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Synchronized chaotic intermittent and spiking behavior in coupled map chains
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We study phase synchronization effects in a chain of nonidentical chaotic oscillators with a type-I intermit-
tent behavior. Two types of parameter distribution, linear and random, are considered. The typical phenomena
are the onset and existence of glotal-to-all) and clustefpartia) synchronization with increase of coupling.
Increase of coupling strength can also lead to desynchronization phenomena, i.e., global or cluster synchroni-
zation is changed into a regime where synchronization is intermittent with incoherent states. Then a regime of
a fully incoherent nonsynchronous statéspatiotemporal intermittengy appears. Synchronization-
desynchronization transitions with increase of coupling are also demonstrated for a system resembling an
intermittent one: a chain of coupled maps replicating the spiking behavior of neurobiological networks.
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I. INTRODUCTION cillations in a rather simple way. Besides oscillators, where

The study of cooperative behavior in ensembles of chaoti€na0s appears through a period doubling cascade, it is pos-
oscillators is a topical problem of nonlinear dynamics. Cha-Sible to introduce a suitable phase for typical systems with
otic synchronization in such spatially extended systems hai§termittentlike behavior, especially for systems with type-|
been considered for populations of locally and globallyintermittent chaotic oscillations, or spiking neurdi2gl]. In
coupled map$1-8] as well as for ensembles of locally and this paper we investigate the collective dynamics in chains of
globally coupled continuous-time chaotic oscillatp®s-14]. such maps. Our study is motivated by the high importance of
The theoretical knowledge obtained has been often appliednderstanding mechanisms behind the transition from low-
to describe dynamical processes in various biological andimensional chao$which may correspond to synchronized
physical systems. In spatially extended systems the effecthaotic systemsto developed(spatiotemporal turbulence
opposite to synchronized oscillations is spatiotemporal disorwhich often looks like intermittent chaotic behavior.
der, in particular spatiotemporal intermitten(T]I). It is one The paper is organized as follows. In Sec. Il we briefly
of the most fascinating phenomena appearing in a wide rangéescribe the behavior of the quadratic map generating cha-
of extended systems in several experimental situations, sudhic type-I intermittent behavior, introduce definitions of the
as chemical reaction§15], Rayleigh-Bénard convection phase and the frequency of oscillations, and give criteria for
[16], planar Couette flow17], fluid flows between rotating Synchronization in chains of coupled maps. Synchronization
electrical cylinderd18], Taylor-Couette flowg19], etc., as phenomena as well as synchronization-desynchronization
well as in theoretical models, such as coupled map latticefansitions with linear and random distributions of the con-
[20] or partial differential equation®1]. Among basic types trol parameter are discussed in Secs. Il and IV. In Sec. V we
of synchronizatior{complete and generalizedhaotic phase present results of our numerical study of chaotic phase syn-
synchronization(CPS is a subject of active investigations chronization in a chain of coupled spiking maps. The results
(see[22]). CPS in ensembles of locally coupled chaotic ele-are summarized in Sec. VI.
ments was first studied in chains of weakly diffusively
coupled chaotic Rossler oscillatorsl]. Time-discrete sys-
tems were also under study.

Synchronization phenomena in ensembles of locally
coupled circle maps were considered . Many phenom- In the focus of this study is the synchronization problem
ena observed in populations of periodic oscillators werdn chains of coupled nonidentical maps with intrinsic type-I
found there too, noting especially the formation of severaintermittent chaotic behavior. In order to measure the degree
clusters of mutually synchronized elements and global synef synchronized motion, we will first introduce the frequency
chronization. The study of CPS requires the existence ofnd phase of intermittent oscillations. Chaotic intermittent
equations for the evolution of phase variaklas for coupled motion has a distinctharacteristic time scaléCTS). For
Rdossler oscillators or circle mapsr at least the existence of type-l intermittency a very large laminar sta@éth duration
appropriate definition of phas¢23]. However, there are so 1) is followed by a very short turbulent sta¢with duration
far no unambiguous methods to obtain such equations anf) and then the next laminar stage begins. Someti(fas
definitions. But in some cases specific properties of the chaexample, in the model map studied be)othe turbulent
otic attractors allow one to define the phases of chaotic osstage has only one jump from a practically fixed variable

II. MODEL OF COUPLED INTERMITTENT MAPS. PHASE
AND FREQUENCY. SYNCHRONIZATION CRITERIA
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FIG. 1. Intermittent chaotic oscillations in a single quadratic

map (6) and (7). Parameters are=0.0001,9=2. FIG. 2. The evolution of); [Eq. (4)] in dependence on coupling
for £=0.000 001 and for three different values&é in a chain of

value and back. This event is reminiscent of firing—a speciap0 coupled mapsiz= (a) 0.000 001;(b) 0.000 005;(c) 0.000 01.

behavior, which is typical for neuronal systems. Regarding

this specific character of behavior we will distinguish be-for all k are satisfied, one can speak about aghase lock-

tween the laminar and the firing stages. The average lengiing between théth and themth units.

of the laminar stage for a single element is definedi2&% Let us demonstrate mutual phase synchronization of cha-
1 otic intermittent oscillations for a chain of diffusively locally
(1o) 8 —— (1) coupled nonidentical quadratic one-dimensional maps:
[ cr’
ve—¢

o . N N X = (3 + d(Xy = 2X+ XK ),
wheree is a bifurcation parameter anrd’ is the critical value
when chaos sets in. For the coupled maps studied below the

CTS(T.)=(7+T) can be calculated numerically as J=1...N, (6)

N whereN is the number of elements in the chain, aijtk)
(T = lim 12 (Kisy — k) ) consists of the standard quadratic part that produces a lami-
“ N—=Njg ’ nar motion and a somewhat arbitrarily chosen return part that

. i _ acts as a firing stage:
wherek; is the moment when thkih laminar stage sets in or

in other words when thkh firing occurs. We note that in the gj+ X+ X2 if x=<0.2,

;tudled maps becauseé T>1 th_e time of full cycIeTC_~ T fj(x) = g(x-0.2 - - 0.24 if x>0.2.
i.e., the time between the beginning of two sequential lami-
nar stages, almost equais Therefore, coincidence of the Hereg regulates the coherence properties of the chaotic at-
averagedr leads to coincidence of the averaged One can tractor. In the casg<5 the laminar stage duration is distrib-
also introduce phase of intermittent oscillationattributing  uted in a rather narrow band, i.e., the chaotic behavior is
to each interval between beginnings of the laminar stage highly coherent, but fog>5 this distribution is rather broad.

()

in other words between two firinga 27 phase increase: We will focus on the case of a coherent chaotic attractor and
setg=2. We recall that the uncoupled mpgg=0 in Eq.(6)]
o=2m———— 4 27, k<K<K, (3y  demonstrates a type-l intermittent behavior fgr-0, i.e.,
ki+1 =k sfr:O. Figure 1 shows a typical motion of the considered
map.

wherek is discrete time. . The parameteg; defines the CTS in the individugth
The presence of a CTS and a suitable phase allows us tg__. J N o
. .~ = oscillator. In our study we treat two caséb:a linear distri-

formulate the problem of chaotic phase synchronization i

ensembles of coupled units with intermittent behavior. So, i;butlon of the parameterj, 81:81+A.8(J _l).’ whereaz is t.r.]e
the CTSs(r;) or the corresponding frequencies parameter ml_smatch bgtwegn neighboring elemer]ts(@hd
! a random uniform distribution of natural frequencies in the

Q; = 2ml(7) (4) range [e1,e1+Ae(N-1)]. We assume free-end boundary
. ) . ) conditions:
of all units become equal, this manifests their global 1:1
frequency entrainmentf the conditions X=X Xy =X (8)
ok — k| < const (5)  for all k.
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0.0008 ——0.0009 ' is well known (see, for instancg,26]) that the appearance
and interaction of many time scaléat least two can lead in
oscillatory systems to a chaotic behavior. Another conse-
quence of the slow-fast motion is a large value of the fre-
quency of global synchronization. It is close to the maximal
N individual frequency[27] [see Fig. 83)]. The reason for this
effect is the following. The strong chan@f&ing) of dynami-
cal variable in the elements close to the end of the chain is
faster than in other elements. For a sufficiently large cou-
pling this provokes analogous strong change of the dynami-
cal variable in the neighboring element which also provokes
his neighbor, and so on. This process leads to a sequential
firing in all elements in the chain. The transition to desyn-
e chronization appears also through a “soft” change of the ob-
—— 0.023 served frequencies. Corresponding results are presented in
Fig. 3b). A detailed analysis of synchronization-
desynchronization transitions is presented for the case of a
randomly distributed parametey in the next section.
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FIG. 3. The evolution of the observed frequendigsfor differ-

ent couplings for (@ the transition desynchronization- IV. RANDOMLY DISTRIBUTED CONTROL PARAMETER.

synchronization and (b) the transition synchronization- TRANSITION TO SPATIOTEMPORAL INTERMITTENCY
desynchronizations =0.000 001 Ae=0.000 000 1, andN=50.

For randomly distributed;, the evolution of the observed

IIl. LINEARLY DISTRIBUTED CONTROL PARAMETER. frequency distribution is shown in Fig. 4. Three types of

SOFT TRANSITION TO GLOBAL SYNCHRONIZATION transitions to global synchronization are observed héje.
Two adjacent elementglusters with close frequencies can

First, a chain with a linear distribution of the parametersbe easily synchronized and a new cluster appg@ajsNon-
g is explored. The evolution of the observed frequen€les local synchronization can occur, i.e., an elem@ntluster of
in dependence on the coupling is presented in Fig. 2. In akklements becomes synchronized not to a nearest-neighbor
diagrams with an increase of coupling from zero the ten-element(cluste), but to some other elemeftluste) having
dency to a more coherent behavior is clearly seen. Then ia close rotation number. Here, the observed frequencies of
dependence on the mismatadlz, global synchronization is the elementgclusterg in between are considerably different.
observedFig. 2(a)] or is not[Figs. 2b) and Zc)]. Butin all  (iii) One elementgroup of elementsat the edge of one
cases the increase of coupling leads to a fully incoherentluster can go to another neighboring cluster. Similarly to the
behavior. The detailed analysis of the frequency distributiorcase of linearly distributed parametess in the case of ran-
) vs coupling(see Fig. 3shows that the transition to global dom distribution ofe; the regime of global synchronization
synchronization is smooth, i.e., a gradual adjustment of freean disappear with increase of the coupling. At some critical
quencies is observed. The reason for such a “soft” route twalued” this regime becomes unstable. In the chain triangu-
global synchronization is the existence of two quite differentlar embeddings are formed. The onset of such embeddings in
time scales: the slow laminar stage and the fast firing stage. fome places in the chain leads to the propagation of firing
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B © FIG. 4. The evolution of observed frequencies
G '”M o T Q; [Eq. (4)] for different couplingsd= (a) 0, (b)
0.0005,(c) 0.001,(d) 0.0015, ande) 0.0025.¢

=0.000 001,A€=0.000 000 1, andN=50.
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FIG. 5. Space-time plots of for &; randomly
distributed in the intervdl0.000 005; 0.000 015
(a) shows nonsynchronous regime at small cou-
pling. Only some intervals of synchronous oscil-
lations are seertb) corresponds to the regime of
global synchronization. liGc) the intermittent re-
gime of synchronous(in time intervals t
€[0:5000 and te[32000:35000 and non-
synchronous behaviors is showifd) and (e)
present regimes of spatiotemporal intermittency.
ParameterdN=50,d=0.001(a), 0.04(b), 0.0056
(c), 0.07(d), and 0.15(e).

processes in one or, more typically, in both directions. Propacomplication of collective oscillations with increase of cou-
gating firing fronts are usually unstable and new triangulaipling is clearly seen. In all plots the darker regions mark
embeddings appear and this process repeats. Therefore thigher values of the presented variables.

domains with a large synchronized intermittency are changed |t is interesting to analyze these observed processes by
to domains of complex spatiotemporal behavior, which in theysing our phase definitiof8). Hence, we can state that in the
present context we call the spatially turbulent regime. Thisregimes of perfecfFig. 5(b)] and intermittent{Fig. 5(c)]
spatially turbulent regime appears suddenly and extends tghaotic phase synchronization, the phase distributipis a

the whole chain; then it suddenly disappears and in th@equence of intervals with constant phase, separated by +2
whole chain the regime of synchronized intermittency iSinks. The position of the kinks at constant time corresponds
again realized. With an increase of coupling the duration 0{0 a phase slip. In the synchronous regimes the phase slips

the spatially turbulent regime grows and correspondingly th : A i
duration of the synchronized regime becomes shorter. Afte%ppear with the frequency of synchronization. In the nonsyn

some critical valua™, the synchronized regime is no longer f,hr:)nous regimes phase slips appear suddenly and rather
observed and the regime of fully developed spatiotemporaf'iS ' .
intermittency sets in. The rich spatiotemporal dynamics in In th_e presgnted mode| STI appears dg_e o the rel_atlvely
the synchronous and nonsynchronous regimes is illustrategi’©"d interaction of many units. The specific property in our
in Fig. 5. The left panel corresponds to nonsynchronous be@DServation consists in the existence of a transient regime
havior (small values of coupling There are several clusters from fully coherent(synchronousto fully noncoherenttur-

of mutually synchronized elements. Only parib) corre- bulen) behavior. In order to demonstrate this transition, we
sponds to a synchronous regime. Pdogtorresponds to the Plot in Fig. 6 the ratioD of number of laminar stages corre-
intermittency of synchronized and turbulent regimes. Panel§ponding to the synchronization regime and the full number
(d) and (e) show highly developed STI. The tendency to theof laminar stages. It is clearly seen th@t for d=d" the
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a t _ FIG. 6. The dependence of the rafioon the
coupling for a 50-element chain withj randomly
0,4 - distributed in the intervdl0.000 005; 0.000 015
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turbulent stages appear very rarely, digifor d=d™ there  a chaotic spiking or bursting behavior and can, therefore, be
are very short intervals of laminar stages. used for the effective modeling of neuronlike elements. Sev-

In our numerical study we also examined chains of differ-eral basic spatiotemporal regimgscluding pulse and spiral
ent sizes and different boundary conditions, in particular pewave propagationfor networks of identical map¢9) and

riodic boundary conditions. Qualitatively all effects de- (10) were presented if8]. Here, we show synchronization
scribed above are the same. phenomena in a chain of locally coupladnidenticalmaps.

As for maps with a type-l intermittent behavior the phase
and frequency of oscillations can be defined by Egsand

\. COLLECTIVE OSCILLATIONS IN THE CHAIN OF (4), |mp|y|ng a 27 increase between Subsequent spikes.

SPIKING MAPS Computer simulations show that as the coupling increases,

three different kinds of spatiotemporal dynamics are ob-

There is a type of behavior often observed in neurobioserved. Similar to the case of a chain of intermittent maps, at
logical systems that resembles intermittency and is usuallgmall coupling neurons are spiking asynchronoughg.
called “spiking.” The rich collective dynamics of coupled 7(a)], at medium coupling they synchronieig. 7(b)], but

intermittent systems urges analogous studies of neural et large coupling synchronization gets destroyed and spa-
sembles. In simulations we next study a chain of locallytiotemporal chaos sets [ifFigs. 1c) and 7d)]. However, the

coupled nonidentical model magpeplicating neural spiking Nature of spatiotemporal chaos is different: initially rare
activity) proposed ir28]: spikes appear and act as phase slips or defects; further they

evolve into chaotic bursts synchronized in phgsigs. 7d)
. _ 1 and 7e)]. Note that spikes forming these bursts are corre-
X = 104Xy + Ed(xﬁl_ 2+ %), lated in space, as they appear as triangular embedding with a
fractal-like spatiotemporal structure. The transition observed
shows how spiking maps can produce bursting behavior if
y}“l:y}(— M(Xﬁ-”f D)+ poj + M%d(xﬁl‘ 2X=<+Xjk_l), they form a spatially extended system. Why does collective
chaos differ for intermittent and spiking maps? This is due to
the interplay between fast and slow dynamics that produces
ji=1,....N, (9)  spiking behavior. The slow variable regulates the threshold
. . value and when the threshold gets too high, it forces spike
wherex; andy; are the fast and slow variables respectively.events to stop propagating along the chain and the burst
u=107, o}, anda=3.5 are the parameters of the individual ends. Until the fastest neuron is recovered, no spiking is
map, andd is the coupling. The functiori(-, -, ) has the  observed in the chain and this quiescent state separates the
form bursts clearly. Quite on the contrary, there is no slow variable
al(1 =X +y< if X< 0, |t|)1 the intermittent map that wquld regulgte turbulent out-
ursts and they multiply freely in the regime of spatiotem-

FEXLY) = at+y if 0 <xX‘<a+y* andxX'=<0, poral chaos. A more detailed consideration of this phenom-
-1if X*=a+y" orx1>0. enon will be reported elsewhere.
(10) VI. CONCLUSIONS

In dependence on the parameters the individual dynamics In conclusion, we have found the existence of global and
of the map[in Eq. (9) d=0] ranges from a regular spiking to cluster phase synchronization effects in a chain of noniden-
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FIG. 7. Space-time plots of; for synchro-
nous (b) and nonsynchronous regimés,(c),(d)
for o; randomly distributed in the interv&0.15;
0.16]. N=100, d=0.005 (a), 0.05 (b), 0.09 (c),
and 0.2(d) and(e). (e) is an enlargement of a part
of (d).
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tical chaotic oscillators with type-I intermittent behavior. A Obtained findings elucidate complex and intriguing collec-
very important feature is that an increase of the couplingive dynamics of intermittent and spiking spatially extended
strength can also lead to desynchronization phenomena, i.esystems, and may be potentially used in applied problems
global or cluster synchronization is changed to a regimdike developedspatio-temporalturbulence and complex be-
where synchronization is intermittent with the incoherenthavior in neurobiological networks. We also expect experi-
state. Then a regime of a fully incoherent nonsynchronousnental studies of these results in various fields, where type-I
state, spatiotemporal intermittency, appears. Analogous syiatermittency has been reported so faee[29-35).
chronization phenomena, especially synchronization-
desynchronization transitions with increase of coupling, have
been observed in a chain of locally coupled nonidentical
maps demonstrating spiking activity. It is important to note We thank N. F. Rulkov and V. D. Shalfeev for useful
that the appearing chaotic traveling spikésrming triangu-  discussions. This work was supported in part by the Hong
lar embedding which correspond to fully developed spatio- Kong Research Grant Cound¢iRGC) and by a Hong Kong
temporal intermittency, show nothing but space-time fractaBaptist University Research GrafERG). M.l. and G.O. ac-
bursting. Our results show that the transition to spatiotempoknowledge financial support of RFBRProject No. 03-02-

ral intermittency is quite typical for intermittent systems dis- 17543. M.I. also acknowledges the support of the Dynasty
crete in time and spadsee alsq20]), which are often used Foundation and J.K. that of the International Promotionskol-
for modeling of dynamical processes in oscillatory media.leg Cognitive Neuroscience.
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