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We introduce anad hocelectrodynamics with advanced and retarded Liénard-Wiechert interactions plus the
dissipative Lorentz-Dirac self-interaction force. We study the covariant dynamical system of the electromag-
netic two-body problem, i.e., the hydrogen atom. We perform the linear stability analysis of circular orbits for
oscillations perpendicular to the orbital plane. In particular, we study the normal modes of the linearized
dynamics that have an arbitrarily large imaginary eigenvalue. These large eigenvalues are fast frequencies that
introduce a fastsstiffd time scale into the dynamics. As an application, we study the phenomenon of resonant
dissipation, i.e., a motion where both particles recoil together in a drifting circular orbitsa bound stated, while
the atom dissipates center-of-mass energy only. This balancing of the stiff dynamics is established by the
existence of a quartic resonant constant that locks the dynamics to the neighborhood of the recoiling circular
orbit. The resonance condition quantizes the angular momenta in reasonable agreement with the Bohr atom.
The principal result is that the emission lines of quantum electrodynamics agree with the prediction of our
resonance condition within 1% average deviation.
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I. INTRODUCTION

In this paper we experiment with the stability analysis of
the circular orbits of the electromagnetic two-body problem.
The main motivation is to understand the complex dynamics
described by the electromagnetic equations of motion that
involve delay and third derivatives. We give a method to
derive the linearized equations of motion in the neighbor-
hood of the circular orbits of this implicitly defined dynami-
cal system with delay. We introduce anad hocelectromag-
neticlike setting that uses advanced and retarded Liénard-
Wiechert interactions plus the dissipative Lorentz-Dirac self-
interaction forcef1g, henceforth called the dissipative Fokker
setting sDFSd. We study in detail a specific feature of the
tangent dynamics of the circular orbits of the two-body prob-
lem: the stiff normal modes of the linearized dynamics,
which have an arbitrarily large imaginary eigenvalue. Last,
we discuss an application for the hydrogen atom and the
surprising predictions of stability analysis within the DFS;
we predict several features of the Bohr atomf2g with high
precision and qualitative detail. A subset of the emission
lines predicted by the DFS agrees with the lines of quantum
electrodynamicssQEDd within 1% average deviation. There
is also a surprising body of qualitative agreement with QED;
sid the emitted frequency is different from the orbital fre-
quency;sii d the stable orbits of the DFS have angular mo-
menta that are multiples of a basic angular momentum. This
basic angular momentum of the DFS agrees well with
Planck’s constant and depends only logarithmically on the
mass of the heavier particle.

Dirac’s 1938 fundamental workf1g on the electrodynam-
ics of point charges gave complex and stiff delay equations
that were seldom studied. Among the few models studied

within Dirac’s theory, the system of Eliezer’s theoremf3–6g
revealed a surprising dynamics; an electron moving in a
Coulomb field with inclusion of self-interaction can never
fall into the center of force by radiating energy. The result
was generalized to motions in arbitrary attractive potentials
f4g, as well as to tridimensional motions with self-interaction
in a Coulomb fieldf5,6g, finding that only scattering states
are possible. Since our model has Eliezer’s problem as the
infinite-mass limit, a finite mass for the proton is essential for
a physically meaningful dynamics; if the proton has a finite
mass, there is no inertial frame where it rests at all times, and
this in turn causes delay because of the finite speed of light.
It is widely known that QED gives a satisfactory and precise
description of atomic physics, but the same is not popularly
thought about atomic models based on classical electrody-
namics. Since dynamical studies are still missing, clearly this
complex dynamics needs to be investigated beyond our pre-
liminary findings. Even though we are not trying to replace
QED, our understanding of this two-body dynamics might
prove useful for atomic physics, and perhaps we can under-
stand QED as the effective theory of this complex stiff dy-
namics with delay. We shall describe the two-body motion in
terms of the familiarcenter-of-mass coordinatesandcoordi-
nates of relative separation, defined as the familiar coordi-
nate transformation that maps the two-body Kepler problem
into the one-body problem with a reduced mass. We stress
that in the present relativistic motion the Cartesian center-of-
mass vector is not ignorable, and it represents three extra
coupled degrees of freedom. We introduce the concept of
resonant dissipation to exploit this coupling and the many
solutions that a delay equation can have. Resonant dissipa-
tion is the condition that both particles decelerate together,
i.e., the center-of-mass vector decelerates, while the coordi-
nates of relative separation perform an almost-circular orbit,
despite of the energy losses of the metastable center-of-mass
dynamics.*Email address: deluca@df.ufscar.br
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Historically Nördstromf7,8g suggested the use of ad-
vanced and retarded potentials in atomic physics already in
1920, but the self-interaction theory was problematic in 1920
and the idea disappeared. The theory of nonlinear dynamics
was not out yet in 1938 when Dirac’s theory for the electro-
dynamics of point charges appearedf1g, neither in the glori-
ous days of the twentieth century physicsf9g, such that the
our present experiment is an application of modern nonlinear
dynamics. Advanced interactions appeared again in 1945,
when Wheeler and Feynmanf10,11g gave an electrodynam-
ics based on the postulate that every field is produced by
charges located somewheref12g. The theory was called
action-at-a-distance electrodynamicsf10,11g, a theory where
the isolated two-body problem is defined by Fokker’s action

SF = −E m1ds1 −E m2ds2 − e1e2

3E E dsix1 − x2i2dẋ1 · ẋ2ds1ds2, s1d

with xi, si, mi, and ei representing the four-position, the
proper time, the mass, and the charge of particlesi =1,2
respectively. In Eq.s1d the dot indicates the Minkowski sca-
lar product of four vectors and double bars stand for the
four-vector modulusf10,11g. Due to the similarities with the
equations of motion of the DFS, the dynamical studies of the
action-at-distance theory are relevant for the present work.
For example, in the collision of two electrons with equations
of motion determined by Eq.s1d, the solution is determined
by initial position and velocity only, as proved in Ref.f13g sa
Banach-to-Banach contraction mapping proof for nonrun-
away orbitsd. This suggests that we are dealing with a per-
fectly causal and well-posed dynamical system dressed in
unusual formf14g. Driver’s result f13g suggests that a dy-
namics with advance and delay is well-posed in the same
way. The DFS presents exactly the same neutral-delay math-
ematical problem of any electromagneticlike model, as for
example the problem with retarded-only fields of Refs.
f15,16g. Fokker’s action of Eq.s1d is used here to derive the
sector of the DFS equations of motion determined by the
semisum of Liénard-Wiechert fields. Last, advanced interac-
tions appeared again in another work of Eliezer; a generali-
zation of Dirac’s covariant subtraction of electromagnetic in-
finities f17g. The resulting generalized electromagnetic
settings include the advanced interactions naturally, and pro-
vide a testbed for future studies in electrodynamicsf17g.
Here, we shall keep to the DFS as a generic electromagneti-
clike example.

The road map for this paper is as follows: In Sec. IV we
give the main technical part of the paper; we outline an eco-
nomical method to derive the tangent dynamics of the circu-
lar orbit based on a quadratic expansion of the implicit light-
cone condition. In this section we also take the stiff limit of
the linear modes of the tangent dynamics. In Sec. V we give
an application to atomic physics, by discussing a necessary
condition for the state of resonant dissipation; This condition
is heuristically expressed by a simple resonance condition
that predicts the correct atomic scales. The earlier sections
are a prelude to Sec. IV. Section II is a review of the circular

orbit solution, to be used in Sec. IV and in Sec. V. In Sec. III
we build familiarity with Fokker’s action of the action-at-a-
distance electrodynamics as a prelude to the quadratic expan-
sions needed for the linear stability analysis of Section IV.
Section VI contains conclusions and a discussion. In Appen-
dix A we discuss how the DFS can be fit into Dirac’s elec-
trodynamics of point charges. Last, in Appendix B we dis-
cuss the soft normal modes of the tangent dynamics.

II. THE CIRCULAR ORBIT SOLUTION

In this section we review the circular-orbit solution of the
isolated electromagnetic two-body problem of the action-at-
a-distance electrodynamicsf18,19g, to be used as the unper-
turbed orbit. For the isolated electromagnetic two-body prob-
lem, the tangent dynamics studied in the next section is
straight Lyapunov stability analysis. In the DFS there is also
a very small force along the orbital plane of the circular
orbit, such that a nondrifting circular orbit is not a solution of
the equations of motion. In the DFS the tangent dynamics is
the starting point of a perturbation scheme to impose that the
resulting dynamics is a drifting circular orbitsthe state of
resonant dissipationd.

We use the indexi =1 for the electron andi =2 for the
proton, with massesm1 and m2, respectively, as in Eq.s1d.
We henceforth use units where the speed of light isc=1 and
e1=−e2;−1 sthe electronic charged. The circular orbit is il-
lustrated in Fig. 1, a motion of the two particles in concentric
circles with the same constant angular speed and along a
diameter. This dynamics satisfies the time-symmetric prob-
lem of Fokker’s actions1d because the symmetric contribu-
tions from future and past generate a resulting force normal
to the velocity of each particlef18,19g. The details of this
relativistic orbit will be given now. The constant angular
velocity is indicated byV, the distance between the particles
in light cone isrb, andu;Vrb is the angle that one particle
turns while the light emanating from the other particle
reaches itsthe light-cone time lagd. The angleu is the natural
independent parameter of this relativistic problem. Each par-
ticle travels a circular orbit with radius and scalar velocity
defined by

FIG. 1. The unperturbed circular orbit with the particles in dia-
metral opposition at the same time in the inertial frame. Indicated is
also the advanced position of particle 2 and the angle traveled dur-
ing the light-cone time. The drawing is not to scale; the circular
orbit of the proton has an exaggerated radius for illustrative pur-
poses. Arbitrary units.
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r1 ; b1rb,
s2d

r2 ; b2rb,

and

v1 = Vr1 = ub1,
s3d

v2 = Vr2 = ub2,

for the electron and for the proton, respectively. The condi-
tion that the other particle turns an angleu during the light-
cone time lag isf18g

b1
2 + b2

2 + 2b1b2 cossud = 1, s4d

and is henceforth called the unperturbed light-cone condi-
tion. In Appendix B we calculateb1 andb2 in a power series
of u up to the fourth order. Last, because of the rotational
invariance of Fokker’s action, there is a conserved angular
momentum perpendicular to the plane of the orbit that is
evaluated in Ref.f18g to be

lz =
1 + v1v2 cossud
u + v1v2 sinsud

, s5d

where the units oflz aree2/c; we are just using a unit system
wheree2=c=1 f18g. Equations4d restrictsb1 and b2 to be
less than 1 such that for small values ofu the angular mo-
mentum of Eq.s5d is of the order oflz,u−1. For orbits in the
atomic magnitude,lz.u−1 is about 1 over the fine-structure
constant,a−1=137.036. It is curious to notice that eachsad-
vanced and/or retardedd interaction term of Fokker’s action,
Eq. s9d, evaluates exactly to12Vlz along a circular orbit, with
lz given by Eq.s5d. This combination of angular momentum
times the orbital frequency is reminiscent of the formal ma-
neuvers of quantum mechanics.

III. FOKKER’S ACTION

We use Fokker’s action in this work as a means to derive
the sector of the DFS equations of motion determined by the
semisum of the Liénard-Wiechert potentials. In the following
we discuss the Lagrangian formalism of Fokker’s actions1d
as an introduction to our economical method to obtain the
tangent dynamics by expanding this action to quadratic or-
der. The delta function of Fokker’s actions1d contains the
retarded and the advanced light-cone contributions, and it is
convenient to separate those two parts by factoring the argu-
ment of the delta function as

st1 − t2d2 − r12
2 = ft1 − t2 − r12gft1 − t2 + r12g, s6d

wherer12 stands for the Cartesian distance between particle 1
at time t1 and particle 2 at timet2, and each factor on the
right-hand side of Eq.s6d is related to the advanced and the
retarded light cones of particle 1, respectively. The delta
function of a product argument is a sum of two delta func-
tions, each multiplied by the respective Jacobian, such that
the interaction term of Fokker’s actions1d can be written as

VA=E 1

2r12
dst1 − t2 − r12ds1 − v1 ·v2ddt1dt2

+E 1

2r12
dst1 − t2 + r12ds1 − v1 ·v2ddt1dt2, s7d

wherev1 henceforth stands for the Cartesian velocity of par-
ticle 1 at timet1 andv2 henceforth stands for the Cartesian
velocity of particle 2 at timet2. We henceforth use the dot to
indicate the scalar product of two Cartesian vectors, as al-
ready used in Eq.s7d. Integration of each term of Eq.s7d
over t2 brings out another Jacobian factor and yields

VA=E 1

2

s1 − v1 ·v2ad
r12s1 + n12a ·v2ad

dt1 +E 1

2

s1 − v1 ·v2bd
r12s1 − n12b ·v2bd

dt1,

s8d

wheren12a andn12b are unit vectors along the direction con-
necting the position of particle 1 at timet1 to the position of
particle 2 at timet2 at the advanced and retarded times re-
spectively, andv2a andv2b stand for the velocity of particle 2
at the advanced and retarded timet2 respectively. Equation
s8d is the most useful form of Fokker’s interaction for our
purposes. Notice that each term of Eq.s8d can be cast in the
form

1

2
E s1 − v1 ·v2cd

r12S1 +
n12 ·v2c

c
Ddt1 ;

− 1

2
E sV − v1 ·Addt, s9d

whereV andA are the Liénard-Wiechert scalar potential and
the Liénard-Wiechert vector potential, respectively. We have
introduced the quantityc= ±1 in the denominator of Eq.s9d
such thatc=1 represents the advanced interaction while
c=−1 represents the retarded interaction. The quantities of
particle 2 in Eq.s9d are to be evaluated at a timet2 defined
implicitly by

t2 = t1 +
r12

c
, s10d

where c= ±1 describes the advanced and retarded light
cones, respectively. Because of this decomposition of Fok-
ker’s interaction intoV andA parts, we henceforth call Eq.
s9d the VA interaction. A derivation of the Liénard-Wiechert
potentials from Fokker’s action and details such as the Dar-
win approximation are found in Ref.f20g.

The stiff limit is determined by the largest-order deriva-
tive appearing in the linearized equations of motion of Ap-
pendix A. In this approximation, the contribution of the self-
interaction force to the linearized dynamics about a circular
orbit is simply given by the Abraham-Lorentz -Dirac force

Frad =
2

3
ȧ. s11d

The contribution of the other smaller terms will be given
elsewhere.
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IV. LINEAR STABILITY ANALYSIS

In this section we study the linear stability analysis of the
circular orbits for displacements perpendicular to the orbital
plane, henceforth called thez direction. We give an economi-
cal method to obtain these equations of tangent dynamics by
expanding the implicit light-cone condition up to quadratic
order. We start from the equations of motion of the isolated
system, which are derived from Fokker’s actions1d and yield
the Liénard-Wiechert fields in the half-retarded plus half-
advanced combination. This linearizedz dynamics is un-
coupled from the planar dynamics, and the linearized equa-
tions can de derived without the use of a symbolic software,
as we explain in the following. The Cartesian coordinates of
a transversely perturbed circular orbit are defined by

xk + iyk ; rbdk expsiVtd,

xk − iyk ; rbdk
* exps− iVtd, s12d

zk ; rbCSZk,

wherek=1 for the electron andk=2 for the proton,Zk is the
small transverse perturbation,d1;b1 and d2;−b2 are de-
fined from the two real parameters of Eq.s2d, andV is the
orbital frequency defined above Eq.s2d. Last, in Eq.s12d C
andS are defined by

C ; 1 + b1b2u2 cossud, s13d

and

S; 1 + b1b2u sinsud. s14d

We henceforth introduce a scaled timet;Vt. The linear
stability analysis involves expanding the equations of motion
to linear order inZk, which in turn is determined by the
quadratic expansion of Fokker’s action inZk. The main tool
for expanding this quadratic action is the perturbed light-
cone condition, Eq.s10d, about the circular orbitswherer12
=rb is the constant circular lagd. We introduce a functionw of
theZ1 andZ2 perturbations by expanding the light-cone time
t2 as

t2 ; t1 +
rb

c
+

w

V
. s15d

In the following we calculate this homogeneous functionalw
of Z1 andZ2 up to quadratic order. The distancer12 entering
Eq. s10d is to be evaluated from the position of particle 1 at
time t1, to the position of particle 2 at the timet2 defined
implicitly by Eq. s15d. The coordinates of particle 2 at the
time t2 are defined implicitly by

x2 + iy2 = rbd2 expsit1 + icu + iwd,

x2 − iy2 = rbd2
* exps− it1 − icu − iwd, s16d

z2 = rbCSZ2st1 + cu + wd ; rbCSZ2c,

wherec=1 for the advanced timet2 and c=−1 for the re-
tarded timet2. Notice that Eq.s16d defines the coordinates
implicitly, becausew is a function of the deviationsZ1 and

Z2. Even thoughu is small in applications of atomic physics,
we stress that one should never expand in powers ofu; the
correct infinitesimal quantity of the linear stability analysis is
the size of the deviations from circularity and their homoge-
neous functions such asw sexpanding inu produces the Dar-
win approximationf20gd. This nonanalyticity will become
clear after we show that the logarithm ofu appears. We
therefore expand the advanced and/or retarded positionZ2c
of particle 2 at the scaled timet1+cu+w in a Taylor series in
w about the advanced and/or retarded positiont1+cu. It turns
out that only the zeroth-order term appears in the action up to
quadratic order. Because of this, the linearized equations in-
volve only a constant shift, a considerable simplification.
Substitutingt2 of Eq. s15d together with the positions16d of
particle 2 into Eq.s10d, and using the Pythagoras theorem for
the distancer12 from particle 1 at timet1 to particle 2 at time
t2 yields

r12
2 = Srb + rb

wc

Vrb
D2

= rb
2 + rb

2C2S2sZ1 − Z2cd2. s17d

Notice that theZ variations decouple from the planar varia-
tions because there is no mixed linear term ofZ times a
linear perturbation of the planar coordinate in Eq.s17d; these
are naturally separated by the Pythagoras theorem. The pla-
nar perturbations enter in Eq.s17d as an added quadratic
form, as given in the next section. It is convenient to define
another functionF by w;ucCSF, such that Eq.s17d is a
quadratic equation ofF and the regular solution up to second
order inZ1 andZ2c is

F =
CS

2
sZ1 − Z2cd2. s18d

The coordinateZ2 appears evaluated at the advanced and/or
retarded time in Eq.s18d, and to obtain the action up to
quadratic terms it is sufficient to keep the first termZ2c
=Z2st1+cu+wd.Z2st1+cud. Using thez-perturbed orbit de-
fined by Eq.s16d to calculate the numerator of the VA inter-
action of Eq.s9d yields

s1 − v1 ·v2cd = 1 +u2 cossudb1b2 − u2C2S2Ż1Ż2c, s19d

and the denominator of the VA interaction of Eq.s9d is

r12s1 + n12c ·v2c/cd = rbSf1 + CF + ucC2SsZ1 − Z2cdŻ2cg.

s20d

Notice that the quadratic termZ2cŻ2c on the right-hand side
of Eq. s20d can be dropped because it represents an exact
gauge that does not affect the Euler-Lagrange equations of
motion, such that

r12s1 + n12c ·v2c/cd < rbSf1 + CF + ucC2SZ1Ż2cg, s21d

where the equivalence sign' henceforth means equivalent
up to a gauge term of second order. Even if a quadratic gauge
term appears in the denominator, in an expansion up to qua-
dratic order it would still produce a gauge and therefore it
can be dropped directly from the denominator. One should
be careful not to do this with linear gauges, which appear
only in the planar stability analysis to be considered else-
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where. In this way, the expansion up to second order of the
VA interaction of Eq.s9d is simply

VA< S C

2rbS
DH1 − u2CS2Ż1Ż2c −

C2S

2
sZ1 − Z2cd2

− ucC2SZ1Ż2cJ . s22d

Last, we need the kinetic energy along thez-perturbed circu-
lar orbit, which we express in terms ofZ1 of definition s12d
as

T1 = − m1
Î1 − v1

2 = −
m1

g1

Î1 − g1
2C2S2u2Ż1

2, s23d

where the dot means derivative with respect to the scaled
time t, g1

−1;Î1−v1
2, and we have usedVrb=u. The expan-

sion of Eq.s23d up to second order is

T1 = S C

rbS
DH− rbSm1

Cg1
+

e1

2
Ż1

2 + ¯ J , s24d

wheree1;m1rbg1u2CS3 is calculated with Eq.sB1d to be

e1 ;
C

b1
hfC2 + u2SsS− 1dgfb1 + b2 cossudg

+ Sfu sinsud − u2 cossudgb2j. s25d

We are ready to derive the Euler-Lagrange equation of
motion for particle 1 of the isolated two-body problem using
the quadratic Lagrangian

L1 = T1 + VAc=1 + VAc=−1. s26d

This equation of motion is

e1Z̈1 = −
C2S

2
s2Z1 − Z2+ − Z2−d −

uC2S

2
sŻ2+ − Ż2−d

−
u2CS2

2
sZ̈2+ + Z̈2−d. s27d

Notice that the term on the left-hand side of Eq.s27d can be
written as

e1Z̈1 = rb
2S2m1g1V2CSZ̈1 = rb

2S2dpz

dt
, s28d

which is proportional to the force along thez direction. Ac-
cording to the prescription of the DFS, we shall add the
following self-interaction term to the right-hand side of Eq.
s27d:

rb
2S2Frad =

2

3
CS3Ẑ1, s29d

where the triple dot means three derivatives with respect to
the scaled time and we have used Eq.s11d. The full linear-
ized equation of motion forZ1 is

e1Z̈1 =
2

3
CS3Ẑ1 −

C2S

2
s2Z1 − Z2+ − Z2−d −

uC2S

2
sŻ2+ − Ż2−d

−
u2CS2

2
sZ̈2+ + Z̈2−d. s30d

The linearized equation forZ2 is completely analogous and is
obtained by interchangingZ1 by Z2 ande1 by e2 in Eq. s30d.
The general solution of a linear delay equation can be ob-
tained by Laplace transformf21g and is a linear combination
of the following normal mode solutions. A normal mode so-
lution is obtained by substitutingZ1=A expsptd and Z2

=B expsptd into the two linearized equations, and requires
the vanishing of the following 232 determinant:

detZ ; UC2S+ e1p
2 − 2

3CS3u3p3 Gsu,pd

Gsu,pd C2S+ e2p
2 − 2

3CS3u3p3U ,

s31d

where Gsu ,pd;sC2S−CS2u2p2dcoshspud+C2Spu sinhspud.
Two kinds of limits are interesting for the infinite-
dimensional formal collection of normal modes of Eq.s31d;
sid the four soft Coulomb modes obtained by expanding Eq.
s31d in powers ofu for small values ofp, as discussed in
Appendix B, andsii d the stiff limit obtained whenpu is large,
such that the hyperbolic functions of theGsu ,pd acquire a
large magnitudef22g. In the following we use the zeroth-
order term of the expansion forb1 andb2 given in Appendix
B to evaluate the determinants31d

e1 =
M

m2
+ Osu2d,

e2 =
M

m1
+ Osu2d,

C = 1 +Osu2d,

S= 1 +Osu2d. s32d

For smallu, the second-order and higher even-order terms of
Eq. s32d give only a small correction. Substituting Eq.s32d
into Eq. s31d and definingp;l /u, we obtain

mu4

Ml4sdetZd = 1 −
2

3
u2l +

4

9

m

M
u4l2 −

mu4

M

3FS1 −
1

l2Dcoshsld −
1

l
sinhsldG2

, s33d

where we have dropped smallOsu2d terms. The stiff-mode
condition defined by Eq.s31d sdetZ=0d is

1 −
2

3
u2l +

4m

9M
u4l2 −

mu4

M
S1 −

1

l2 +
1

l4Dcosh2sld

+
1

l
S1 −

1

l2Dsinhs2ld = 0. s34d

For future reference we give also the stiff limit for the
z-tangent dynamics without the self-interaction terms, which

STIFF STABILITY OF THE HYDROGEN ATOM IN… PHYSICAL REVIEW E 71, 056210s2005d

056210-5



is obtained from Eq.s27d, and the corresponding equation for
particle 2

1 −
mu4

M
S1 −

1

l2 +
1

l4Dcosh2sld +
1

l
S1 −

1

l2Dsinhs2ld = 0.

s35d

V. THE STIFF STABILITY OF THE HYDROGEN
ATOM

We are interested in finding motions where the particles
recoil together while staying in the neighborhood of a drift-
ing circular orbit, i.e., the state of resonant dissipation. The
need for a resonance becomes obvious in the following per-
turbative scheme.sid We take the circular orbit as the unper-
turbed state.sii d We substitute the circular orbit plus a per-
turbation into the equations of motion of the DFS and take
the linearized equations of motion. The circular orbit is not
an exact solution of the DFS equations of motion, because of
the small forcing coming from the third derivatives. This
perturbative scheme yields linear delay equations with a
small forcing term along the orbital plane. It is then possible
to show by averagingf23g that a weakly accelerated drifting
circular orbit is never a solution to these linear equations.
Therefore, a bifurcation of the circular orbit must happen and
a nonlinear term must be important to balance the small dis-
sipative forcing, if the state of resonant dissipation is to be
attained. In the following, we postulate that this resonance
happens at a quartic order. By inspection, one finds that only
resonance conditions involving the stiff modes can be satis-
fied in the atomic magnitude. In the following we study the
consequences that along some special circular orbits such
balancing mechanism is established by the existence of a
quartic resonant constant of motion. To discuss this stability
by resonance we need some results of the tangent dynamics
along the orbital plane. This more elaborate tangent dynam-
ics is derived in a way analogous to Sec. V and shall be
given elsewhere; here, we give only the main results. The
stiff limit for the equal-mass two-body problem with retarded
and advanced fields is studied in Ref.f22g, and in the fol-
lowing we give the generalization of these results for the
case of arbitrary masses.

Up to linear order, the tangent dynamics along the orbital
plane is decoupled from thez dynamics of Sec. V. To study
this planar tangent dynamics, it is convenient to describe the
orbit along thez=0 plane using gyroscopic coordinates

xk + iyk ; rb expsiVtdfdk + hkg,
s36d

xk − iyk ; rb exps− iVtdfdk + jkg,

wherehk andjk are complex numbers defining the perturba-
tion of the circularity and thedk are defined below Eq.s12d.
Becausexk and yk are real we should havehk=jk

* , but a
convenient way to minimize the quadratic functional of Fok-
ker’s action is to treathk andjk as independent functions. To
fix ideas we start from the stability of the isolated two-body
system, and again we define the normal-mode eigenvalue by
lV /u, i.e., every coordinate perturbation oscillates in time as

expslVt /ud sl is an arbitrary complex numberd. The limiting
form of the planar characteristic equation for the isolated
different-mass case is

Smu4

M
Dcosh2sld = 1, s37d

wherem is the reduced mass andM ;m1+m2 ffor the equal-
mass case, our general Eq.s37d reduces to Eq.s15d of Ref.
f22gg. Along circular orbits both the planar and the perpen-
dicular linearized equations share the same limiting charac-
teristic Eq.s37d, as can be checked with Eq.s34d. For hydro-
gen sm /Md is a small factor of abouts1/1824d. It is
important to understand the structure of the roots of Eq.s37d
in the complexl plane, specially foru of the order of the
fine structure constant. The very small parametermu4/M
,10−13 multiplying the squared hyperbolic cosine on the
left-hand side of Eq.s37d determines thats;uResldu
. lnsÎ4M /mu4d. For the first 13 excited states of hydrogen
this s is in the interval 14.2, usu,18.2. The imaginary part
of l can be an arbitrarily large multiple ofp, such that the
general solution to Eq.s37d is

l = ± ss + ipqd, s38d

whereq is an arbitrary integer. The plus or minus sign of Eq.
s38d is related to the time reversibility of the isolated two-
body system, a symmetry that is broken by radiation. This
same exact phenomenon happens for thez direction. Next,
we include the dissipation of the DFS, i.e., the Lorentz-Dirac
self-interaction, a calculation performed by adding the self-
interaction force to the equations of motion of the isolated
system. Here, we give only the characteristic planar equation
up to Os1/l4d

S1 +
7

l2 +
5

l4DSmu4

M
Dcosh2sld = 1 −

2

3
u2l +

1

9
u4l2

+ S1

l
+

5

l3DSmu4

M
Dsinhs2ld + ¯ . s39d

It is remarkable that Eqs.s39d and s34d differ only at the
terms ofOs1/ld and at the terms of typeu4l2, which de-
scribe small corrections fors in the atomic range. The linear
term on the right-hand side of Eqs.s34d and s39d with the
2/3 coefficient is due to the self-interaction force. This dis-
sipative term breaks the time-reversal symmetry of Eq.s37d,
and the roots of Eqs.s34d ands39d no longer come in plus or
minus pairs. Letlxy be a root of Eq.s39d with positive real
part andlz be a root of Eq.s34d with a negative real part. In
the stiff limit these are both near one of the limiting roots
s38d and can be expressed as

lxy ; ss + pqi + ie1d,
s40d

lz ; − ss + pqi + ie2d,

where the small perturbationse1 ande2 are so far two arbi-
trary complex numbers. The second-order balancing process
studied here involves the interaction of az mode with a
planar mode, in the same way used in Refs.f15,16g. This is
because if the atom is to recoil like a rigid body, one expects
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the stiff dynamics to perform fast-spinning toroidal motions
about the slow circular orbit.

We henceforth assume heuristically that the state of reso-
nant dissipation is formed in a bifurcation involving pertur-
bations along two special linear modes of the tangent dynam-
ics. We take a perpendicular normal mode of Eq.s34d and a
planar normal mode of Eq.s39d, with eigenvalueslz andlxy,
respectively. The coordinate of the planar normal mode is a
linear combination of the fourhj gyroscopic coordinates:
u;a1khk+b1kjk, while the coordinate of the perpendicularz
normal mode isZ;b1z1+b2z2. Using the normal-mode con-

ditionsuu̇=Vlxyu anduŻ=VlzZ, one can show that the qua-
dratic form uZ is a complex amplitude that oscillates har-
monically with the beat frequencyslxy+lzdV /u= ise1

−e2dV /u. Our resonance condition is to choose these two
eigenvalues such that

Reslxy + lzd = 0. s41d

Condition s41d avoids that the modulus of the amplitudeuZ
has an exponential growth. We shall see that conditions41d is
satisfied only for special discrete values ofu. Since condition
s41d must be satisfied, we henceforth assume thate1 ande2
are real numbers, as any excess real part in Eq.s40d can be
absorbed in the definition ofs. Condition s41d is also the
necessary condition to construct a resonant constant in the
neighborhood of the circular orbit; because Fokker’s action
is real,lz

* andlxy
* are also eigenvalues to Eqs.s34d ands39d,

respectively, with complex conjugate normal-mode coordi-
nates. Conditions41d then implies the usual necessary con-
dition for a resonant constant

lxy + lz + lxy
* + lz

* = 0, s42d

as discussed in Refs.f16,24g. Using these complex conjugate
normal-mode coordinates and Eq.s41d, one can show that
the following quartic form is a constant of the motion up to
higher order termsf16,24g:

C ; uuu2uZu2 + ¯ . s43d

The quartic function of Eq.s43d is constant because it is the
squared modulus of the harmonic amplitudeuZ
=ÎCexpfise1−e2dVt /ug. This necessary condition and the
continuation of the leading terms43d to an asymptotic series
is discussed in Ref.f16g.

The root-searching problem of Eq.s41d is well posed and
for each integerq conditionss34d ands39d together with Eq.
s40d determine a uniqueu as a function ofq, i.e., u is quan-
tized by the integerq that appears naturally in Eq.s40d. An
asymptotic solution to conditions40d can be obtained by
expanding Eqs.s34d ands39d up to quadratic order ine1 and
e2 while treatings as an approximate constant. This approxi-
mation determines the following discrete values foru:

u2 =
6sp2q2 − s2d
ssp2q2 + s2d2 , s44d

and

se1 − e2d =
4pqs3s2 − p2q2d

sss2 + p2q2d2 . s45d

According to QED, the circular Bohr orbits have maximal
angular momenta for that quantum number, and a radiative
selection rulesDl = ±"d restricts the decay from levelk+1 to
level k only, i.e., circular orbits emit the first line of each
spectroscopic seriessLyman, Balmer, Ritz-Paschen, Brack-
ett, etc.d, henceforth called the QED circular line. We have
solved Eqs.s34d, s39d, ands40d with a Newton method in the
complex l plane. Every angular momentumlz=u−1 deter-
mined by Eq.s41d has a value in the correct atomic magni-
tude su−1*137.0d; the first resonance appears atq=5 for
u−1=252.4 and the minimum valueu−1=48.52 is attained at
q=7, thenu−1 increases monotonically withq. The subset of
Table I has frequencieswDF surprisingly close to the QED
lines. These lines are forq approximately equal to an integer
multiple of the integer part of 2s. We conjecture here that
among the resonances satisfying the necessary condition
s41d, only some haveuuu2 depending on the translation-
invariant quantitiessj1−j2d andsh1−h2d to allow a recoiling
translationf23g. In our description the emission mechanism
is at a frequency equal to the orbital frequencyV corrected
by the frequency of the complex amplitudeuZ defined above
Eq. s43d, as we explain below. The numerically calculated
angular momentalz=u−1 for this select subset are given in
Table I, along with the orbital frequency in atomic units
s1373Vd /m=s137ud3, the QED first frequency of the series in
atomic unitswQED;s1/2dh1/k2−f1/sk+1d2gj, and the fre-
quency predicted by the dissipative Fokker modelwDF
;s137ud3+1373u2se1−e2d. We list only the first 13 lines,
which are the experimentally observable, but we tested the
agreement of the numerical calculations of the Newton
method with up to the 40th circular line predicted by QED.

TABLE I. Numerically calculated angular momentalz=u−1 in
units of e2/c, the orbital frequencies in atomic unitss137ud3, the
circular lines of QED in atomic unitswQED;s1/2dhs1/k2d−f1/sk
+1d2gj, the emission frequencies of the DFS in atomic unitswDF

;s137ud3+1373u2se1−e2d, and the values of the integerq of Eq.
s40d.

lz=u−1 s137ud3 wQED wDF q

161.94 6.054310−1 3.750310−1 3.655310−1 32

283.52 1.128310−1 6.944310−2 6.774310−2 55

398.06 4.077310−2 2.430310−2 2.462310−2 76

520.29 1.826310−2 1.125310−2 1.110310−2 98

638.53 9.876310−3 6.111310−3 6.038310−3 119

752.27 6.039310−3 3.685310−3 3.710310−3 139

872.68 3.868310−3 2.406310−3 2.387310−3 160

988.16 2.664310−3 1.640310−3 1.650310−3 180

1110.15 1.879310−3 1.173310−3 1.168310−3 201

1226.95 1.392310−3 8.678310−4 8.677310−4 221

1344.30 1.058310−3 6.600310−4 6.615310−4 241

1462.14 8.226310−4 5.136310−4 5.153310−4 261

1580.44 6.513310−4 4.076310−4 4.090310−4 281
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Beyond that, the asymptotic formulas44d shows that the
agreement is essentially for any integerk because substitu-
tion of q=f2sgk into Eq. s44d yields

u−1 =Î2p2

3
s3/2k , 137.9k, s46d

to be compared with the 137.036 of QED. The agreement for
any integerk suggests that Eqs.s34d and s39d describe a
linear problem that is equivalent to Schrödinger’s equation
slinear operators with the same spectrum are equivalentd.

In the DFS the interaction with a distant particle involves
half the retarded Liénard-Wiechert potential plus half the ad-
vanced Liénard-Wiechert potentialshenceforth called the
semisumd. This semisum yields a radiation magnetic field for
the electron ofsthe far-magnetic fieldd

Brad =
sa− 3 n̂−d

2s1 − n̂− ·v−d2r
−

sa+ 3 n̂+d
2s1 + n̂+ ·v+d2r

, s47d

wherev anda are the electronic velocity and acceleration,n̂
is a unit vector from the electron to the observation point, the
subindex minus sign indicates evaluation on the retarded
light cone, and the subindex plus sign indicates evaluation on
the advanced light cone. These two light cones are defined
by t±= t± sr − n̂± ·yd, wherey stands for the electron’s posi-
tion. Along a precise circular orbit the first approximation to
Eq. s47d has a zero spatial average. For the next term we
avoid the Page expansion of Appendix A, because the devi-
ating arguments are large; we approximate the size of Eq.
s47d by expanding the denominators of Eq.s47d, yielding the
quadratic function

Brad
s1d .

2sn̂ ·vdsa 3 n̂d
r

. s48d

We can estimateBrad
s1d of Eq. s48d by noticing that along the

n̂±= x̂ direction of the unperturbed plane this quadratic func-
tional contains a product of thez perturbed coordinate times
the x perturbed coordinate, i.e., theu and Z perturbations
explained above Eq.s43d. Translating theu mode to Carte-
sian coordinates with Eq.s36d, we obtain

Brad
s1d ~

2uZ

r
expsiVtd. s49d

According to Eq.s49d, the frequency of the emission line is
equal toV plus the frequency of theuZ amplitude

wDF = V + se1 − e2dV/u, s50d

with V given by Eq.sB6d. Notice that the emitted frequency
of the DFS is naturally different from the orbital frequency.
The fact that the emission frequency of hydrogen is different
from the orbital frequency is a famous conundrum. The
emission frequency of Eq.s50d contains differences of eigen-
values of the linear operator of Eqs.s39d and s34d and is
strikingly similar to the Rydberg-Ritz combinatorial prin-
ciple of quantum mechanics for the emission lines.

VI. CONCLUSIONS AND DISCUSSION

In the limit where the proton has an infinite mass, the
concept of resonant dissipation loses meaning because the
center-of-mass coordinate no longer plays a dynamical role.
In this singular limit, there is a Lorentz frame where the
proton rests at the origin at all times, and the field at the
electron reduces to a simple Coulomb field in the DFS. The
two-body dynamics in the DFS reduces then to the dynami-
cal system of Eliezer’s theorem; self-interaction plus a Cou-
lomb field acting on the electronf3,4g. We repeat this correct
dynamics because it is very unpopularf3–6g; with inclusion
of self-interaction, it is impossible for the electron to “spiral
into the proton.” Neither bound states nor dives are possible;
only scattering states exist. This result is in surprising agree-
ment with our formulas46d for the quantized angular mo-
menta; if the mass of the proton is set infinite in Eq.s46d, the
quantized angular momenta become infinite logarithmically,
u goes to zero, and the particles are unbound at an infinite
distance! One accomplishment of the present work is to rec-
ognize that only the two-body problem can produce a physi-
cally sensible electromagneticlike model. Even though there
is a dependence on the mass in Eq.s46d, the logarithm of the
mass ratio timesu4 makes the theory very insensitive to this
mass ratio, such that the deuterium and the muonium have
essentially the same quantized angular momenta, in reason-
able agreement with QED. Qualitative disagreement would
need an exponentially massive charged particle. Fortunately
for our present theory, such particle does not exist in nature.

Another qualitative dynamical picture is suggested by
Eliezer’s resultf3,4g; the dynamical phenomenon that the
electron always turns away from the proton along unidimen-
sional orbits suggests that colinear orbits are the natural at-
tractors of the dissipative dynamicssa ground state with zero
angular momentum!d. Along such orbits, the heavy particle
sthe protond moves in a non-Coulombian way and the self-
interaction provides the repulsive mechanism that avoids the
collision at the origin. This is again in agreement with the
Schrödinger theory, where the ground state has a zero angu-
lar momentum. Again, the infinite-mass case produces un-
physical dynamics; the electron turns away but then it runs
away f4g. It remains to be researched if the two-body case
has a physical orbit for zero-angular momentum orbits.

The theory of normal forms for delay equations is studied
in Ref. f25g. An analogous mathematical phenomenon is the
finite-dimensional center manifold for equations with ad-
vance and delay studied in connection with discrete shocks
in the conservation laws of Refs.f26,27g. These conservation
laws are similar to Dirac’s relativistic Schrödinger’s equa-
tion, and this would be a natural bridge to QED. Detailed
construction of the resonant normal form is also needed to
discuss the width of the emission lines. In the dynamical
process of resonant exchange, the sharp line is emitted while
the dynamics is locked to the neighborhood of the resonant
orbit, which according to QED is a lifetime of about 106

turns in the hydrogen atoms10−9 sd. We conjecture that when
the metastable orbit breaks down, the dynamics falls into the
next metastable attracting orbit; another circular orbit, or into
the ground statef23g.

The stiff modes of Eq.s40d introduce a fastsstiffd time
scale with a frequency of the order ofs /u.1400 times the
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orbital frequency, such that the time for a stiff jump of the
dynamics is 1/1400 times the orbital period, or 10−18 s! After
this fast time scale the resonance essentially locks the dy-
namics to the neighborhood of the metastable resonant orbit.
The fact that the equations of electrodynamics describe stiff
jumps in the phase space is largely unexplored in the light of
modern applied mathematics, mainly due to the complexity
involved. The dynamics starting from an asymptotic resonant
orbit to another of a neighboringq is certainly described by
a stiff jump, as expected generically from any stiff equation.
In Ref f28g, the much simpler Van der Pol oscillator is
worked out in detail as an example of an equation of Lienard
type that exhibits stiff jumps. In quantum mechanics one
seems to need the problematic concept of an “instantaneous
quantum jump,” to describe the stiff passage from one quan-
tum state to another. It appears that classical electrodynamics
prescribes exactly this qualitative phenomenon: a quasi-
instantaneous fast dynamics.

The dynamics in the DFS solves several conundrums of
the classical hydrogen atom and is similar to QED in many
ways: sid The radiated frequency is not equal to the orbital
frequencysit is lesser than the orbital frequency; see Table Id.
sii d The resonant orbits are naturally quantized by integers
and the radiated frequencies agree with the Bohr circular
lines within 1% average deviation.siii d The ratio of the emit-
ted frequency to the orbital frequency is in reasonable agree-
ment with QED.sivd The angular momenta of the resonant
orbits are naturally quantized with the correct Planck’s con-
stant.svd The stability analysis uses a linear dynamical sys-
tem with delay, a dynamical system that needs an initial
function as the initial condition, just like Schrödinger’s equa-
tion. The emitted frequencies are then given by a difference
of two eigenvalues of this linear operator, like the Rydberg-
Ritz combinatorial principle of quantum physics.svid The
eigenvalues of our linear operator have a large magnitude
that does not appear in the frequency. This large magnitude is
given by a logarithm, just like in the divergent perturbation
theory for the Lamb shift of QED.

Recognizing the correct qualitative dynamics with the
concept of resonant dissipation has taken us very far; the
stability analysis indicated the need for resonances, and these
turned out to be satisfied only for the stiff modes and pre-
cisely in the atomic magnitude! The stiff modes also provide
a natural integer to label the resonant orbits. We selected the
values ofq among the larger set predicted by the necessary
condition s41d, showing that Eq.s41d is not in disagreement
with QED. A sufficient condition should be part of the extra
work to understand the unfolding of the bifurcation leading
to the state of resonant dissipation. The large body of quali-
tative and quantitative agreement suggests that an extensive
study of electromagneticlike modelsf17g, of which the DFS
is only a generic example, could offer an explanation of
QED in terms of a stiff dynamical system with third deriva-
tives and delay.

ACKNOWLEDGMENTS

I thank L. Galgani, A. Carati, R. Napolitano, S. Ruffo, and
A. Lichtenberg for the support during the many years of this

research. I also thank A. Ponno, M. Marino, A. Staruszk-
iewicz, A. Piza, S. Rodrigues, H. Von Baeyer, F. Alcaraz, and
S. Mizrahi for helpful discussions.

APPENDIX A: PHYSICAL JUSTIFICATION OF THE DFS

In Dirac’s theoryf1g the self-interaction is given by the
sourceless combination of half of the retarded Liénard-
Wiechert self-potential minus half of the advanced Liénard-
Wiechert self-potential, i.e., the semidifferencef1g. This
gives the following concise description of the DFS: Charges
interact with themselves via the semidifference of Liénard-
Wiechert self-potentials and with other charges via the
semisum of Liénard-Wiechert potentials. In the following we
try to fit our ad hocDFS into Dirac’s theory as an effect of
the physical boundaries on the fields. Dirac’s electrodynam-
ics of point chargesf1g uses the retarded potentialFmk,ret

n

produced by each particlek and an incident free fieldFm,in
n .

In Dirac’s theory the electron and the proton of a hydrogen
atom have the following equations of motionf1g:

m1v̇1m −
2

3
v̈1m −

2

3
iv1i2v1m = − sFm,in

n + Fm2,ret
n dv1n,

sA1d

m2v̇2m −
2

3
v̈2m −

2

3
iv2i2v2m = sFm,in

n + Fm1,ret
n dv2n,

where double bars stand for the Minkowski scalar product,
the electron and the proton have charges −1 and 1, respec-
tively, and the speed of light isc=1. Since the DFS uses the
semisum instead of the retarded-only potential, from the per-
spective of Dirac’s theory this demands the following con-
straints on the free fieldFm,in

n :

Fm,in
n

„x1std… =
1

2
fFm2,adv

n
„x1std… − Fm2,ret

n
„x1std…g, sA2d

Fm,in
n

„x2std… =
1

2
fFm1,adv

n
„x2std… − Fm1,ret

n
„x2std…g, sA3d

where the field of each particle is to be evaluated along the
trajectory of the other particle, as indicated by the parenthe-
sis after each field. Since both the advanced and the retarded
fields satisfy Maxwell’s equations, the semidifference is a
free field, as assumed. The incident wave can be generated
by the boundary conditions on the fields. For example, the
reflections of the radiation by other atoms of a diluted gas
could play the role of such a boundary condition.

The semidifference evaluated at the particle itself is the
familiar self-interaction of the Dirac theoryf1g, and Eqs.
sA2d and sA3d have instead the semidifference evaluated at
the position of the other particle. Using the Page expansion
of the Liénard-Wiechert fields, we find that the electric field
of this semidifference is approximated by the third derivative
of the other particle’s coordinate, as discussed in Refs.
f15,16g. In this approximation with the Page seriesf15,16g,
the incident electric field evaluated at the proton, Eq.sA3d, is
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E„x2std… .
2

3
x̂1. sA4d

Along the unperturbed orbit of Fig. 1, Eq.sA4d is an elec-
tromagnetic field rotating at the orbital frequency. For orbits
in the atomic magnitude the electric field of Eq.sA4d has an
intensity that turns out to be of the order of the polarized
vacuum of QED, as discussed in Ref.f29g. This shows that
our needed homogeneous field has the correct physical mag-
nitude of the QED vacuum polarized by the hydrogen atom.
We see that thead hocDFS demands a free field produced
by the boundaries that is calculated to have a physically sen-
sible order of magnitude. This approach to justify the DFS
with a free field produced by the boundaries is similar to that
of the stochastic electrodynamics of Refs.f30,31g.

Finally, we mention a more radical alternative to justify
our ad hocDFS, by generalizing Dirac’s theory such that the
DFS would be derivedfrom principle. This approach was
taken by Eliezer and this generalization, henceforth called
the Eliezer’s settingsESd, is discussed in the excellent review
of Ref. f17g. The ES involves the advanced interactions natu-
rally, exactly in the same form of the DFS! Better still, the
ES f17g contains an arbitrary parameter, and it would be
highly desirable to experiment with stability analysis and the
concept of resonant dissipation in the ESf17g. Even though
the ES involves delay, advance, and third derivatives exactly
like the DFS, the coefficients in the ES are never equal to
those of the DFS. Our preliminary findings with the DFS
suggest a future for this enterprise in the qualitative behavior
of electromagneticlike dynamics, one that could describe
QED by a stiff dynamical system with delay.

APPENDIX B: DARWIN AND THE SOFT COULOMBIAN
MODES

In this appendix we calculateb1 and b2 of Eq. s2d as a
function ofm1, m2, andu. The radial component of the elec-
tron’s equation of motion along the circular orbit isf18g

m1b1rbu2

Î1 − u2b1
2

=
1

S3hfC2 + u2SsS− 1dgfb1 + b2 cossudg

+ uSfsinsud − u cossudgb2j, sB1d

whereC andSare defined in Eqs.s13d ands14d respectively.
Our Eq.sB1d is Eq.s3.2d of Ref. f18g after use of Eq.s4d and
the identity

s1 − u2b1
2ds1 − u2b2

2d = C2 + u2sS− 2dS. sB2d

The radial equation for the proton is obtained by exchanging
the subindices 1 and 2 in Eq.sB1d. There are three equations
involving b1, b2, u and rb; sid Eq. sB1d; sii d the equation for
the proton, obtained by exchanging indices 1 and 2 in Eq.
sB1d, andsiii d the light-cone condition, Eq.s4d

m1b1rbu2

Î1 − u2b1
2

=
1

S3hfC2 + u2SsS− 1dgfb1 + b2 cossudg

+ uSfsinsud − u cossudgb2j,

m2b2rbu2

Î1 − u2b2
2

=
1

S3hfC2 + u2SsS− 1dgfb2 + b1 cossudg + uSfsinsud

− u cossudgb1j, sB3d

b1
2 + b2

2 + 2b1b2 cossud = 1.

For small values ofu satomic physicsd, we can solve Eqs.
sB3d in a power series ofu with a symbolic manipulation
software, yielding

b1 =
m2

M
S1 +

mu2

2M
D + u4Dsm1,m2d + ¯ ,

sB4d

b2 =
m1

M
S1 +

mu2

2M
D + u4Dsm2,m1d + ¯ ,

where

Dsm1,m2d ; S m

24M
DF12m1

3 − 13m2
3 − 5m1m2

2 + 11m2m1
2

M3 G .

sB5d

It is easy to continue this power series, but for the stiff limit
in the atomic magnitude, even theu2 correction already gives
a very small correction. The orbital frequency is determined
by

V =
v1

b1rb
= mu3F1 +S1

2
+

m

2M
Du2 + ¯ G; sB6d

the first term is Kepler’s third law if we useu=Vrb, and the
next term is the Darwin correction. More information about
the isolated two-body problem can be found in Refs.f32,22g.

As an application of the above expansion, we calculate
the soft Coulombian modes of Eq.s31d at a finitep by ex-
panding up toOsu3d

detZ =
M

m
p2s1 + p2dF1 −

u2

2
S1 −

12m

M
DG

−
2

3

M

m
p3Sp2 + 2

m

M
D . sB7d

The soft roots of detZ=0 for Eq.sB7d are the Galilean trans-
lation modep=0 sa double rootd and the oscillatory solutions
p. ± i that have a real part describing the radiative damping
of the DFS, a familiar feature. We had partial success de-
scribing the atomic dynamics of helium with the Darwin
approximationf33g, and the tools of stability analysis used
here were already used in Refs.f15,16g. The concept of reso-
nant dissipation is new, and it is a generalization of the con-
cept of a nonionizing dynamics of Ref.f33g. Unfortunately,
the theory of Refs.f15,16,33g fails to describe discrete states
for hydrogen because the soft Darwin modes are neutrally
stable. As we have seen here, it is the stiff modes that equili-
brate the dynamics, and those are beyond the Darwin ap-
proximation.
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