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Correlation function bootstrapping in quantum chaotic systems
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We discuss a general and efficient approach for “bootstrapping” short-time correlation data in chaotic or
complex quantum systems to obtain information about long-time dynamics and stationary properties, such as
the local density of states. When the short-time data are sufficient to identify an individual quantum system, we
obtain a systematic approximation for the spectrum and wave functions. Otherwise, we obtain statistical
properties, including wave function intensity distributions, for an ensemble of all quantum systems sharing the
given short-time correlations. The results are valid for open or closed systems, and are stable under perturba-
tion of the short-time input data. Numerical examples include quantum maps and two-dimensional anharmonic
oscillators.
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[. INTRODUCTION ics is related to classical unstable periodic orbits. For ex-

When a quantum system is known to have a chaotic cla ample, scarlike resonances related' to diffractive trajectories
sical limit, the simplest description of its eigenvalues, eigen1ave been observed in a two-dimensional electron gas
states, and dynamics is given by the universal predictions dgPEG conductance experimef8]. The approach of using
random matrix theoryRMT) [1] and the closely related ran- Short-time behavior to understand eigenstate structure and
dom wave hypothesi?]. Recently, however, there has been statistics has been l_Jsed_ s_uccessfully in many situations
increased interest in understanding the deviations from RM}/here a proper classical limit does not exist, such as two-
that are quite sizable in many systems of interest and argody random interactions in a many-fermion systegh or
often due to short-time dynamical effects. RMT assumes jimdYnamics on a quantum graph or lattic], as well as in
plicitly that under time evolution, any initial state immedi- PSeudointegrable systems where the Lyapunov exponent
ately spreads randomly over the entire available Hilbert/@nishes(1l]. Furthermore, short-time dynamical informa-
space; any realistic chaotic dynamics, however, maintains 400 necessarily implies deviations from RMT not only for
short times information about the initial state and only after'nd'vIdual wave function intensities, but also for spatial or

some finite mixing timeT;, does the dynamics become truly Phase space correlatiofs2]. .
random. Our aim here is to discuss a systematic, general, and ef-

For the purpose of describing spectral statistics, such acient framework for studying the constraints that short-time
the distribution of level spacings, the above consideratiorfforrelations impose on the eigenstate structure, regardless .Of
may easily be taken into account by noting that RMT predic_whether such short-time correlations can be computed semi-
tions are valid only inside energy windows of size less than &lassically. We allow ourselves to focus on one or an arbi-
ballistic Thouless energyE,~%/T,y,. The situation with trary number of initial wave packets, and the calculations
wave functions is not so simple, as short-time dynamicamay be performed equally well in closed or open systems, as
effects can lead to large deviations from RMT not only for there is no assumption of unitarity in the dynamics. We ex-
energy-averaged quasimodes but also for individual eigerplicitly allow for the presence of errors in the short-time
states. correlations, and demonstrate the stability of the results with

Any short unstable periodic orbit is one obvious examplerespect to such errors.
of a nonrandom dynamical feature that is known to cause In the context of extracting stationary properties from a
significant deviations from RMT statistics in the eigenstatestime-domain correlation function, we mention the important
It has been shown that the “scarring” of individual wave work that has been done by Mandelshtam and co-workers
functions by a typical periodic orbit is a@(4°) effect that using the “filter diagonalization” methofiL3]. In that ap-
persists in the semiclassical limit, as measured by the distriproach, one typically begins with a single wave packet, and
bution of wave function intensities on the periodic orbit in spectral information can in principle be computeractly
Husimi phase spade@]. Using a linearization of the dynam- when the correlation function is known for at ledstimes,
ics around the specific orbit, the distribution of quantum in-whereN is the Hilbert space dimension. In the bootstrapping
tensities on or near the orbit may be obtained semiclassicallgpproach, we use multiple initial wave packets, and we do
as a function of the classical monodromy matrix, and variousiot assume exact finite dimensionality of the Hilbert space.
moments of the distribution, such as the inverse participatiod hus our goal is not an exact solution of the spectral analysis
ratio, may be expressed analyticall]. The scarring effect problem, but rather an increasingly good approximation as
has been studied experimentally and numerically in a widehe amount of input data increases. Of course, exact solutions
variety of systemg¢5], and may have consequences for theare not possible in any case in the presence of noise or nu-
conductance through a resonant tunneling diode or a ballistimerical instability, so in practice regularization must be per-
guantum dof6,7]. formed, yielding comparable results for the two approaches.

The imprint of short-time dynamics on eigenstate struc-One advantage of the bootstrapping approach is that the lin-
ture is not limited to situations where the short-time dynam-ear algebra involved requiréd X M matrices only, wheri/
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is the number of initial wave packets, allowing the problemon a given Poincaré surface of section and return to the sur-
to scale very well computationally for large system sizes andace of section without intersecting it at intermediate times.
long times. The T matrix is defined directly in the energy domain
The paper is organized as follows. In Sec. Il, we definewhereas we begin our analysis in the time domain and trans-
the quantities of interest in the time and energy domain, anébrm to the energy domain later on. The decomposition used
obtain general expressions for the bootstrapped correlationere also resembles somewhat the one used in the quantita-
function and spectrum. Section Il serves to define two setsive analysis of periodic orbit scarriri@], where it is helpful
of numerical models, which may be used to illustrate theto separate terms in the return amplitude that are associated
general formalism. Next, in Sec. IV, we discuss convergence&ith paths staying on the periodic orbit from terms associ-
properties of the bootstrapping approximation, including aated with homoclinic paths that leave the orbit once and first
treatment of stability in the presence of noise. In Sec. V, waeturn at some later time. Of course, in the case we consider
examine how bootstrapping may be used to compute statisiere theM-dimensional subspace spanned by the wave pack-
tical quantities of interest, including wave function intensity ets ¢; will not in general have any connection with a particu-
distributions and intensity correlations, using a very smalllar classical structure such as a periodic orbit or surface of
amount of time-domain data as input. Finally, the key con-section. Instead the choice @f is governed either by our
clusions are briefly summarized in Sec. VI. exact or approximate knowledge of the correlation function
for those initial and final states or by an interest in extracting
wave function structure information in a specific basis or
Il. BOOTSTRAPPING FOR CORRELATION phase space region. Furthermore, no semiclassical approxi-
FUNCTIONS AND SPECTRUM mation is implicit in the method we develop here, although
we will see below that the approach can be extended to situ-
ations where the correlation function information used as
input is only approximate, as would be the case for example

We begin by considering a set bf wave packetsp;, for
simplicity taking the wave packets to be orthonornfalit
not a complete sgt In practice, the choice off; will be : . .
dictated by the physics of interest. For example, ¢henay when a semiclassical propagator is used_.
be chosen as position eigenstates if we are interested in Formally, the new recurrencé;(m) at timet=mT, may
position-space wave function structure, or momentum eigern2€ defined as
states for scattering behavior, or Gaussian wave packets for
analyzing the effects of classical periodic orbits. In a many-
body problem, thep; may usefully be taken as the noninter- \where
acting product states. M

The quantity of interest in the time domain is the correla- P=2 [ (5)
tion function k=1

Bj(m) = (¢ MTOA[(1 — P)eFTo ™1 4y (4)

C;= (¢i|e'iH“"|¢j>, (1)  is the projection onto the subspace of interest. More explic-

. . . itly, these new recurrences may be computed from the full
whose diagonal elemen@;(t) constitute the autocorrelation C;. amplitudes as

functions for the individual wave packets. Knowledge of the "

exact correlation function for all discrete timesmT, leads Cij(To), m=1,
by Laplace transform to the discrete-time Green'’s function m-1 M
B;(m) =
w 1 Cij(mTy) = 2 X By(p)Cyi((M=p)Tp), m=2.
Gy(E) = (i) To X [éEmWﬁ - —am]ci,-(mTo) Pt
m=0 2 (6)
o 1 The full correlation function is then given by a convolution,
= (ih) Tof bl ———=—— = | ) 0 gren by
1 - E-HTyh 2 m M
= 1 Cij(mTy) = 2 > Bi(p)Cig((M=p)To) (7)
z(iﬁ)_lf dt €¥C () = (| ———— &), (3 p=lk=1
0 E-H+le or, in matrix notation,
where the continuous-time limit of Eq3) is obtained for m m-1
To<<#/SE, and &E is a typical energy spread in the wave c(mT) = B(p)C((m-p)To) =B(m) + >, B(p)B(m-p)
packets. =1 o
We will see that it proves useful to decompose the return m-2 m-p-1
amplitude of Eq.(1) at timet into a special “new” compo- +> > B(pB(P)BM-p-p)+ -, (8)

nent that is returning for the first time to the subspace
spanned by thi/l wave packetsp; and the remainder due to
propagation that has revisited this subspace at least once w&here C(0) is always the identity matrix. The matri(m)
time steps in between 0 andin spirit, this is reminiscent of records the amplitude that at theh step returns for the first
the T-matrix approach of Bogomolniyi4], where an integral time to the subspace spanned by thewhile terms in Eq.
kernel is defined in terms of all classical trajectories that star{8) involving a product ofn B matrices correspond to pro-

p=1 p/:]_
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cesses where amplitude leaves and returrtames to the m
same subspace ovar steps. In the energy domain, CL.(mTy = EBL,T(p)CL,T((m_ P)To)
Gi(E)=(h) _1T°<¢‘|1—+B(E) E B m S BB m-p
where m-2 m—p—:l’.)_l
B(E) = g MO (1) (10) + gl zl BLAP)B_Ap")BLm-p-p’)
mt + o (12

We are, however, interested in the information that can be
extracted from knowledge of the correlation function at ahaving the prOpert}QL,T(mTo):C(mTo)e'mTo” for m<L. In
finite set of timed only, sayt=mT, for m=1,...,L, possibly  the energy domainB, ,(E) may be defined as a Laplace

in the presence of noise. If we assu@@nT,) is known only  transform of B_ (m), in complete analogy with Eq(10)
for times t<T,,,=LT,, i.e., for I=m=<L, then we may above.

compute the new recurrencBsmT,) only for 1I<sms<L us- Finally, one often encounters a “noisy” situation where
ing Eq. (6). It is convenient to define even the short-time dynamics is only approximately known.
For example, we may be interested in building up the full
B(me ™7 1<m=<L, dynamics using onlgemiclassicaéxpressions for the propa-
BLAm) = 0 otherwise. (11) gator at short times. We then have knowledge of
CdmTp) = C(MTy) + eD(MTp) (13

The cutoff timer, which can be much larger than the boot-
strap timeT,,,=LT,, serves as a smoothing scale in the ensfor 1=<=m=<L, whereD(mT,) are quasirandom, uncorrelated
ergy domain, and its significance will be discussed in Sec. I\error matrices ance characterizes the relative size of the
below. Given just the matriceB, ,(m), we may compute a error. Given this input data we may calculate approximate
“bootstrapped” approximation to the full correlation function “new” recurrencesB, . (mT,) by extending the exact for-

at all times: mula of Eq.(6),
|
CTo)e ™7, m=1,
m-1
BL,T,E(m) = Ce(mTO)e_mTO/T_ E BL,T,e(p)Ce((m_ p)TO)e_(m_p)TO/T! 2sms L! (14)
p=1
0 otherwise.
I
The “bootstrapped” long-time evolutio@,_ , . is given by ll. NUMERICAL MODELS
iterating these approximately known short-time “new” recur-
rences analogously to E¢L2), A. Quantum maps
m
CL,dmTy) = 2 B, (p)Cp,.((M=p)Tp) Classical and quantum chaotic maps in one dimension are
p=1 often used as the simplest examples for illustrating general
m-1 chaotic behavior, and share many scaling and other physical
=B, (M) + > B, p)B.(m-p) properties of two-dimensional Hamiltonian dynam[ds].
" p=1 h Discrete-time maps may be thought of as arising from a
m-2 m-p-1 continuous-time Hamiltonian dynamics either via a Poincaré

+ B B "B, (Mm-p-Dp' surfac_e of sect_ion or by §troposcopically viewing motion in a
2 2 BurdPBLodp)BL M- p-p) periodically driven Hamiltonian. In the latter case, we may

p=1 p'=
Pt consider
+ o (15)
Again, by construction the bootstrapping procedure 1 %
simply reproduces the noisy input data for timidselow the H t) = T(p) + V. St=iTu 16
bootstrap time T, i.€., C_ .. =Ce™" for m<L. @p.0 Tidick P (q)j;_m t=1Tad. (19

However, bootstrapping allows us also to learn something
about longer time$> T, using the short-time correlation
function. which yields
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Pi+1=Pj— V'(q)), needed for the discretization tine, (ii) resonances in the
metastable well have finite intrinsic width, introducing a new
=0 + T (pjan), (17) long-time scale, andiii) classical dynamics in the well is

mixed, with the phase space at energies of interest shared by
when the positiong; and momentunp; are recorded just regular islands and a chaotic sea. The implications of these
before kick j. The corresponding quantum evolution over three circumstances will be discussed below, when numerical
one time step is given by results for bootstrapping in the Barbanis system are pre-
sented in Sec. IV B.

0 = i T@hgriv@ih (18)
As a specific example, we may také(p):%wpp2 IV. CONVERGENCE PROPERTIES
+K,(sinp-3sin 2p) and V(q)=-3w,q?-K4(sing-3sin 29, AND SENSITIVITY TO ERROR

for a toral phase spade,p) € [—, ) X[—, ). With inte-

ger values ofi, andw,, this is a perturbed cat mdf6]: In this section, we examine how bootstrapping may be

used when the given information about the short-time corre-
Pi+1 = Pj + WyQ; + Kq(cosg; — cos 2) mod 2, Iation'function is.sufficient to computéapproxim_ately'the .
long-time dynamics and spectrum. An alternative situation,
mod 2, (19) where the given information only restricts us to an ensemble
of possible long-time behaviors, and the objective is to ob-
where nonzero values #,,K, are needed to break the sym- tain statistical properties of the long-time dynamics or spec-
metries and ensure nonlinearity of the dynamics. One easilyrum, is discussed in Sec. V.
checks that the dynamics is completely chaotic for suffi-
ciently smallKy .

For this compact classical phase space, the quantum evo-
lution of Eq. (18) acts on a Hilbert space of dimensidh We want to estimate the error made in using short-time
=2mxl#, the mean energy level spacing &=27%/NT,  information up to the bootstrap timg;,,~=LT, to estimate
=%/ Tk, and the Heisenberg time at which levels are re-long-time dynamics in a chaotic system at timiesT,,,,. Let
solved isTy=NT,. Since the map dynamics is already dis- us first assume negligible noise by settiergO in Eq. (13).
cretized, it is natural to use the peridgg as the time step Clearly the error is then associated with amplitude that starts
T, in the bootstrapping calculation. Without loss of general-in the subspace spanned by thiewave packetsp; and is
ity, we may choose units whem®=T=1. never captured by the short-time correlation function because
it does not return to the original subspace at any time during
the first L steps of evolution. In terms of thB matrices

) ) ) discussed in the previous section, the total probability that
As our model of a nonintegrable system with a time-goes not return in tim@ ,,=LT, is

independent Hamiltonian, we use the Barbanis Hamiltonian

Qj+1= 0 + Wpp; + Ky(cosp; - cos 2yy)

A. Noise-free bootstrapping

B. Two-dimensional wells

L

[17], which describes a two-dimensional anharmonic oscilla- 1 :
tor: P(Tmad = 1= 0 2, Tr B(m)'B(m). (22)
m=1
p/2 p/2 1 1 . - .
H(Xy',p'p'y) = =Y Tmex'?+ —mwiy’z Mathematically, the probability?(T,,,,) is clearly related to
2m 2m 2 2 the probability of remaining for at least tinfg,., in a system
+AXy'2, (200  with M maximally coupled open decay channels. When the

) _ _ dynamics is chaotic, this probability can be represented ana-
After a canonical transformation and an overall rescaling ofytically as an integral in the context of random matrix
the energy, the Barbanis Hamiltonian may be rewritten as theory[18]; for our purposes it is sufficient to note that

2 2 —
1 a a ~MTimad T < /
HOGY, by = 24 2w e+ 220 D02 (21) € ", Tmax< THM,
2 2 2 2 2 P(Tra) = 1 -
. . . .. —(TH/Tmax) v Tmax> Th,
where a is a dimensionless parameter characterizing the M+1
shape of the well. In these dimensionless coordinates, the (23)

metastable well has its minimumaty=0 and extends from
x=-1to 1 along they=0 symmetry axis; the barrier height is where T, is the Heisenberg time, and the power-law long-
Ennax=1/2. Upon quantization, one additional parameter be-time limit also serves as an upper bound R ,,,). Clearly,
sidesa is introduced, namely, an effectiveor equivalently ~we requireT,>Ty/M in order to recapture most of the
the number of quantum levels beldwy,q,. initial amplitude, so that the lost probability is small. We
As compared with the simple quantum map model preemphasize that this estimate, based on random matrix theory,
sented above, analysis of bootstrapping in the Barbanis sysaay be used to obtain the correct scaling behavior of the lost
tem requires consideration of the following three circum-probability P(Ta0) With bootstrap timeT ., even when the
stances, which are typical of many Hamiltonian systefi)s: prefactor in Eq(23) is invalid due to nonrandom short-time
time is not naturally discrete and thus an explicit choice isdynamical effects.
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0.1 1 10 M (t-Tmax )/ T
MThax/ TH
FIG. 2. The ratio of the relative error in the propagafeft), to

FIG. 1. The lost probability?(Ty 4 associated with eliminating the probability lost on average during each cycle of recurrences,
new recurrences arriving after tinig,, is plotted as a function of P(Tmay, is plotted for times > Tpa, M=2, several values ofay
Tmax for the quantum map of Eq19), with wg=w,=1 and param-  and two system sizes. All system parameters are the same as in the
etersKq, Ky, uniformly distributed between -1/2 and 1/2. Squares, previous figure. Squares, circles, and triangles correspond to
circles, and triangles represent data when the number of wave pacMTmaX/TH:5, 10, and 20, respectively, while open and closed sym-
etsM is M=1, 2, or 4, respectively. Open symbols are associategho|s distinguish system sizZé=64 from system sizé&l=128. The
with system sizeN=64 and closed symbols with system sie  solid line indicates the quadratic growth of the error consistent with
=128. The dashed curve is the smBlls, (classical limit in Eq. Eq. (24).
(23), while the three solid lines represent the lafggs power-law
falloff for M=1, 2, and 4. All quantities shown in this and subse- 1
quent figures are dimensionless. eXp(EMTmaJTH)

Threak™ Tmax MT )JT
max 'H

The behavior of the lost probability(Tye,) for small and  \ye see that including only a minimal number of new recur-
large T haxis |!Iustrated in Fig. 1. Here an average OVer quan-gnces by setting a~ Tr/M leads to breakdown of the
tum maps g|ver|1. by Eq19) has been performeld, Withy  pootstrapping approximation soon thereaf®s eac Tma),
_Wpd_bl and non ir}(ezarltydparla/rgeb?l;(%,Kp rar;]domydlstgb- but including additional recurrences leads to exponential
uted between —1/2 and +1/2. We note the expected expQy oyt in the accuracy of the bootstrapping approximation
nential behavior for sma!TmaX, with the classical decay rate 5 consequently to exponential increase in the breakdown
M/.TH' as well as the rapld_ power—law decay of th‘? lost prob-e of course, this exponential growth ceases at very large
ability for Tra> Ty, especially in the case of multiple wave values ofT 5, When the error becomes dominated by a small
packetsM >.1' . . . fraction of eigenstates that have unusually little overlap with

We are interested in the error induced at long tintes o \,ave packetss,. Then P(T,,,) follows the power-law

>hTmta)E' by omltt||ngt:;_ ne;/v r?_curr%CShg not ctapturehd in th?behavior of Eq.(23), and the growth inTy,e, accordingly
short-time correlation function. is point, we have not . o .o vertoa power-law behavior With,,,

introduced any smoothing of the input data, i&= in Eq.

(25

(12). The typical returning amplitude at timéas completed VM + 1 Ty | M2
O(Mt/Ty) cycles of leaving and returning to the subspace Toreak™ Th M T. (26)
H

spanned by th&l wave packetsp, i.e., in Eq.(8) the domi-

nant terms are ones involving a product@Mt/T,) B ma-  for T,o>Ty. We note that the growth of the break time

trices. In each cycle, probability given by E(®3) is lost,  TureakWith increasing bootstrap timg,,,, remains faster than

with the errors accumulating coherently, so that the relativdinear except in the single-wave packet céée 1. This su-

error in the matrix elements at time>T,,,,=LTo=Ty/M is  perlinear growth is illustrated in Fig. 3 for the case of two

given by wave packetgM=2), where the break tim@y,.. has been
quantified as the time scale where the relative error of Eq.
(24) reaches unity.

Mt

2
<T_H) P(Tmad,  (29)

ICL.® -Cl*

B0 e

B. Results in the energy domain

Starting with known short-time information about the cor-
where [[C(H)[>=Tr C(t)'C(1)==;|C;;(t)|2. The quadratic relation function, the bootstrapped long-time dynamics may
growth in the long-time error is clearly seen in Fig. 2 for be Laplace or Fourier transformed into the energy domain to
several choices of the bootstrapping parameters. obtain good approximations to the Green’s function, spec-

To find the time scal@,.,beyond which the bootstrap- trum, or local density of states. Alternatively, the short-time
ping procedure breaks down, we assumg/M=<T,,  “new” recurrences may be transformed directly into the en-
<Ty/ VM. Then, setting the right hand side of EQ4) to  ergy domain to obtain spectral information, as indicated by
unity and using Eq(23), we obtain Egs. (9) and (10). To avoid unphysical oscillations in the
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x=0 and having an average momentum of magnitiuje
=0.96, corresponding to an ener@~=0.46. Thus, we are
viewing dynamics slightly below the top of the barrier,
Enax=0.5. The classical dynamics in the energy range con-
sidered is approximately 57% chaotic, as measured using a
Poincaré surface of sectionyat 0. All six initial wave pack-
ets are centered in the chaotic region of classical phase
space.
We see from the middle solid curve in Fig. 4 that most
peaks in the spectrum can readily be resolved using boot-
0.1 : - strapping, taking correlation information up through the
1 T T 10 Heisenberg timeT, as our only input. For bootstrap time
max” °H Trmax= 2Ty (top solid curve, the spectral peak heights already
FIG. 3. The break tim&,,eqx Of the bootstrapping approxima- Stand out by four orders of magnitude above the background.
tion, defined byE(Tpead=1, is plotted forM=2 and several 1he root mean squared error in the bootstrap-predicted peak
choices 0fT,ya. Open and closed squares represent system size@cations drops from 0.024when T,,,=Ty to 0.0064 for

N=64 and 128, respectively. The ensemble of systems is the samimax=2Tn, WhereA is the mean level spacing. We may con-
as in the previous two figures. The straight line is the theoreticaffast this with the result, indicated by the dashed curve, of

Tm;l)/z’vTﬁq/ix of Eq. (26). merely_ transforming and smoothing the same correla_tion in-
formation, up throughr,,,=2Ty, but without the benefit of
spectrum on energy scales beldwiT,,., (associated with ~bootstrapping. Here the resolution is very poor, and we are
the breakdown of the bootstrapping approximation at londar from being able to detect, for instance, the two doublets
time9, we impose an explicit smooth cutoff on the short- nearE=0.4515 and 0.4535.
time dynamics, in accordance with E@.1). Loss of infor- In contrast with the map model studied in Sec. IV A, in
mation is minimized by choosing the cutoff timeof the  the Hamiltonian system investigated here we must discretize
order of T,eq Which is equivalent to Lorentzian smoothing time explicitly by introducing a new time scalg,. The re-
of the spectrum on the scatd Ty eqx sults of the calculation, however, are unaffected by the
The numerical data presented in Fig. 4 are obtained foghoice ofTy, as long asTo<7/JE, whereJE is the energy
the Barbanis potential, with parametems=1.1 and #  uncertainty in the wave packets. Equivalently, the time
=0.0198 in Eq.(21), corresponding to slightly over 300 stepT, must be chosen short enough so that the self-overlaps
quantum resonances in the metastable well. Six initial Gaus$=ii(To) are large due to free-flight dynamics.
ian wave packets are used in the calculation, all centered at A second key difference with the map model is that quan-
tum motion in the Barbanis potential is described by reso-
10'® o i — — nances rather than bound states. Indeed, by comparing the
101 | ‘ ' ‘ : upper two curves in Fig. 4, we see that in fhg,,=Ty boot-
strapped spectrum, the widths of several peékg., the
rightmost one neaE=0.4612 are already dominated by the
intrinsic resonance widths rather than by any error associated
with the time cutoff. In general, the efficiency of the boot-
strapping approach increases as one considers systems that
are more open, since it is sufficient to choose a bootstrap
time T, that will generate accurate dynamics to time

predictionTpea™

—_

_

O (o) O_A O_‘
[e2] < o n

—
o
~

S(E) [arbitrary units]

102 | e emme et T AN N Toreak™ Taecay Where Tyecqy IS the intrinsic lifetime of the
109 I I U o resonances, possibly shorter thgn
0.452 0.454 0.456 0.458 0.46 Finally, a third major difference between perturbed cat
E maps and the Barbanis potential is the presence of regular as

well as chaotic states in the Barbanis spectrum. By choosing
the test wave packet&; appropriately, one may optimally
resolve states in the phase space region that are of greatest
interest in a given application. For example, in ordinary scar

curves from bottom to top correspond to different bootstrap timestheor,y,’ one. mf"‘y begm W',th a Wa_ve paCket, c;entere_d on a
used in the bootstrapping calculation,,=Ty/2, Ty, and Zy. For specific periodic orbif3], with the aim of obtaining optimal
comparison, the result of Laplace transforming the correlation funcifformation on the structure of wave functions with high
tion through timeT .= 2Ty, without bootstrapping, is shown as a INténsity on that orbit and their associated eigenvalues; the
dashed curve. Each spectrum has been scaled by an arbitrary cd¥ice to be paid is the suppression of the “antiscarred” eigen-
stant to allow for easy comparison on a single plot. In each case §tates that have anomalously low intensity on the same orbit.
smoothing time scale~ Ty.chas been chosen to remove unphysi- Here, we have randomly placed the six test wave packets in
cal oscillations in the spectrum in the energy range shown. Théhe chaotic portion of phase space, improving our ability to
dotted vertical lines indicate the locations of the exact resonanceesolve the chaotic states, but necessitating the use of longer
peaks, obtained by takinGay— . bootstrap timesT, . to identify spectral peaks associated

FIG. 4. The local density of states summed ok=6 wave
packets located at enerdy=0.46 in the Barbanis potential of Eq.
(22), S(E):E?:lRe(i/w)ij(E), is computed using the bootstrap-
ping approximation in accordance with E(). The three solid
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with regular wave functions, such as the very narrow reso-
nance peak ned=0.4536.

In this context we note also that, in the case of scar theory,
little or no benefit is gained by following several wave pack-
ets launched along the same weakly unstable periodic orbit,
since they all exhibit very similar time evolution, and share
nearly identical local density of stat¢49]. From a boot-
strapping perspective, we may consider two wave packets

nearly related by time evolution, e.gl¢,)~e™M7|p,).
Then the probability 1P(T,,) of Eq. (22) for returning to

_

(]
n
(=)

-
o_n
o

S(E) [arbitrary units]
> .
[4,] o

the subspace spanned #yand ¢, by timeT,,,«is nearly the 10° 13 14 15 16 17 18 19 20 21 22
same as the probability of returning tb, itself, assuming E/A

Tmax>> 7. The rapid decrease in the “lost probability(T 4,

with increasing number of wave packets as indicated by FIG. 5. The local density of states summed oMerandomly

) ) —yM ; ;
Eq. (23), depends entirely on the wave packets behaving iPlaced wave packetS(E) =2iZ,Reli/ m)G;; (E), is computed for the
an uncorrelated manner. Thus, the bootstrapping procedufi@ntum map of Eq(19), with wy=w;,=1, K4=0.2, andK,=-0.3,
for multiple wave packets is most effective when the waveusing the bootstrapping approximation after noise has been intro-
ced into the short-time input data. From top to bottom, the three

ackets are chosen from different regions of phase space 96'
gvoid obvious correlations 9 P P sets of curves correspond (@) N=128, M=2, (b) N=128,M=6,

and(c) N=512,M=2, whereN is the system size or Hilbert space
) dimension. Within each set, the tgggolid) curve is the recon-
C. Influence of noise structed spectrum in the absence of noise, and the three dashed and
Noise in the input signal may be an important factor indotted curves, from top to bottom, indicate reconstructed spectra for
Speciﬁc app”cations of the bootstrapping procedure’ for ethe same system with the dimensionless noise parameter $et to
ample where a semiclassical or other approximation is useg?-1: 0-2. and 0.3. Each spectrum has been scaled by an arbitrary
to calculate the short-time correlation function. We return totonstant to allow for easy comparison on a single plot. In all cases,
the quantum map model discussed in Sec. IV A and intro-the spectrum is reconstructed from the correlation functiontfor
duce random noise into the short-time correlation function,sTmaX:3TH/M'

gs indigatEd inlgq(13)._Tdhe rar:jdoT grror r_natrix %Iements. surprisingly, we observe growth in the spectral error with
(M) in Eq. (13) are in ependent aussian random Va”'increasing noise, but, more importantly, this error is almost
ables of zero mean and varianceNl iwhereN is the Hilbert independent of system si2éand number of wave packeld
space dimension, so thiy;(m)|*=|C; (m)|* at long timesm. [at €=0.3, Z(e) varies at most by 30% al changes by a
Then the dimensionless parametarharacterizes the relative factor of 4 andM by a factor of 3. The same results have

size of the noise. A spectrum may be produced by bootstragseen ohserved for other system parameters. This robustness

ping the noisy short-time data. The results of such a calculq—mp"es that input with noise of a small but finite sizenay

tion are p_resen_ted in Fig. 5. We see that the spectral recof, ;sed in the semiclassical limi—s o (equivalently,
struction is quite robust for smak, and breaks down at _ ) opyiously, an even more favorable situation exists

arounde=0.2 or 0.3, independent &f and M. when the noise leved decreases with increasig An im-
To study more carefully the breakdown in the accuracy of

the bootstrapped spectrum and its dependence on parameters 0.08
N and M, we need to define a quantitative measure of the 007}
error in the bootstrapped spectrum. Consider a local density 006k ]
of statesS(E) reconstructed from the exact correlation func- T
tion known fort<T,, and a local density of state3(E) 005y U
reconstructed from the same input but with added noise char- X 0041 T e
acterized bye as in Eq.(13). We may define the dimension- 0.03} i
less error ratio 0.02| _',,/,-;‘;/
001} =T
f dE[In S,(E) - In SE)P L
Z(e) = ’ 27) 0 005 01 025 02 025 03
f dEIn S(E)]? .
FIG. 6. The errorZ(e) in the reconstructed spectrum for the

. . . guantum map of Eq(19) is computed as a function of the noise
which measures the error induced in the reconstructed spefeye| ¢ in the input correlation function. All parameters are identical

trum by noise of size in the input. We note that it is appro- 1o those in Fig. 5. The solid curve indicates system Bize28 with
priate to focus on the logarithm of the reconstructed specy =2 wave packets, the dashed curve isNer512 withM =2, and
trum, because the spectrum itself is dominated by sharghe dotted curve is foN=128 with M=6. In all cases, the noise-

peaks, as seen in Fig. 5. The quanty) is shown in Fig. 6, free spectrunS(E) and the noisy spectrurs.(E) are both recon-
for the same parameters as were used earlier in Fig. 5. Natructed from the correlation function for T,,,=3Tn/M.
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portant example of the latter situation exists when then the notation of Sec. Il, where the overall prefactor of 2 is
“noise” results from using a semiclassidatationary phage the RMT result in the absence of time-reversal symmetry.
approximation for the short-time dynamits Ty, Thene  The autocorrelation function or return amplitud@g,(7) may
~f, which decreases witN. Therefore short-time evolution be computed from th® matrices using the bootstrapping
computed within a semiclassical approximation may be useébrmulas of Eqs(6) and(7), or we may explicitly write

with confidence to obtain stationary properties of the exact

@ | Tmax
guantum system.
E,f,%Z 1+22 2 B¢¢,(Tl)5(7'1_7')
=1 ]| m=1
V. BOOTSTRAPPED WAVE FUNCTION STATISTICS - B
max
We now consider the situation where known short-time + X 2 Buy(m)Byy(r) S+ = 1)+
dynamical information is insufficient for resolving individual =l g
eigenstates, and the focus therefore shifts to predictions of a (31)

statistical nature. In other words, we consider an ensemble of

systems that all shaf@erhaps approximatelya given short- Here the upper limiT in the sum over may safely be taken

time dynamics, and ask what information can be extractedo infinity, as long as the bootstrap tirig,,,<Ty/M, so that

about the distribution of wave functions in systems drawnmost of the probability is lost by the Heisenberg time, and

from this ensemble. times 7~ Ty do not contribute significantly to the sum. We

note that the second- and higher-order bootstrapping terms

implicitly include revivals at times longer tham,,,, al-

) o . though only the correlation function up M, IS used as
The simplest quantitative measure of wave function strucinpyt to the calculation. The bootstrapping formula makes

ture is the inverse participation rafit°R) or second moment - gptimal use of the available short-time information, and good

of the wave function intensitief20]: Zy =NZZLK#|W),  agreement may be obtained even for fairly short bootstrap

whereW is an eigenstate) is the Hilbert space dimension, timesT,,,.

the sum is over a complete bagis and we impose the usual As a specific example, we consider a quantum map de-

normalization conditions{Z;[(¢i[¥[)*=1. The IPRT mea- fined by Eq.(17), with kinetic termT(p)=2p? and kicked

sures the degree of wave function localization, ranging fronpotential

1 for a delocalized wave function having uniform overlaps

with all basis states tdl for a completely localized statg. 1 5 q 1-¢

RMT predictsZ=2 in the absence of time-reversal or other V(@) =- E(q_ o)+ vo %(a(q ~ o) * 1 _qo®(q°_ P |

symmetry. Similarly, for each basis stafewe may define a (32)

local IPR(LIPR) as £ 4=N={L;|(#[¥))|*, where the sum ex-

tends over eigenstatgé]; the LIPRL , measures the degree where as beforg andp both range from 7 to +, and®(x)

of localization associated with a specific basis elemgand  is the usual step function defined x)=1 for x>0 and

is proportional to the average long-time return probability®(x)=0 otherwise. The dynamics is fully chaotic and has no

(¢ p(t)]* ast— oo period-1 classical orbits, but does have a diffractive orbit at
Extending arguments developed originally for periodic or-q=qq, p=0, associated with a cusp in the kick potential. The

bit scars[3,4], we may interpret long-time dynamics in a bootstrapping calculation is performed for a single wave

chaotic system as a convolution of known short-time recurpacket centered on this diffractive orbit. In Fig. 7, we calcu-

A. Inverse participation ratio calculations

rences with quasirandom long-time recurrences, late the LIPR for this wave packet, as a function of parameter
T vo, exactly and in the bootstrapping approximation. We see

1) ~ (=1 28 |mmed|atgly that RMT{equivalent to thg bootstrapping pre-
(le(V) §T<¢| HOry(t=17) (28) diction with T,,,,=0) severely underestimates the degree of

o ) ) wave function localization wheny<<1 and the diffractive
where for simplicity we have assumed discrete-time dynamprbit is consequently strong. Bootstrapping the one-step re-
ics, the sum over extends to some scalethat includes as  ¢yrrence only(T,a=1) greatly overestimates the effect, but
much as possible of the nonrandom dynamics of interest buhe T =2 calculation, which incorporates information
is still short compared with the Heisenberg tifig, and  apout one-step and two-step new recurrences, already gives a
r4(t’) are Gaussian random independent variables, associatg@od approximation to the exact answer over the entire range
with nonlinear long-time recurrences. For the LIPR, we ob-gf vo. We note that the bootstrapping has been performed

tain here using one- and two-step time correlation data for a
T single wave packet; obviously the results can only improve if
54)%22 (| (7)) (29) multiple wave pgckets are used simultaneously with the

- T same bootstrap time,,,

We now fixvp=0.59 and repeat the above bootstrapping

T calculation for single wave packets centered at various loca-

:2[1 + 22 |c¢¢(7)|2] (30) tions in phase space. In each case, we find the exact LIPR by
=1 diagonalizing the evolution matrix. We also predict the LIPR
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10 ¢

IPR

Vo

FIG. 7. The local inverse participation ratiblPR) at the loca-
tion of the cusp is calculated for the diffractive potential of E2p), - a T
for system sizeN=64, one wave packet centered on the cusp at
0o=-0.2m, and several values of the kick parameigr The exact
data are averaged over boundary conditions for each valug. of
The bootstrapping prediction, using E®O) for one wave packet
centered on the cusp, is shown fbf,=1 and 2, in units of the
kick period. The RMT prediction, equivalent to bootstrapping with
Tmax=0, provides a baseline for comparison.

FIG. 8. The local inverse participation ratiblPR) £ is plotted

as a function of position and momentum for the potential of Eq.
(32), with system sizeN=64, cusp locatiorgy=-0.2, and cusp
strengthu=0.59. The exact LIPR landscape is shown in the upper
panel, while the lower panel represents the prediction of a boot-
strapping procedure witfi,,,=3. The color scale ranges fro

=2 (black to £=5 (white).

using the bootstrapping approximation with,,=3, i.e., the -
recurrences for three time steps are computed exactly, boot- mooth = _ iEt/h
strapped to obtain long-time behavior, and then used to esti- SZ’ 5= §T<¢|¢(t)>e
mate the local inverse participation ratio in accordance with
Eq. (30). The results are shown in Fig. 8. Here, the brightjs a Fourier transform of the short-time signal aRg are
spot slightly to the left of center is the localization peakindependent Gaussian random variables with variandé 1/
associated with a diffractive orbit at=gy=-0.2m, p=0. We  (real or complex depending on the presence or absence of
observe that the bootstrapping procedure allows not only thigme-reversal symmetry, respectivelyThe above expres-
peak but most significant features of the localization landsjons assume no symmetry, with the possible exception of
scape to be well resolved Bina=3. time reversal, and must be appropriately modified in the
presence of such symmetries, including parity invariddge
The multiplication in Eq.(33) of a known short-time signal
by a long-time signal assumed to be quasirandom is the
A prescription similar to the above may be used to com-energy-domain counterpart of the convolution formula ap-
pute higher moments of the intensity distribution beyond thepearing in Eq.(28).
standard inverse participation ratio; instead, we turn our at- In the bootstrapping context, we may obtain the short-
tention to the intensity distribution itself. Knowledge of such time envelope using Eq$9) and(10), where exact new re-
a distribution is essential, for example, to the understandingurrencesB(m) are replaced by, ,(m) as defined by Eq.
of resonance width or decay rate statistics in a weakly opefi1) for some choice ofT,,,=LT, and a smoothing time
system. In the context of scarring, it has been shown that thecale 7. This is the same procedure we used to construct
probability distribution of wave function intensities may be approximate bootstrapped spectra in Sec. IV B, except that
obtained by combining a smooth spectral envelope conthere the bootstrap timg,,., was chosen sufficiently long to
structed from the short time dynamics with Gaussian randomesolve individual statesl,,.,> Tn/M, while here we may
fluctuations on fine energy scalg@1]. More generally, takeT,,..to be only a small multiple of the one-step tifmg
whenever a separation of scales exists between nonrandom Once a short-time local density of states envelope
short-time dynamics and quasirandom long-time behaviorSimOO"(E) is known, we may directly construct the probabil-
we may write the local density of statéstrength function ity distribution of wave function intensitiels=|( | ¥ ,)|2. We

(34)

B. Wave function intensity distribution

for wave packet as[9] need only to multiply the envelope heigr@mo"”(E), with
uniformly distributed energie€, by random factor§R|?
Re(i/7)G y4(E) = > SE-E,)[(| W2 whereR is Gaussian distributetand |R? is therefore expo-
n nentially distributed for compleR):
~ > SE-E)SMME)R,? (33 1 (B [
" v " P(l) = f dEf (RS - SmoNE)|RP).
E,—EiJg 0
where (35
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:
Conty= 2 Kl So() + (il DX ol0)] )] - 1

.
01y = |C¢1¢2(o)|2 +22 |C¢’1¢’2(T)|2
- =1
& o1t T
+2Re>, Cyy0(NC (7. (36)
0.001 =1

Two types of terms are present in E86): ones associ-
ated with the short-time probability for evolving from state
¢, to state ¢, or vice versa, and ones associated with a
FIG. 9 The distribution of wave function intensitiek correlation between the individual short-time autocorrelation

=|( [ )| for the kicked map of Eq(32) with system sizeN=64, fgnctlons for ¢, and ¢,. Once again, the correlatlon.func—
cusp locationgy=-0.2, and kick parametepy=0.2 is shown, 1ONSCyy(7) may be computed using the bootstrapping for-
where ¢ is a Gaussian wave packet centered on the cugrgg, ~ Mula given by Eq(7) or Eg. (8), where the “new” recur-
p=0. The solid curve shows the exact data, obtained by diagonaFe€ncesB(m) are known up to the bootstrap tinTe,,,=LTo,
izing time evolution matrices, and averaging over systems with dif-as in Eq.(11). As in the LIPR calculation, the upper limit
ferent boundary conditions. The bootstrapped predictions are conef the sum in Eq(36) may be taken to infinity, as long as
puted using Eq(35), where the smooth envelope is obtained from T,,,,< Ty/M. For the covariance calculation, it is most con-
bootstrap timeT =1 or Tpa=2, for a single wave packél=1.  venient to perform the bootstrapping with jugt=2 initial
The RMT prediction, equivalent to bootstrapping with,,=0, pro- wave packets®; and ¢,.
vides a baseline for comparison. As an example, we consider another quantum map, de-
fined by Eq.(17) with kinetic term

0.0001

Typical examples of the resulting intensity distribution are T(p) = 1 —p)2+bl sin ) Esin _
shown in Fig. 9. Here we use the same system and wave (=3P~ Po) AP~ Po) = 58I 4p = Po)
packet location as in Fig. 7, but fix kick parametgrat the (37)
value 0.2. The short-time envelogg"**"is constructed ei-

ther using only one-step new recurrendémotstrap time and periodic kick

Thax=To=21) or using one- and two-step new recurrences ( a q+7
(bootstrap timeT ,,,=2T¢=2). The T,,5=1 short-time enve- - E(q +71/2)% + v, R -7r<q<-ml2,
lope already results in a predicted intensity distribution that m
) : - a _
is a great improvement over the RMT prediction, correctly ~ 2+ w2240, do—9 . —m2<q<dp,
predicting an excess of very large and very small wave func- 2 Qo+ 72
tion intensities at the cusp. THe,,,=2 envelope predicts an V(d) = a 3 _
intensity distribution that is in even better agreement with - —(q-ml2)*+ —Up 9~ % . Qo<q< 2,
actual data. 2 2 "ml2-qo
a 3 -
——(q—w/2)2+—v077 q, w2 <q< .
. ) \ 2 2" @2
C. Wave function correlations
(39

The bootstrapping approach lends itself naturally to theryq potential has a cusplike maximum of heightat q=
consideration of observables beyond the statistics of indi— ;5> 514 another of height/g/2 atq=/2, resulting in the
vidual wave function |ntens!t|e$:|<¢|\lf>|2. As a simple  ngsipility of diffractive periodic motion betweeq=—/2,
example, we may consider the covarianc€, 4, p=p,) and(q=m/2, p=p,). We compute the covariance be-
=N (e PIA(po PP 1, where ¢, and ¢, are two  tween wave function intensitie ¢ W)[2 and [(¢,|W)[?,
wave packets and the sum is once again over the eigenstatgere ¢, and ¢, are Gaussian wave packets centered at the
Obviously the covariance is a generalization to two wavewo points in phase space. The results are presented in Fig.
packets of the local inverse participation ratio discussed ear0, as a function of the cusp height parameigr Once
lier: £4=C44+1. The covariance or correlation between ggain, the bootstrapping prediction is shown for bootstrap
wave function intensities at two points is clearly important,time T,,,,,=1 or 2, in units where the kick periof is set
for example, for understanding the statistics of conductancg unity. The RMT prediction, corresponding to bootstrap
peak heights in a weakly open quantum dot with two leadsime T,,,,=0, is shown for comparison. Just as in the LIPR
[7]; it is also relevant for analogous reaction rate calculationsind intensity distribution calculations, rapid convergence is

or for the computation of interaction matrix elements. observed with increasingi,., and almost all relevant infor-
Letting [¢)=(1/V2)(|¢1) +€ $)), using Eq.(29) for L4, mation is already obtained by bootstrapping the one-step and
and averaging over the relative phagewne obtain two-step dynamics.
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time signal. At the same time, the procedure is extremely
efficient, requiring at each energy linear algebra operations
involving only M X M matrices, and independent of the total
size N of the Hilbert space. There is no assumption of uni-
tarity in the dynamics, and the procedure works equally well
for closed or open systems. Robustness to errors in the short-
time signal implies, for example, that reliable calculations
can be performed when the short-time correlations are com-
puted in a smalk or other approximation relevant to a given

Covariance

. . . problem.
0.001 0.01 0.1 1 10 The bootstrap timel,,,,, can be varied to extract maxi-
Vo mum information from the least amount of input data. At

) o . small values ofT,,,, the approach can be viewed as a gen-
FIG.210. The covariance between wave function intensitiesy gjization of standard periodic orbit scar theory, leading to
[( 1| ¥)|? and|(p,|¥)|%, where¢, and ¢, are Gaussian wave pack-

. statistical prediction beyond RMT for local density of states
ets centered aig=+m/2, p=py), is computed for a quantum map

with kinetic term given by Eq(37) and kick potential given by Eq. and wave function statistics. Reliable quantitative predictions

(38). Once again, the data are averaged over boundary conditio wan be obtained for inverse participation ratios, wave func-

for each value of the kick parameteg. The system size is fixed at fon intensity diStribUti.ons’ and WaV? function Cor.relatio.n.s’
N=256, and the classical system parametersaar®/4, b=1/20,  EVeN When the short-time dynamics is of nonclgsslcal origin.
Oo=—m/5, andpy=—3m/5. The exact results of matrix diagonaliza- Increag!ng Eithe max or M allows for a systematic inclusion
tion are compared with the bootstrapping calculationMor2 wave  ©f @dditional correlations. Once the prodMi ., becomes

packets with bootstrap tinfEyg,= 1 or 2, in units of the kick period. COmMparable to the Heisenberg tirfig, it becomes possible
to go beyond statistical predictions to resolve individual

V1. SUMMARY eigenstates and energy levels, with an accuracy scaling ex-
ponentially withM T,/ Ty. The initial wave packetg; can

Short-time dynamical information, either of classical ori- be chosen optimally to minimize redundancy in the short-
gin or otherwise, inevitably leaves its imprint on the long- time correlations, and to obtain maximal information in a
time behavior and stationary properties of a quantum systengpecific basis or for wave function structure in a given sub-
The bootstrapping approach allows this information to bespace of the original Hilbert space.
processed systematically, for one or an arbitrary nuniber
of initial wave packets. Because multiple iterations of the
known short-time dynamics are included, the resulting spec-
tral accuracy can be much greater than what one would ob- Very useful discussions with E. J. Heller and W. E. Bies
tain, for example, by a simple Fourier transform of a short-are gratefully acknowledged.
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