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Stiff stability of the hydrogen atom in dissipative Fokker electrodynamics
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We introduce arad hocelectrodynamics with advanced and retarded Liénard-Wiechert interactions plus the
dissipative Lorentz-Dirac self-interaction force. We study the covariant dynamical system of the electromag-
netic two-body problem, i.e., the hydrogen atom. We perform the linear stability analysis of circular orbits for
oscillations perpendicular to the orbital plane. In particular, we study the normal modes of the linearized
dynamics that have an arbitrarily large imaginary eigenvalue. These large eigenvalues are fast frequencies that
introduce a faststiff) time scale into the dynamics. As an application, we study the phenomenon of resonant
dissipation, i.e., a motion where both particles recoil together in a drifting circular(@bibund state while
the atom dissipates center-of-mass energy only. This balancing of the stiff dynamics is established by the
existence of a quartic resonant constant that locks the dynamics to the neighborhood of the recoiling circular
orbit. The resonance condition quantizes the angular momenta in reasonable agreement with the Bohr atom.
The principal result is that the emission lines of quantum electrodynamics agree with the prediction of our
resonance condition within 1% average deviation.
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I. INTRODUCTION within Dirac’s theory, the system of Eliezer’s theor¢gs-6|

hi . th th bil Vs frevealed a surprising dynamics; an electron moving in a
In this paper we experiment with the stability analysis of o, 1omp field with inclusion of self-interaction can never

the circular orbits of the electromagnetic two-body problem.fa" into the center of force by radiating energy. The result

The main motivation Is to unders_tand the_ complex dynam|c§Nas generalized to motions in arbitrary attractive potentials
described by the electromagnetic equations of motion the[t4

involve del 4 third derivati We ai hod 1, as well as to tridimensional motions with self-interaction
Involve delay and third derivatives. We give a method 10;, "5 coyjomb field5,6], finding that only scattering states
derive the linearized equations of motion in the neighbor

hood of the circul bits of this implicitly defined d ' “are possible. Since our model has Eliezer’s problem as the
ood of the circular orbits of this implicitly defined dynami- e mass limit, a finite mass for the proton is essential for

cal_slylftem W'th dﬁlay. We m(tjroduce da'd zocele(c:jtrc(;mf}g— physically meaningful dynamics; if the proton has a finite
\r/'\(;t'crg e setting that ulsesr? \égnqe .anL retar eD' |enal; nass, there is no inertial frame where it rests at all times, and
lechert interactions plus the dissipative Lorentz-Dirac seltyyiq i yyrn causes delay because of the finite speed of light.

interaction forcq 1], henceforth called the dissipative Fokker It is widely known that QED gives a satisfactory and precise

setting (DFS). We study ".‘ detail a.specific feature of the description of atomic physics, but the same is not popularly
tangent dynamics of the circular orbits of the two-body prob~y,, 0t anout atomic models based on classical electrody-
lem: the stiff normal modes of the linearized dynamics,

. o : . . namics. Since dynamical studies are still missing, clearly this
Wh'ch have an arb'tfa“'.y large imaginary eigenvalue. I“"‘St’complex dynamics needs to be investigated beyond our pre-
we d_ls_cuss an_appllcatlon fo_r_ the hydrpger_] a_ltom and thﬁminary findings. Even though we are not trying to replace
surprising predictions of stability analysis W|th|n the_ DFS; QED, our understanding of this two-body dynamics might
we predict several features of the Bohr atp®j with high 5.5 seful for atomic physics, and perhaps we can under-
precision and qualitative detail. A subset of the emissio

lines predicted by the DFS agrees with the lines of quantum, - i ith delav. We shall d ibe the two-bod tion i
electrodynamic$QED) within 1% average deviation. There tamlcs yin ceay. Ye shafl describe the Wo-body motion in

is al isina bodvy of litati h ED_erms of the familiaccenter-of-mass coordinatesd coordi-
is also a surprising body of qualitative agreement with QED 165 of relative separatiordefined as the familiar coordi-
(i) the emitted frequency is different from the orbital fre-

.. . nate transformation that maps the two-body Kepler problem
guency;(ii) the stable orbits of the DFS have angular mo- P y reper b

h ftiol f 2 basi | Th.into the one-body problem with a reduced mass. We stress
menta that are multiples of a basic angular momentum. Thig, ;i the present relativistic motion the Cartesian center-of-

basic angular momentum of the DFS agrees well withyasq vector is not ignorable, and it represents three extra
Planck’s constant and depends only logarithmically on they, pjeq degrees of freedom. We introduce the concept of
mass of the heavier particle. resonant dissipation to exploit this coupling and the many

. D'][ac,s.‘ 19:;’18 fundamental Wolrkl] on dthgﬁeldecltrodynam_- solutions that a delay equation can have. Resonant dissipa-
'ES of point CI darges gzyedcc')a\mp X aQ fsu N %y lequat:jqn on is the condition that both particles decelerate together,
that were seldom studied. Among the lew models studie .e., the center-of-mass vector decelerates, while the coordi-

nates of relative separation perform an almost-circular orbit,
despite of the energy losses of the metastable center-of-mass
*Email address: deluca@df.ufscar.br dynamics.
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Historically Nordstrom[7,8] suggested the use of ad-
vanced and retarded potentials in atomic physics already in
1920, but the self-interaction theory was problematic in 1920
and the idea disappeared. The theory of nonlinear dynamics v,
was not out yet in 1938 when Dirac’s theory for the electro-
dynamics of point charges appeatdd, neither in the glori-
ous days of the twentieth century phys[&, such that the
our present experiment is an application of modern nonlinear
dynamics. Advanced interactions appeared again in 1945,
when Wheeler and Feynm4f0,11] gave an electrodynam-
ics based on the postulate that every field is produced by FIG. 1. The unperturbed circular orbit with the particles in dia-
charges located somewhef&2]. The theory was called metral opposition at the same time in the inertial frame. Indicated is
action-at-a-distance electrodynamjd®),11], a theory where also the advanced position of particle 2 and the angle traveled dur-
the isolated two-body problem is defined by Fokker's actioning the light-cone time. The drawing is not to scale; the circular
orbit of the proton has an exaggerated radius for illustrative pur-

S=- J myds, - f m,ds, - 6 poses. Arbitrary units.

orbit solution, to be used in Sec. IV and in Sec. V. In Sec. llI
xf f 8(||X1 = Xl])X1 - X,ds,dS, (1)  we build familiarity with Fokker’s action of the action-at-a-
distance electrodynamics as a prelude to the quadratic expan-
with x;, s, m, and e representing the four-position, the sions needed for the linear stability analysis of Section IV.
proper time, the mass, and the charge of partitles,2  Section VI contains conclusions and a discussion. In Appen-
respectively. In Eq(1) the dot indicates the Minkowski sca- dix A we discuss how the DFS can be fit into Dirac’s elec-
lar product of four vectors and double bars stand for the¢rodynamics of point charges. Last, in Appendix B we dis-
four-vector modulu$10,11]. Due to the similarities with the cuss the soft normal modes of the tangent dynamics.
equations of motion of the DFS, the dynamical studies of the
action-at-distance theory are relevant for the present work.

For example, in the collision of two electrons with equations Il. THE CIRCULAR ORBIT SOLUTION
of motion determined by Ed1), the solution is determined
by initial position and velocity only, as proved in REL3] (a In this section we review the circular-orbit solution of the

Banach-to-Banach contraction mapping proof for nonrundisolated electromagnetic two-body problem of the action-at-
away orbit. This suggests that we are dealing with a per-a-distance electrodynami¢%8,19, to be used as the unper-
fectly causal and well-posed dynamical system dressed iturbed orbit. For the isolated electromagnetic two-body prob-
unusual form[14]. Driver’s result[13] suggests that a dy- lem, the tangent dynamics studied in the next section is
namics with advance and delay is well-posed in the samstraight Lyapunov stability analysis. In the DFS there is also
way. The DFS presents exactly the same neutral-delay matla very small force along the orbital plane of the circular
ematical problem of any electromagneticlike model, as fororbit, such that a nondrifting circular orbit is not a solution of
example the problem with retarded-only fields of Refs.the equations of motion. In the DFS the tangent dynamics is
[15,16]. Fokker's action of Eq(1) is used here to derive the the starting point of a perturbation scheme to impose that the
sector of the DFS equations of motion determined by theesulting dynamics is a drifting circular orbfthe state of
semisum of Liénard-Wiechert fields. Last, advanced interacresonant dissipation

tions appeared again in another work of Eliezer; a generali- We use the index=1 for the electron and=2 for the
zation of Dirac’s covariant subtraction of electromagnetic in-proton, with massesy and m,, respectively, as in Eq1).
finities [17]. The resulting generalized electromagneticWe henceforth use units where the speed of liglt=i4 and
settings include the advanced interactions naturally, and praee,=—e,=-1 (the electronic chargeThe circular orbit is il-

vide a testbed for future studies in electrodynaniitg]. lustrated in Fig. 1, a motion of the two particles in concentric
Here, we shall keep to the DFS as a generic electromagnettircles with the same constant angular speed and along a
clike example. diameter. This dynamics satisfies the time-symmetric prob-

The road map for this paper is as follows: In Sec. IV welem of Fokker’s action1) because the symmetric contribu-
give the main technical part of the paper; we outline an ecotions from future and past generate a resulting force normal
nomical method to derive the tangent dynamics of the circuto the velocity of each particlgl8,19. The details of this
lar orbit based on a quadratic expansion of the implicit light-relativistic orbit will be given now. The constant angular
cone condition. In this section we also take the stiff limit of velocity is indicated by}, the distance between the particles
the linear modes of the tangent dynamics. In Sec. V we givén light cone isry,, and 8= Qry, is the angle that one particle
an application to atomic physics, by discussing a necessatyrns while the light emanating from the other particle
condition for the state of resonant dissipation; This conditiorreaches itthe light-cone time lag The anglef is the natural
is heuristically expressed by a simple resonance conditiomdependent parameter of this relativistic problem. Each par-
that predicts the correct atomic scales. The earlier sectioriicle travels a circular orbit with radius and scalar velocity
are a prelude to Sec. IV. Section Il is a review of the circulardefined by
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= blrb, 1
(2) VA= ?125(':1 -t- rlz)(l —Vq- Vz)dtldtz
rp=byrp, 1
+ | — 8ty —to+ 1) (1 —vyq - vy)dtdiy, 7
and fzrlz (1 2 12)( 1 2) 192 ( )
v1=Qr; = 6by, wherev, henceforth stands for the Cartesian velocity of par-
(3)  ticle 1 at timet; andv, henceforth stands for the Cartesian
v, =Qr, = 6b,, velocity of particle 2 at timé,. We henceforth use the dot to

) _indicate the scalar product of two Cartesian vectors, as al-
for the electron and for the proton, respectively. The condiyeady used in Eq(7). Integration of each term of Eq7)
tion that the other particle turns an angleuring the light- overt, brings out another Jacobian factor and yields

cone time lag i§18]

VA:f} (1-vy-vaa) dt1+f} (1-vy-vy)

21351 + Ny Vaq) 2119(1 =Ny - Vap)

and is henceforth called the unperturbed light-cone condi- (8)
tion. In Appendix B we calculatb; andb, in a power series
of ¢ up to the fourth order. Last, because of the rotationalwheren,,, andn,y, are unit vectors along the direction con-
invariance of Fokker’s action, there is a conserved angulanecting the position of particle 1 at timgto the position of
momentum perpendicular to the plane of the orbit that isparticle 2 at timet, at the advanced and retarded times re-

b?+ b3+ 2b;b, cogh) = 1, (4) dt,,

evaluated in Ref{18] to be spectively, and/,, andv,y, stand for the velocity of particle 2
at the advanced and retarded timgerespectively. Equation
_1+vw,cod6) (8) is the most useful form of Fokker’s interaction for our
z— . ’ (5) . .
0+ vqv, Sin(6) purposes. Notice that each term of E8). can be cast in the
form

where the units of, are€?/c; we are just using a unit system
wheree?=c=1 [18]. Equation(4) restrictsb, and b, to be 1 (1-Vy-Vy)
less than 1 such that for small values &the angular mo- ‘J Y
mentum of Eq(5) is of the order of ,~ 6. For orbits in the r12<1 412 %
atomic magnitudel,= ¢! is about 1 over the fine-structure c
constant,a 1=137.036. It is curious to notice that ea@d-
vanced and/or retardgdhteraction term of Fokker’s action,
Eq. (9), evaluates exactly téﬂlZ along a circular orbit, with
I, given by Eq.(5). This combination of angular momentum
times the orbital frequency is reminiscent of the formal ma-
neuvers of quantum mechanics.

)dtlz_?lf(v—vl-A)dt, (9)

whereV andA are the Liénard-Wiechert scalar potential and
the Liénard-Wiechert vector potential, respectively. We have
introduced the quantitg=+1 in the denominator of Eq9)
such thatc=1 represents the advanced interaction while
c=-1 represents the retarded interaction. The quantities of
particle 2 in Eq.(9) are to be evaluated at a tintgdefined
implicitly by

I1l. FOKKER’S ACTION

o . r
We use Fokker’s action in this work as a means to derive ty=t, + —2, (10)
the sector of the DFS equations of motion determined by the ¢

semisum of the Liénard-Wiechert potentials. In the foIIowingWhere c=+1 describes the advanced and retarded light

we discuss the Lagrangian formalism of Fokker's actiph cones, respectively. Because of this decomposition of Fok-

as an introduction to our economical method to obtain th?er’s teraction intov and A parts. we henceforth call E
tangent dynamics by expanding this action to quadratic or- parts, 9.

der. The delta function of Fokker's actidd) contains the (9) the VA interaction. A derivation of the Liénard-Wiechert

retarded and the advanced light-cone contributions, and it igqtentlals from Fokker's action and details such as the Dar-

convenient to separate those two parts by factoring the argly\-”r]rﬁgpsrg;'?niﬂoig 3re‘?nefromuirrl1declzlanet[fﬁg]iar est-order deriva-
ment of the delta function as y 9

tive appearing in the linearized equations of motion of Ap-
CeN2_ 2 _ pendix A. In this approximation, the contribution of the self-
(=1 == =Tl ~ o+, © interaction force to the linearized dynamics about a circular
wherer , stands for the Cartesian distance between particle @rbit is simply given by the Abraham-Lorentz -Dirac force
at timet; and particle 2 at time,, and each factor on the
right-hand side of Eq(6) is related to the advanced and the
retarded light cones of particle 1, respectively. The delta
function of a product argument is a sum of two delta func-
tions, each multiplied by the respective Jacobian, such thakhe contribution of the other smaller terms will be given
the interaction term of Fokker’s actidil) can be written as elsewhere.

2,
Frad= éa' (12)

056210-3



JAYME DE LUCA PHYSICAL REVIEW E 71, 056210(2005

IV. LINEAR STABILITY ANALYSIS Z,. Even thougl¥ is small in applications of atomic physics,
we stress that one should never expand in powerg tfie

. i ) . .._correct infinitesimal quantity of the linear stability analysis is
circular orbits for displacements perpendicular to the orbita he size of the deviations from circularity and their homoge-

plane, henceforth c_alled tIIEdirecti_on. We give an econor_ni- neous functions such as(expanding ind produces the Dar-
cal method to obtain these equations of tangent dynamics b\%in approximation[20]). This nonanalyticity will become
expanding the implicit light-cone condition up to quadratic :

order. We start from the equations of motion of the isolate lear after we show that the logarithm @f appears. We
system, which are derived from Fokker’s actidh and yield herefore expand the advanced and/or retarded postion

the Liénard-Wiechert fields in the half-retarded plus half-Of particle 2 at the scaled tima +c6+ ¢ in a Taylor series in

advanced combination. This linearizeddynamics is un- ¢ about the advanced and/or retarded positiphce. It turns

coupled from the planar dynamics, and the linearized eqanUt that only the zeroth-order term appears in the action up to

tions can de derived without the use of a symbolic softwarequadratic order. Because of this, the linearized equations in-

as we explain in the following. The Cartesian coordinates 0éolve only a constant shift, a considerable simplification.
a transversely perturbed circular orbit are defined by ubstitutingt, of Eq. (15) together with the positiofL6) of

particle 2 into Eq(10), and using the Pythagoras theorem for
X+ iy = ryd, expiQt), the_diksjtancelz from particle 1 at time, to particle 2 at time
t, yields

In this section we study the linear stability analysis of the

X = 1Y = 0, exp(—iQt), (12) c \2
‘ r%zz(rb‘”b;;r) =rp+10C?H 2, - 2,02 (17)
b

=r,CS4,
A= MCS4 ) Notice that theZ variations decouple from the planar varia-
wherek=1 for the electron an#él=2 for the protonZcis the  {ions hecause there is no mixed linear termZofimes a
small transverse perturbatiod; =b; and d,=-b, are de- |inear perturbation of the planar coordinate in ELj?): these
fined from the two real parameters of HQ), andQ is the 416 naturally separated by the Pythagoras theorem. The pla-
orbital frequency defined above E@). Last, in Eq.(12 C gy perturbations enter in EG17) as an added quadratic

andS are defined by form, as given in the next section. It is convenient to define
C=1-+b;b,6 cogd) (13) another functiond by ¢= 6cCS3b, such that Eq(17) is a
’ quadratic equation ab and the regular solution up to second
and order inZ; andZ,. is
S=1+b;b,0sin(6). (14 CS
o ® =221~ 220", (18)

We henceforth introduce a scaled time Qt. The linear

stability analysis involves expanding the equations of motionr,o coordinateZ, appears evaluated at the advanced and/or
to linear order inZ,, which in turn is determined by the |siarded time in Eq(18), and to obtain the action up to
quadratic expansion of Fokker’s action4p. The main tool quadratic terms it is sufficient to keep the first te@p.

for expanding this quadratic action is the perturbed "ght'zzz(rl+c0+<p):Zz(rl+c¢9). Using thez-perturbed orbit de-

cone condition, Eq(:_LO), about the. circular orbi(whgrerlz fined by Eq.(16) to calculate the numerator of the VA inter-
=r, is the constant circular lagWe introduce a functiog of action of Eq.(9) yields

theZ, andZ, perturbations by expanding the light-cone time o
t, as (1 -Vy - Vyo) =1+ 6 cogh)b,b, — #°C*SZ,Z,., (19)

M, ¢ and the denominator of the VA interaction of H§) is

t25t1+_+6. (15)
© F12(1 +N1p - Va/C) = 1,1 + CD + cC°S(Zy ~ Zpe) Zye).

In the following we calculate this homogeneous functiopal (20)

of Z; andZ, up to quadratic order. The distancg entering

Eg. (10) is to be evaluated from the position of particle 1 atNotice that the quadratic teri@y,.Z,. on the right-hand side
time t;, to the position of particle 2 at the tintg defined  of Eq. (20) can be dropped because it represents an exact
implicitly by Eq. (15). The coordinates of particle 2 at the gauge that does not affect the Euler-Lagrange equations of

time t, are defined implicitly by motion, such that
Xo + |y2 = rbdZ eX[:(i T +ico+ IQD), r12(1 + n12c . VZCIC) ~ rbql +CP + HCCZSZ_.ZZC], (21)
Xp =iy, =rpdy exp— i —ico-ig), (16)  where the equivalence sign henceforth means equivalent
up to a gauge term of second order. Even if a quadratic gauge
2,=1,CSZ(m +CO+ @) = 1,CSZe, term appears in the denominator, in an expansion up to qua-

dratic order it would still produce a gauge and therefore it
wherec=1 for the advanced tim& andc=-1 for the re- can be dropped directly from the denominator. One should
tarded timet,. Notice that Eq.(16) defines the coordinates be careful not to do this with linear gauges, which appear
implicitly, becausep is a function of the deviationg; and  only in the planar stability analysis to be considered else-
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where. In this way, the expansion up to second order of the 2 .. C(C32s 0C3S . .
VA interaction of Eq.(9) is simply €2, = §C§Zl ~ 5 (=2 =2) - (2= Zp)
C .- C?s #CS . -
VA= (?bs) { 1-6°CSZZ, - 7(21 - Zy)? - T(Zz+ +Z;). (30)
_ acczsleZC . (22) The linearized equation f&t, is completely analogous and is

obtained by interchanging, by Z, ande¢; by €, in Eq. (30).

The general solution of a linear delay equation can be ob-
Last, we need the kinetic energy along #gerturbed circu- tained by Laplace transforf21] and is a linear combination
lar orbit, which we express in terms @f of definition (12) of the following normal mode solutions. A normal mode so-
as lution is obtained by substitutingZ;=Aexp(pr) and Z,

=B exp(p7) into the two linearized equations, and requires

Ty=—my1- Urf - ﬂxll _ ﬁCZSZGZZz, (23) the vanishing of the following & 2 determinant:
71

o C?S+ ep? - 5CS6°p° G(6,p)
. . . e = ’
v_vhere th_elz :th mezans derivative with res_pect to the scaled G(6,p) C2S+ ep? - §C5303p3
time 7, y;"=V1-v7, and we have usefr,=6. The expan-
sion of EQ.(23) up to second order is (31)
where G(6,p)=(C?S-CS#p? coshpb)+C>Spd sinh(p#).
= C ) -rnSm f 82, Two kinds of limits are interesting for the infinite-
T, Z; , (24
MpS Cn 2 dimensional formal collection of normal modes of Eg1);

(i) the four soft Coulomb modes obtained by expanding Eqg.
(31) in powers of @ for small values ofp, as discussed in
Appendix B, andii) the stiff limit obtained whempd is large,

where e; =myr,y,°CS’ is calculated with Eq(B1) to be

€= E{[C2+ #S(S- 1)][b, + b, cog )] such that the hyperbolic functions of ti& ¢, p) acquire a
b, large magnitudd?22]. In the following we use the zeroth-
+90sin(6) - 62 cod 6)]b,}. (25) order term of the expansion fty andb, given in Appendix

B to evaluate the determina(®1)
We are ready to derive the Euler-Lagrange equation of

motion for particle 1 of the isolated two-body problem using €= M +0()
the quadratic Lagrangian '

Ly=T;+ VAo, + VA~ (26) M
1 1 1 1 €= — n 0(02),
This equation of motion is m

. C%S oc3s . - C=1+0(¢"),
€=~ ?(221 —Zy—2Zy) - T(Zz+ -Z,)
2cg S=1+0(6). (32)
ce . .
- T(Zz+ +Zy). (27) For smallg, the second-order and higher even-order terms of

Eq. (32) give only a small correction. Substituting E@2)
Notice that the term on the left-hand side of E27) can be  INt@ EQ.(31) and definingp=\/6, we obtain

written as
M—az(detZ) S1-2pn e e 8
) ) i M\ 3" oM M
€2, = riSm, y,Q%CSZ = ris—=, (28) 1 1 2
dt X { (1 - P)Cosm\) - Xsinm\)} . (33)
which is proportional to the force along tlzedirection. Ac-
cording to the prescription of the DFS, we shall add thewhere we have dropped smal(¢?) terms. The stif--mode
following self-interaction term to the right-hand side of Eq. condition defined by E¢(31) (detZ=0) is
(27): 4 M04

2 “ 1 1
1-=—PN+ — 0\ - (1——+—>cosf?)\
, 2 .. 3 oM M A2 »
rESF aq= 5(:3321, (29 L L
+X<1—P)sinf(2)\):0. (34)
where the triple dot means three derivatives with respect to
the scaled time and we have used Etl). The full linear-  For future reference we give also the stiff limit for the

ized equation of motion foz, is z-tangent dynamics without the self-interaction terms, which
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is obtained from Eq(27), and the corresponding equation for exp(AQt/6) (\ is an arbitrary complex numbgefThe limiting
particle 2 form of the planar characteristic equation for the isolated
different-mass case is

1—ﬂ4<1—l2+%)coslﬂ?()\)+1(1—%)sinh(2)\):0. &
MA A% A AA (”—)cosﬁ(x) =1, (37)
(35) M
wherep is the reduced mass aii=m, +m, [for the equal-
mass case, our general E87) reduces to Eq(15) of Ref.
V. THE STIFF STABILITY OF THE HYDROGEN [22]]. Along circular orbits both the planar and the perpen-
ATOM dicular linearized equations share the same limiting charac-

. e . ; eristic Eq.(37), as can be checked with E@®4). For hydro-
We are interested in finding motions where the partlclestiJen (w/M) is a small factor of about1/1824. It is

recoil together while staying in the neighborhood of a drift- h f th f
ing circular orbit, i.e., the state of resonant dissipation. ThdMPortant to understand the structure of the roots of(8a)

need for a resonance becomes obvious in the following pef! e complexh plane, specially for of the order of the

turbative scheme(i) We take the circular orbit as the unper- fineo_slt;uctulr_e lcpnstr;nt. The Vgr)r/] smegl lparamgwf‘/ M h
turbed state(ii) We substitute the circular orbit plus a per- ~ 10~ multiplying the squared hyperbolic cosine on the

turbation into the equations of motion of the DFS and takdeft-hand_side of Eq.(37) determines thato=[Re(M)]

the linearized equations of motion. The circular orbit is not:_ln(\”f‘M/Ma‘l)j For the first 13 excited states of hydrogen
an exact solution of the DFS equations of motion, because dis o is in the interval 14.2|o| < 18.2. The imaginary part
the small forcing coming from the third derivatives. This Of A can be an arbitrarily large multiple of, such that the
perturbative scheme yields linear delay equations with @eneral solution to Eq37) is
small forcing term glong the orbital plane. It is then pqs§ible A= £ (o+im), (39)
to show by averaginf23] that a weakly accelerated drifting
circular orbit is never a solution to these linear equationswhereq is an arbitrary integer. The plus or minus sign of Eq.
Therefore, a bifurcation of the circular orbit must happen and38) is related to the time reversibility of the isolated two-
a nonlinear term must be important to balance the small disbody system, a symmetry that is broken by radiation. This
sipative forcing, if the state of resonant dissipation is to besame exact phenomenon happens for zturection. Next,
attained. In the following, we postulate that this resonancave include the dissipation of the DFS, i.e., the Lorentz-Dirac
happens at a quartic order. By inspection, one finds that onlgelf-interaction, a calculation performed by adding the self-
resonance conditions involving the stiff modes can be satisinteraction force to the equations of motion of the isolated
fied in the atomic magnitude. In the following we study the system. Here, we give only the characteristic planar equation
consequences that along some special circular orbits sudhp to O(1/)\%
balancing mechanism is established by the existence of a 7 5 & >
. : . . . M 1
quartic resonant constant of motion. To discuss this stability (1 + 5+ —4) (—)cosﬁ()\) =1 -2\ +=g"\2
by resonance we need some results of the tangent dynamics AT N M 3 9
along the orbital plane. This more elaborate tangent dynam- 1 5\[uét* .
ics is derived in a way analogous to Sec. V and shall be + <X+ F)(V)Smh@\) T (39
given elsewhere; here, we give only the main results. The
stiff limit for the equal-mass two-body problem with retarded It is remarkable that Eqg39) and (34) differ only at the
and advanced fields is studied in RE22], and in the fol-  terms of O(1/\) and at the terms of typ&*\?, which de-
lowing we give the generalization of these results for thescribe small corrections far in the atomic range. The linear
case of arbitrary masses. term on the right-hand side of Eq&4) and (39) with the
Up to linear order, the tangent dynamics along the orbitap/3 coefficient is due to the self-interaction force. This dis-
plane is decoupled from thedynamics of Sec. V. To study sipative term breaks the time-reversal symmetry of [B@),
this planar tangent dynamics, it is convenient to describe thand the roots of Eq$34) and(39) no longer come in plus or
orbit along thez=0 plane using gyroscopic coordinates minus pairs. Let\,, be a root of Eq(39) with positive real
o . part and\, be a root of Eq(34) with a negative real part. In
Xt Y= 1o expi QDL+ 7, the stiff limit these are both near one of the limiting roots
. . (36) (38) and can be expressed as
X~ iy = rp exp—iQ)[d + &,
where n, and &, are complex numbers defining the perturba-
tion of the circularity and thel, are defined below Edq12).
Becausex, andy, are real we should havakzg*k, but a
convenient way to minimize the quadratic functional of Fok-where the small perturbatiors and €, are so far two arbi-
ker’s action is to treaty, and§, as independent functions. To trary complex numbers. The second-order balancing process
fix ideas we start from the stability of the isolated two-body studied here involves the interaction ofzamode with a
system, and again we define the normal-mode eigenvalue lplanar mode, in the same way used in R€1$,16]. This is
NQ/ 6, i.e., every coordinate perturbation oscillates in time asecause if the atom is to recoil like a rigid body, one expects

ANy = (o+mqi+ie),
(40)
N=-(oc+7qitie),
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the stiff dynamics to perform fast-spinning toroidal motions ~ TABLE I. Numerically calculated angular momenitg= 6% in
about the slow circular orbit. units of €2/c, the orbital frequencies in atomic unitd376)3, the
We henceforth assume heuristically that the state of resceircular lines of QED in atomic unitigep=(1/2){(1/k*)—[1/(k
nant dissipation is formed in a bifurcation involving pertur- +1°l}, the emission frequencies of the DFS in atomic umits:
bations along two special linear modes of the tangent dynani= (13760)°+137¢*(e;~¢,), and the values of the integerof Eq.
ics. We take a perpendicular normal mode of Bfl) and a (40).
planar normal mode of E439), with eigenvalues,, and\,,, . )
respectively. The coordinate of the planar normal mode is &=¢ (1370) WQED Wpr q
linear combination'of the foumg gyroscopic coordinates: 161.94 6.054 101 3.750x10°1 3.655x 1071 32
u=aymt b1k§|_(, vv_hlle the coordlnate of the perpendicular 283.52 112100 6.944x102  6.774x 102 55
normal mode iZ=b,z;+b,z,. Using the normal-mode con- ) ) )
ditions Au= O\, u and 6Z=Q\,Z, one can show that the qua- 398.06 o7 lUZ 2430 102 2462 102 e
dratic formuZ is a complex amplitude that oscillates har- 520.29 1.826¢ 10—3 1.125x 10—3 1.110x 10—3 98
monically with the beat frequency(,,+\)Q/0=i(e 93853 98710 6.111x10™  6.038x10° 119
-€,)Q/ 6. Our resonance condition is to choose these two/©2-27 6.03x10° 3.685<10° 3.710x10° 139

eigenvalues such that 872.68 3.86%10°° 2.406x10° 2.387x10° 160
988.16 2.664 103 1.640<10° 1.650x 1073 180
Re(\y+ 7)) =0. (41) 111015  1.87%10% 1.173x10° 1.168x10° 201

1226.95 1.39%x103 8.678x10% 8.677x10% 221

has an exponential growth. We shall see that condiddnis 1344.30 1.058& 102 6.600x 10;‘ 6.615x 10;‘ 241
satisfied only for special discrete valuestofSince condition 1462.14 8.226(10" 5136107  5.153x107 261
(41) must be satisfied, we henceforth assume thainde, 158044  651%10°* 4.076x10*% 4.090x10* 281
are real numbers, as any excess real part in(&g).can be
absorbed in the definition of. Condition (41) is also the
necessary condition to construct a resonant constant in the _ 47q(30? - m0P)
neighborhood of the circular orbit; because Fokker’s action (- €)= o(?+ 7PqP)?
is real,\, and\, are also eigenvalues to Ed84) and(39), _ _ _ _
respectively, with complex conjugate normal-mode coordi-According to QED, the circular Bohr orbits have maximal

nates. Conditior(41) then implies the usual necessary con-angular momenta for that quantum number, and a radiative

Condition (41) avoids that the modulus of the amplitud&

(45)

dition for a resonant constant selection ruld Al = +1#) restricts the decay from lev&hk1 to
level k only, i.e., circular orbits emit the first line of each
Ay Ao+ )\;y+ \,=0, (42)  spectroscopic seriedyman, Balmer, Ritz-Paschen, Brack-

ett, etc), henceforth called the QED circular line. We have
as discussed in Refkl6,24). Using these complex conjugate solved Eqs(34), (39), and(40) with a Newton method in the
normal-mode coordinates and E@.1), one can show that complex\ plane. Every angular momentutp=¢* deter-
the following quartic form is a constant of the motion up to mined by Eq.(41) has a value in the correct atomic magni-

higher order term$16,24: tude (4 1=137.0; the first resonance appears g5 for
671=252.4 and the minimum valué '=48.52 is attained at
C=uz]*+ ---. (43)  g=7, theng ! increases monotonically wity. The subset of

Table | has frequenciespg surprisingly close to the QED
The quartic function of Eq(43) is constant because it is the lines. These lines are fay approximately equal to an integer
squared modulus of the harmonic amplitudeZ  multiple of the integer part of @ We conjecture here that
=yCexfi(e;—€,)Qt/ 6]. This necessary condition and the among the resonances satisfying the necessary condition
continuation of the leading teri@3) to an asymptotic series (41), only some havelu|?> depending on the translation-
is discussed in Refl16]. invariant quantities&; — &) and(7,— 7,) to allow a recoiling

The root-searching problem of E@L1) is well posed and translation[23]. In our description the emission mechanism

for each integeq conditions(34) and(39) together with Eq. is at a frequency equal to the orbital frequer@ycorrected
(40) determine a uniqué as a function ofy, i.e., 6 is quan- by the frequency of the complex amplitud defined above
tized by the integeq that appears naturally in E¢40). An Eqg. (43), as we explain below. The numerically calculated
asymptotic solution to conditiori40) can be obtained by angular momentd,=#* for this select subset are given in
expanding Egs(34) and(39) up to quadratic order ie; and  Table |, along with the orbital frequency in atomic units
€, while treatingo as an approximate constant. This approxi-(137Q)/ u=(1376)3, the QED first frequency of the series in
mation determines the following discrete values for atomic unitswogp=(1/2){1/k*~[1/(k+1)]}, and the fre-

quency predicted by the dissipative Fokker mode):

_ 6(7°q* - o) (44) =(1370)3+1376(e;—€,). We list only the first 13 lines,
T oGP+ PP which are the experimentally observable, but we tested the
agreement of the numerical calculations of the Newton
and method with up to the 40th circular line predicted by QED.
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Beyond that, the asymptotic formul@4) shows that the VI. CONCLUSIONS AND DISCUSSION
agreement is essentially for any intedebecause substitu- In the limit where the proton has an infinite mass, the
tion of g=[2c]k into Eq. (44) yields concept of resonant dissipation loses meaning because the
center-of-mass coordinate no longer plays a dynamical role.
g1z /212 312 137 & (46) In this singular limit, there is a Lorentz frame where the
- 3 o S proton rests at the origin at all times, and the field at the

electron reduces to a simple Coulomb field in the DFS. The
to be compared with the 137.036 of QED. The agreement fofwo-body dynamics in the DFS reduces then to the dynami-
any integerk suggests that Eqg34) and (39) describe a cal system of Eliezer’s theorem; self-interaction plus a Cou-
linear problem that is equivalent to Schrodinger’s equatiodomb field acting on the electrdi3,4]. We repeat this correct
(linear operators with the same spectrum are equivalent ~dynamics because it is very unpopular6]; with inclusion
In the DFS the interaction with a distant particle involves Of Self-interaction, it is impossible for the electron to “spiral
half the retarded Liénard-Wiechert potential plus half the adinto the proton.” Neither bound states nor dives are possible;
vanced Liénard-Wiechert potentighenceforth called the only scattering states exist. This result is in surprising agree-
semisun). This semisum yields a radiation magnetic field for MeNt with our formula(4) for the quantized angular mo-
the electron ofthe far-magnetic field menta; if the mass of the proton is set infinite in E4f), the
guantized angular momenta become infinite logarithmically,
0 goes to zero, and the particles are unbound at an infinite
- - , (47)  distance! One accomplishment of the present work is to rec-
21-A_ v 2(1+A, - vy)*r ognize that only the two-body problem can produce a physi-
) . N cally sensible electromagneticlike model. Even though there
wherev anda are the electronic velocity and acceleration, s a dependence on the mass in ), the logarithm of the
is a unit vector from the electron to the observation point, themass ratio time* makes the theory very insensitive to this
subindex minus sign indicates evaluation on the retardeghass ratio, such that the deuterium and the muonium have
light cone, and the subindex plus sign indicates evaluation ogssentially the same quantized angular momenta, in reason-
the advanced light cone. These two light cones are definedble agreement with QED. Qualitative disagreement would
by t,=t+(r—fA,-y), wherey stands for the electron’s posi- need an exponentially massive charged particle. Fortunately
tion. Along a precise circular orbit the first approximation to for our present theory, such particle does not exist in nature.
Eq. (47) has a zero spatial average. For the next term we Another qualitative dynamical picture is suggested by
avoid the Page expansion of Appendix A, because the devEliezer’s result[3,4]; the dynamical phenomenon that the
ating arguments are large; we approximate the size of Ecglectron always turns away from the proton along unidimen-
(47) by expanding the denominators of Ed7), yielding the  sional orbits suggests that colinear orbits are the natural at-
guadratic function tractors of the dissipative dynami¢s ground state with zero
angular momentum! Along such orbits, the heavy particle
(the proton moves in a non-Coulombian way and the self-
r (48) interaction provides the repulsive mechanism that avoids the
collision at the origin. This is again in agreement with the
We can EStimatB% of Eq. (48) by noticing that along the Schrodinger theory, where the ground state has a zero angu-
f,=X direction of the unperturbed plane this quadratic func-lar momentum. Again, the infinite-mass case produces un-
tional contains a product of theperturbed coordinate times Physical dynamics; the electron turns away but then it runs
the x perturbed coordinate, i.e., the and Z perturbations away[4]. It remains to be researched if the two-body case
explained above Eq43). Translating theu mode to Carte- has a physical orbit for zero-angular momentum orbits.
sian coordinates with Ed36), we obtain The theory of normal forms for delay equations is studied
in Ref.[25]. An analogous mathematical phenomenon is the
n uz ) finite-dimensional center manifold for equations with ad-
Brag T expiQ). (49) vance and delay studied in connection with discrete shocks
in the conservation laws of Ref®6,27). These conservation

According to Eq.(49), the frequency of the emission line is 1aws are similar to Dirac’s relativistic Schrodinger’s equa-

(axh) __ (axn)

Brad =

rad :

B

equal toQ plus the frequency of thaz amplitude tion, and this would be a natural bridge to QED. Detailed
construction of the resonant normal form is also needed to
Wpr = Q + (& — €)Q/6, (50) discuss the width of the emission lines. In the dynamical

process of resonant exchange, the sharp line is emitted while
with Q given by Eq.(B6). Notice that the emitted frequency the dynamics is locked to the neighborhood of the resonant
of the DFS is naturally different from the orbital frequency. orbit, which according to QED is a lifetime of about®10
The fact that the emission frequency of hydrogen is differenturns in the hydrogen atof10° s). We conjecture that when
from the orbital frequency is a famous conundrum. Thethe metastable orbit breaks down, the dynamics falls into the
emission frequency of E¢50) contains differences of eigen- next metastable attracting orbit; another circular orbit, or into
values of the linear operator of Eq&9) and (34) and is  the ground statg23].
strikingly similar to the Rydberg-Ritz combinatorial prin-  The stiff modes of Eq(40) introduce a fas{stiff) time
ciple of quantum mechanics for the emission lines. scale with a frequency of the order of 6= 1400 times the
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orbital frequency, such that the time for a stiff jump of the research. | also thank A. Ponno, M. Marino, A. Staruszk-
dynamics is 1/1400 times the orbital period, or ! After  iewicz, A. Piza, S. Rodrigues, H. Von Baeyer, F. Alcaraz, and
this fast time scale the resonance essentially locks the dys. Mizrahi for helpful discussions.

namics to the neighborhood of the metastable resonant orbit.

The fact that the equations of electrodynamics describe stiff

jumps in the phase space is largely unexplored in the light of APPENDIX A: PHYSICAL JUSTIFICATION OF THE DFS
modern applied mathematics, mainly due to the complexity
involved. The dynamics starting from an asymptotic resonang
orbit to another of a neighboring is certainly described by
a stiff jump, as expected generically from any stiff equation
In Ref [28], the much simpler Van der Pol oscillator is

In Dirac’s theory[1] the self-interaction is given by the
urceless combination of half of the retarded Liénard-
Wiechert self-potential minus half of the advanced Liénard-
‘Wiechert self-potential, i.e., the semidiffereng¢&]. This

. . . ; ives the following concise description of the DFS: Charges
worked out in detail as an example of an equation of Lienarqye .t with themselves via the semidifference of Liénard-
type that exhibits stiff Jumps. In quantum me“(_:hanlcs ONQpjiechert self-potentials and with other charges via the
Seems tolneed the probl'ematlc concept of an “instantaneoyy s m of Liénard-Wiechert potentials. In the following we
quantum jump,” to describe the stiff passage from one qUagy to fit our ad hocDFS into Dirac’s theory as an effect of

tum state to another. It appears that classical electrodynamigge b,y sjcal houndaries on the fields. Dirac’s electrodynam-
prescribes exactly this qualitative phenomenon: a quasig of point chargeg1] uses the retarded potentifl, .,
instantaneous fast dynamics. roduced by each particleand an incident free fielé” .

The dynamics in the DFS solves several conundrums o o
4 A . n Dirac’s theory the electron and the proton of a hydrogen
the classical hydrogen atom and is similar to QED in many, Y P ydrog

ways: (i) The radiated frequency is not equal to the orbitalatom have the following equations of motipt
frequency(it is lesser than the orbital frequency; see Table | > >
(i) The resonant orbits are naturally quantized by integers — myoy, — ~01, = Z[val%v1, = = (Fl i+ FloedV1s
and the radiated frequencies agree with the Bohr circular 3 3 ' ’
lines within 1% average deviatiofiii ) The ratio of the emit- (A1)
ted frequency to the orbital frequency is in reasonable agree-
ment with QED.(iv) The angular momenta of the resonant
orbits are naturally quantized with the correct Planck’s con-
stant.(v) The stability analysis uses a linear dynamical sys4wvhere double bars stand for the Minkowski scalar product,
tem with delay, a dynamical system that needs an initiathe electron and the proton have charges -1 and 1, respec-
function as the initial condition, just like Schrodinger’s equa-tively, and the speed of light is=1. Since the DFS uses the
tion. The emitted frequencies are then given by a differencgemisum instead of the retarded-only potential, from the per-
of two eigenvalues of this linear operator, like the Rydberg-spective of Dirac’s theory this demands the following con-
Ritz combinatorial principle of quantum physic&i) The  straints on the free fielé,
eigenvalues of our linear operator have a large magnitude
that does not appear in the frequency. This large magnitude is 1
given by a logarithm, just like in the divergent perturbation FlLin(a(t) = E[F;2,aw(xl(t)) —Frorea(0)],  (A2)
theory for the Lamb shift of QED.

Recognizing the correct qualitative dynamics with the
concept of resonant dissipation has taken us very far; the ) 1, )
stability analysis indicated the need for resonances, and these FlinC(t) = E[Fulvadv(XZ(t)) B Fulvret(XZ(t))]’ (A3)
turned out to be satisfied only for the stiff modes and pre-

cisely in the atomic magnitude! The stiff modes also provideyhere the field of each particle is to be evaluated along the
a natural integer to label the resonant.orbits. We selected tr\?ajectory of the other particle, as indicated by the parenthe-
values ofq among the larger set predicted by the necessary;s after each field. Since both the advanced and the retarded
condition(41), showing that Eq(41) is not in disagreement fie|ds satisfy Maxwell's equations, the semidifference is a
with QED. A sufficient condition should be part of the extra free field, as assumed. The incident wave can be generated
work to understand the unfolding of the bifurcation Ieadingby the boundary conditions on the fields. For example, the
to the state of resonant dissipation. The large body of qualirefiections of the radiation by other atoms of a diluted gas
tative and quantitative agreement suggests that an extensiygd play the role of such a boundary condition.
study of electromagneticlike modéls7], of which the DFS The semidifference evaluated at the particle itself is the
is only a generic example, could offer an explanation offamiliar self-interaction of the Dirac theorfl], and Egs.
QED in terms of a stiff dynamical system with third deriva- (A2) and (A3) have instead the semidifference evaluated at
tives and delay. the position of the other particle. Using the Page expansion
of the Liénard-Wiechert fields, we find that the electric field
of this semidifference is approximated by the third derivative
of the other particle’s coordinate, as discussed in Refs.

I thank L. Galgani, A. Carati, R. Napolitano, S. Ruffo, and [15,1€. In this approximation with the Page serids5,16,
A. Lichtenberg for the support during the many years of thisthe incident electric field evaluated at the proton, &®), is

. 2. 2
Myvy, = évz,t - §||Uz||2U2M = (F;,in + ,Zl,ret)UZw
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2. mob,rp® 1 _
E(x,(1) = %1. (A2) s = S{[CP+ SIS 1)][b, + by cos(0)] + eSsin(6)
Along the unperturbed orbit of Fig. 1, E¢A4) is an elec- - #cog6)]b,}, (B3)
tromagnetic field rotating at the orbital frequency. For orbits
in the atomic magnitude the electric field of E§4) has an b% + b§+ 2byb, cog6) = 1.

intensity that turns out to be of the order of the polarized
vacuum of QED, as discussed in RE29]. This shows that For small values off (atomic physics we can solve Egs.
our needed homogeneous field has the correct physical ma@3) in a power series of with a symbolic manipulation
nitude of the QED vacuum polarized by the hydrogen atomsoftware, yielding

We see that thad hocDFS demands a free field produced

by the boundaries that is calculated to have a physically sen- \ = @(1 + ﬂz) + 60 D(my,my) + -+,
sible order of magnitude. This approach to justify the DFS M 2M
with a free field produced by the boundaries is similar to that (B4)
of the stochastic electrodynamics of R€f30,31. m wt?
. . . . . . b:_l 14— +04D(m m)+
Finally, we mention a more radical alternative to justify 27 M M 2,111 '

our ad hocDFS, by generalizing Dirac’s theory such that the
DFS would be derivedrom principle This approach was where

taken by Eliezer and this generalization, henceforth called 3 3 5 )

the Eliezer's settingES), is discussed in the excellent review pm m ) = ( M ){ 12my - 13m; - Smym; + 11m2ml] .

of Ref.[17]. The ES involves the advanced interactions natu- ' 24M M3

rally, exactly in the same form of the DFS! Better still, the (B5)

ES [17] contains an arbitrary parameter, and it would be

highly desirable to experiment with stability analysis and thelt is easy to continue this power series, but for the stiff limit
concept of resonant dissipation in the FiS]. Even though in the atomic magnitude, even ti#é correction already gives
the ES involves delay, advance, and third derivatives exactly very small correction. The orbital frequency is determined
like the DFS, the coefficients in the ES are never equal tdy

those of the DFS. Our preliminary findings with the DFS

suggest a future for this enterprise in the qualitative behavior =" M93[1 + (E + L) P+ } (B6)

of electromagneticlike dynamics, one that could describe byry, 2 2M

QED by a stiff dynamical system with delay.

the first term is Kepler’s third law if we usé=Qry, and the

APPENDIX B: DARWIN AND THE SOFT COULOMBIAN next term is the Darwin correction. More information about
MODES the isolated two-body problem can be found in RE3&,22,.

As an application of the above expansion, we calculate

In this appendix we calculate; andb, of Eq. (2) as @  the goft Coulombian modes of EB1) at a finitep by ex-
function of my, my, andé. The radial component of the elec- panding up toO(6°)

tron’s equation of motion along the circular orbit[iE3]

M #l. 12u
—mlblrb‘i = 2{1C?+ PS(S- Dby + by cog6)] detz=" pid+ pz)[l ) 5(1 ) V)}
V1-P% S
+ 69 sin(6) - 6 cog6)]b,}, (B1) - g%p3(p2 + zﬁ) (B7)

whereC andSare defined in Eq€13) and(14) respectively. )
Our Eq.(BY) is Eq.(3.2) of Ref.[18] after use of Eq(4) and The soft roots of deZ=0 for Eq.(B7) are the Galilean trans-

the identity Iation_modep:O (a double roc)tanc_i t_he oscillatqry_ solutions_
p= xi that have a real part describing the radiative damping
(1-6?b3)(1 - P°b3) = C?+ A(S- 2)S. (B2)  of the DFS, a familiar feature. We had partial success de-

scribing the atomic dynamics of helium with the Darwin
golpproximation[33], and the tools of stability analysis used
here were already used in Reff$5,16). The concept of reso-
nant dissipation is new, and it is a generalization of the con-
cept of a nonionizing dynamics of R€33]. Unfortunately,
the theory of Refd[15,16,33 fails to describe discrete states

The radial equation for the proton is obtained by exchangin
the subindices 1 and 2 in E(B1). There are three equations
involving by, b,, 6 andry; (i) Eq. (B1); (ii) the equation for
the proton, obtained by exchanging indices 1 and 2 in Eq
(B1), and(iii) the light-cone condition, Eq4)

mibyr,® 1., for hydrogen because the soft Darwin modes are neutrally
Vi-P02 siler PS(S= D]y + b, cot )] stable. As we have seen here, it is the stiff modes that equili-
1 brate the dynamics, and those are beyond the Darwin ap-

+ 69 sin(#) — 6 coq 6) |b,}, proximation.
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