetic energyNagicreases. We at K=nwz andL=mm. However, avoided crossings continue
would like to emphasize that the quantum transport is mostlyo exist throughout the the two-dimensional parameter space.
ballistic (due to rationality of#/2w), whereas the corre-
sponding classical transport depends strongly on parameters
and varies from subdiffusive, diffusive to superdiffusive. For
a fixed finite time, the variation in quantum transport is de- In summary, the kicked Harper model provides an inter-
scribed in terms of the parametér while the appropriate esting example of a nonintegrable system exhibiting topo-
quantity for classical transport is the exponghtdefined as  logical singularities. The study of topological singularities in
(p?)=t# where O<pB<2. Narrow peaks in the classical N=2 resonance is somewhat analogous to earlier studies of
transport, due to accelerator modes have their fingerprints ithese singularities using>2 matrices. The aspect here is
broad quantum peaks. The shift in the quantum peaks reldhe different perspective that emerges when topological sin-
tive to the corresponding classical peaks is due to larges  gularities are viewed in the context of band structure and the
the Planck constant increases, the quantum system fails tcansport properties of the system. Importance of the diabolic
resolve the tiny accelerator islands associated with the class well as the exceptional point singularities lies in the fact
sical system, however, the transieffigite t dynamic$ ap-  that their locations appear to be correlated with the extrema
pear to sense some signature of anomalous classical transpoftthe kinetic energy.
that result in broad peaks. The EPs are found in the vicinity of the localized trans-
Detailed study of various resonances in two-dimensionaport of the system while the DPs occur at parameter values
K-L parameter space shows that the diabolic crossings amhere the kinetic energy exhibits local maximum, with a
mostly confined to thé&=L line. In our numerical explora- characteristic nonanalytic behavior. Diabolic crossings when
tion, all crossings withk=0 on the symmetry line were continued in the complex plane, are found to be associated
found to be diabolic, irrespective of thidvalues. We would  with an accumulation point of type Il crossings. Our study
also like to mention that diabolic crossings were also seeminveils many interesting features of the quasienergy bands

As N increasedor 7 decreases analysis of topological

VI. SUMMARY AND CONCLUSIONS
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and their relation with the topology. Analytical understandingTherefore, the usefulness of this type of study in the semi-
of the correlation between the band width enhancement, thelassical limit remains open.
diabolic crossing and the nonanalytic character of the kinetic Various experimental realizations of kicked Harper have

energy remains an interesting open problem. ~ been proposeflL5]. In view of the experimental relevance of
_Importance of topology in delocalization of symmetric the N=2 resonance in kicked particle probldi?], the N
kicked Harper was the subject of an earlier st} To =2 resonance of the kicked Harper model may also be of

what extent, topological singularities influence localizationeyperimental interest. In fact the kicked particle or rotor in
properties is therefore an important question. The generality,q presence of gravity may be an important 2-parameter

of the relationship between the EPs and the localization tha{,yqe| for investigating a relation between topology and

surfaced in our analysis here requires further investigation. | o : : .
. X ansport. In general, finding topological singularities, by nu-
should be noted that on the symmetry line, the Iocallzecﬁ_‘ P g g topoog 9 y

. . i : erically detecting a crossing point can be quite demanding.
T[ransport exists at isolated points. However,mz cas.e., It However, since their location coincides with the minimum or
is clc_ear from Eq.6) thatL=(2n+1)7/2 descnb(_as_a_ critical  the maximum of the kinetic energy, we have an easier
line in K-L parameter space where we have infinite degenmethod to trace the topological singularities. By correlating
eracy and if one starts in a localized statgjior p, one stays  yansport and topological singularities, one may have a new

in such a state. In other words, at these points the kinetig,nerimental realization of the fascinating conical and
energy does not grow with time. Fate of these critical linesy 4qcn point topologies.

(with localized transpojtas N increases requires detailed
study of the model in two-dimensional parameter space.

The study of quantum transport in systems whose classi-
cal limit is chaotic is one of the most active frontiers. There-
fore, many key questions linking transport and topology arise The research of I.I.S. was supported by National Science
in the semiclassical limit. However, in this limit, detailed Foundation Grant No. DMR 0072813. | would like to thank
analysis of the topological singularities is very complicated.Shmuel Fishman for various comments.
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