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We study phase synchronization effects in a chain of nonidentical chaotic oscillators with a type-I intermit-
tent behavior. Two types of parameter distribution, linear and random, are considered. The typical phenomena
are the onset and existence of globalsall-to-alld and clusterspartiald synchronization with increase of coupling.
Increase of coupling strength can also lead to desynchronization phenomena, i.e., global or cluster synchroni-
zation is changed into a regime where synchronization is intermittent with incoherent states. Then a regime of
a fully incoherent nonsynchronous statesspatiotemporal intermittencyd appears. Synchronization-
desynchronization transitions with increase of coupling are also demonstrated for a system resembling an
intermittent one: a chain of coupled maps replicating the spiking behavior of neurobiological networks.
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I. INTRODUCTION

The study of cooperative behavior in ensembles of chaotic
oscillators is a topical problem of nonlinear dynamics. Cha-
otic synchronization in such spatially extended systems has
been considered for populations of locally and globally
coupled mapsf1–8g as well as for ensembles of locally and
globally coupled continuous-time chaotic oscillatorsf9–14g.
The theoretical knowledge obtained has been often applied
to describe dynamical processes in various biological and
physical systems. In spatially extended systems the effect
opposite to synchronized oscillations is spatiotemporal disor-
der, in particular spatiotemporal intermittencysSTId. It is one
of the most fascinating phenomena appearing in a wide range
of extended systems in several experimental situations, such
as chemical reactionsf15g, Rayleigh-Bénard convection
f16g, planar Couette flowf17g, fluid flows between rotating
electrical cylindersf18g, Taylor-Couette flowsf19g, etc., as
well as in theoretical models, such as coupled map lattices
f20g or partial differential equationsf21g. Among basic types
of synchronizationscomplete and generalizedd chaotic phase
synchronizationsCPSd is a subject of active investigations
sseef22gd. CPS in ensembles of locally coupled chaotic ele-
ments was first studied in chains of weakly diffusively
coupled chaotic Rössler oscillatorsf11g. Time-discrete sys-
tems were also under study.

Synchronization phenomena in ensembles of locally
coupled circle maps were considered inf7g. Many phenom-
ena observed in populations of periodic oscillators were
found there too, noting especially the formation of several
clusters of mutually synchronized elements and global syn-
chronization. The study of CPS requires the existence of
equations for the evolution of phase variablessas for coupled
Rössler oscillators or circle mapsd or at least the existence of
appropriate definition of phasesf23g. However, there are so
far no unambiguous methods to obtain such equations and
definitions. But in some cases specific properties of the cha-
otic attractors allow one to define the phases of chaotic os-

cillations in a rather simple way. Besides oscillators, where
chaos appears through a period doubling cascade, it is pos-
sible to introduce a suitable phase for typical systems with
intermittentlike behavior, especially for systems with type-I
intermittent chaotic oscillations, or spiking neuronsf24g. In
this paper we investigate the collective dynamics in chains of
such maps. Our study is motivated by the high importance of
understanding mechanisms behind the transition from low-
dimensional chaosswhich may correspond to synchronized
chaotic systemsd to developedsspatiotemporald turbulence
which often looks like intermittent chaotic behavior.

The paper is organized as follows. In Sec. II we briefly
describe the behavior of the quadratic map generating cha-
otic type-I intermittent behavior, introduce definitions of the
phase and the frequency of oscillations, and give criteria for
synchronization in chains of coupled maps. Synchronization
phenomena as well as synchronization-desynchronization
transitions with linear and random distributions of the con-
trol parameter are discussed in Secs. III and IV. In Sec. V we
present results of our numerical study of chaotic phase syn-
chronization in a chain of coupled spiking maps. The results
are summarized in Sec. VI.

II. MODEL OF COUPLED INTERMITTENT MAPS. PHASE
AND FREQUENCY. SYNCHRONIZATION CRITERIA

In the focus of this study is the synchronization problem
in chains of coupled nonidentical maps with intrinsic type-I
intermittent chaotic behavior. In order to measure the degree
of synchronized motion, we will first introduce the frequency
and phase of intermittent oscillations. Chaotic intermittent
motion has a distinctcharacteristic time scalesCTSd. For
type-I intermittency a very large laminar stageswith duration
td is followed by a very short turbulent stageswith duration
Td and then the next laminar stage begins. Sometimessfor
example, in the model map studied belowd the turbulent
stage has only one jump from a practically fixed variable
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value and back. This event is reminiscent of firing—a special
behavior, which is typical for neuronal systems. Regarding
this specific character of behavior we will distinguish be-
tween the laminar and the firing stages. The average length
of the laminar stage for a single element is defined asf25g

kt0l ~
1

Î« − «cr
, s1d

where« is a bifurcation parameter and«cr is the critical value
when chaos sets in. For the coupled maps studied below the
CTS kTcl=kt+Tl can be calculated numerically as

kTcl = lim
N→`

1

No
k=1

N

skl+1 − kld, s2d

wherekl is the moment when thelth laminar stage sets in or
in other words when thelth firing occurs. We note that in the
studied maps becauset /T@1 the time of full cycleTc,t,
i.e., the time between the beginning of two sequential lami-
nar stages, almost equalst. Therefore, coincidence of the
averagedt leads to coincidence of the averagedTc. One can
also introduce aphase of intermittent oscillations, attributing
to each interval between beginnings of the laminar stagesor
in other words between two firingsd a 2p phase increase:

wk = 2p
k − kl

kl+1 − kl
+ 2pl, kl ø k , kl+1, s3d

wherek is discrete time.
The presence of a CTS and a suitable phase allows us to

formulate the problem of chaotic phase synchronization in
ensembles of coupled units with intermittent behavior. So, if
the CTSskt jl or the corresponding frequencies

V j = 2p/kt jl s4d

of all units become equal, this manifests their global 1:1
frequency entrainment. If the conditions

uwl
k − wm

k u , const s5d

for all k are satisfied, one can speak about a 1:1phase lock-
ing between thelth and themth units.

Let us demonstrate mutual phase synchronization of cha-
otic intermittent oscillations for a chain of diffusively locally
coupled nonidentical quadratic one-dimensional maps:

xj
k+1 = f jsxj

kd + dsxj−1
k − 2xj

k + xj+1
k d,

j = 1,…,N, s6d

whereN is the number of elements in the chain, andf jsxd
consists of the standard quadratic part that produces a lami-
nar motion and a somewhat arbitrarily chosen return part that
acts as a firing stage:

f jsxd = H« j + x + x2 if x ø 0.2,

gsx − 0.2d − « j − 0.24 if x . 0.2.
J s7d

Hereg regulates the coherence properties of the chaotic at-
tractor. In the caseg,5 the laminar stage duration is distrib-
uted in a rather narrow band, i.e., the chaotic behavior is
highly coherent, but forg.5 this distribution is rather broad.
We will focus on the case of a coherent chaotic attractor and
setg=2. We recall that the uncoupled mapfd=0 in Eq. s6dg
demonstrates a type-I intermittent behavior for« j .0, i.e.,
« j

cr=0. Figure 1 shows a typical motion of the considered
map.

The parameter« j defines the CTS in the individualj th
oscillator. In our study we treat two cases:sid a linear distri-
bution of the parameter« j, « j =«1+D«s j −1d, whereD« is the
parameter mismatch between neighboring elements, andsii d
a random uniform distribution of natural frequencies in the
range f«1,«1+D«sN−1dg. We assume free-end boundary
conditions:

x0
k = x1

k, xN+1
k = xN

k s8d

for all k.

FIG. 1. Intermittent chaotic oscillations in a single quadratic
map s6d and s7d. Parameters are«=0.0001,g=2. FIG. 2. The evolution ofV j fEq. s4dg in dependence on coupling

for «=0.000 001 and for three different values ofD« in a chain of
50 coupled maps.D«= sad 0.000 001;sbd 0.000 005;scd 0.000 01.
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III. LINEARLY DISTRIBUTED CONTROL PARAMETER.
SOFT TRANSITION TO GLOBAL SYNCHRONIZATION

First, a chain with a linear distribution of the parameters
« j is explored. The evolution of the observed frequenciesV j
in dependence on the coupling is presented in Fig. 2. In all
diagrams with an increase of coupling from zero the ten-
dency to a more coherent behavior is clearly seen. Then in
dependence on the mismatchD«, global synchronization is
observedfFig. 2sadg or is notfFigs. 2sbd and 2scdg. But in all
cases the increase of coupling leads to a fully incoherent
behavior. The detailed analysis of the frequency distribution
V j vs couplingssee Fig. 3d shows that the transition to global
synchronization is smooth, i.e., a gradual adjustment of fre-
quencies is observed. The reason for such a “soft” route to
global synchronization is the existence of two quite different
time scales: the slow laminar stage and the fast firing stage. It

is well known ssee, for instance,f26gd that the appearance
and interaction of many time scalessat least twod can lead in
oscillatory systems to a chaotic behavior. Another conse-
quence of the slow-fast motion is a large value of the fre-
quency of global synchronization. It is close to the maximal
individual frequencyf27g fsee Fig. 3sadg. The reason for this
effect is the following. The strong changesfiringd of dynami-
cal variable in the elements close to the end of the chain is
faster than in other elements. For a sufficiently large cou-
pling this provokes analogous strong change of the dynami-
cal variable in the neighboring element which also provokes
his neighbor, and so on. This process leads to a sequential
firing in all elements in the chain. The transition to desyn-
chronization appears also through a “soft” change of the ob-
served frequencies. Corresponding results are presented in
Fig. 3sbd. A detailed analysis of synchronization-
desynchronization transitions is presented for the case of a
randomly distributed parameter« j in the next section.

IV. RANDOMLY DISTRIBUTED CONTROL PARAMETER.
TRANSITION TO SPATIOTEMPORAL INTERMITTENCY

For randomly distributed« j, the evolution of the observed
frequency distribution is shown in Fig. 4. Three types of
transitions to global synchronization are observed here.sid
Two adjacent elementssclustersd with close frequencies can
be easily synchronized and a new cluster appears.sii d Non-
local synchronization can occur, i.e., an elementsa cluster of
elementsd becomes synchronized not to a nearest-neighbor
elementsclusterd, but to some other elementsclusterd having
a close rotation number. Here, the observed frequencies of
the elementssclustersd in between are considerably different.
siii d One elementsgroup of elementsd at the edge of one
cluster can go to another neighboring cluster. Similarly to the
case of linearly distributed parameters« j, in the case of ran-
dom distribution of« j the regime of global synchronization
can disappear with increase of the coupling. At some critical
valued* this regime becomes unstable. In the chain triangu-
lar embeddings are formed. The onset of such embeddings in
some places in the chain leads to the propagation of firing

FIG. 3. The evolution of the observed frequenciesV j for differ-
ent couplings for sad the transition desynchronization-
synchronization and sbd the transition synchronization-
desynchronization.«=0.000 001,D«=0.000 000 1, andN=50.

FIG. 4. The evolution of observed frequencies
V j fEq. s4dg for different couplingsd= sad 0, sbd
0.0005,scd 0.001, sdd 0.0015, andsed 0.0025.«
=0.000 001,De=0.000 000 1, andN=50.
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processes in one or, more typically, in both directions. Propa-
gating firing fronts are usually unstable and new triangular
embeddings appear and this process repeats. Therefore the
domains with a large synchronized intermittency are changed
to domains of complex spatiotemporal behavior, which in the
present context we call the spatially turbulent regime. This
spatially turbulent regime appears suddenly and extends to
the whole chain; then it suddenly disappears and in the
whole chain the regime of synchronized intermittency is
again realized. With an increase of coupling the duration of
the spatially turbulent regime grows and correspondingly the
duration of the synchronized regime becomes shorter. After
some critical valued** , the synchronized regime is no longer
observed and the regime of fully developed spatiotemporal
intermittency sets in. The rich spatiotemporal dynamics in
the synchronous and nonsynchronous regimes is illustrated
in Fig. 5. The left panel corresponds to nonsynchronous be-
havior ssmall values of couplingd. There are several clusters
of mutually synchronized elements. Only panelsbd corre-
sponds to a synchronous regime. Panelscd corresponds to the
intermittency of synchronized and turbulent regimes. Panels
sdd andsed show highly developed STI. The tendency to the

complication of collective oscillations with increase of cou-
pling is clearly seen. In all plots the darker regions mark
higher values of the presented variables.

It is interesting to analyze these observed processes by
using our phase definitions3d. Hence, we can state that in the
regimes of perfectfFig. 5sbdg and intermittentfFig. 5scdg
chaotic phase synchronization, the phase distributionw j is a
sequence of intervals with constant phase, separated by ±2p
kinks. The position of the kinks at constant time corresponds
to a phase slip. In the synchronous regimes the phase slips
appear with the frequency of synchronization. In the nonsyn-
chronous regimes phase slips appear suddenly and rather
fast.

In the presented model STI appears due to the relatively
strong interaction of many units. The specific property in our
observation consists in the existence of a transient regime
from fully coherentssynchronousd to fully noncoherentstur-
bulentd behavior. In order to demonstrate this transition, we
plot in Fig. 6 the ratioD of number of laminar stages corre-
sponding to the synchronization regime and the full number
of laminar stages. It is clearly seen thatsid for d*d* the

FIG. 5. Space-time plots ofxj for « j randomly
distributed in the intervalf0.000 005; 0.000 015g.
sad shows nonsynchronous regime at small cou-
pling. Only some intervals of synchronous oscil-
lations are seen.sbd corresponds to the regime of
global synchronization. Inscd the intermittent re-
gime of synchronous sin time intervals t
P f0:5000g and tP f32 000:35 000gd and non-
synchronous behaviors is shown.sdd and sed
present regimes of spatiotemporal intermittency.
Parameters:N=50,d=0.001sad, 0.04sbd, 0.0056
scd, 0.07 sdd, and 0.15sed.
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turbulent stages appear very rarely, andsii d for d&d** there
are very short intervals of laminar stages.

In our numerical study we also examined chains of differ-
ent sizes and different boundary conditions, in particular pe-
riodic boundary conditions. Qualitatively all effects de-
scribed above are the same.

V. COLLECTIVE OSCILLATIONS IN THE CHAIN OF
SPIKING MAPS

There is a type of behavior often observed in neurobio-
logical systems that resembles intermittency and is usually
called “spiking.” The rich collective dynamics of coupled
intermittent systems urges analogous studies of neural en-
sembles. In simulations we next study a chain of locally
coupled nonidentical model mapssreplicating neural spiking
activityd proposed inf28g:

xj
k+1 = fsxj

k,xj
k−1,yj

kd +
1

2
dsxj+1

k − 2xj
k + xj−1

k d,

yj
k+1 = yj

k − msxj
k + 1d + ms j + m

1

2
dsxj+1

k − 2xj
k + xj−1

k d,

j = 1,…,N, s9d

wherexj andyj are the fast and slow variables respectively.
m=10−3, s j, anda=3.5 are the parameters of the individual
map, andd is the coupling. The functionfs· , · , ·d has the
form

fsxk,xk−1,ykd = 5a/s1 − xkd + yk if xk ø 0,

a + yk if 0 , xk , a + yk andxk−1 ø 0,

− 1 if xk ù a + yk or xk−1 . 0.
6

s10d

In dependence on the parameters the individual dynamics
of the mapfin Eq. s9d d=0g ranges from a regular spiking to

a chaotic spiking or bursting behavior and can, therefore, be
used for the effective modeling of neuronlike elements. Sev-
eral basic spatiotemporal regimessincluding pulse and spiral
wave propagationd for networks of identical mapss9d and
s10d were presented inf8g. Here, we show synchronization
phenomena in a chain of locally couplednonidenticalmaps.
As for maps with a type-I intermittent behavior the phase
and frequency of oscillations can be defined by Eqs.s3d and
s4d, implying a 2p increase between subsequent spikes.
Computer simulations show that as the coupling increases,
three different kinds of spatiotemporal dynamics are ob-
served. Similar to the case of a chain of intermittent maps, at
small coupling neurons are spiking asynchronouslyfFig.
7sadg, at medium coupling they synchronizefFig. 7sbdg, but
at large coupling synchronization gets destroyed and spa-
tiotemporal chaos sets infFigs. 7scd and 7sddg. However, the
nature of spatiotemporal chaos is different: initially rare
spikes appear and act as phase slips or defects; further they
evolve into chaotic bursts synchronized in phasefFigs. 7sdd
and 7sedg. Note that spikes forming these bursts are corre-
lated in space, as they appear as triangular embedding with a
fractal-like spatiotemporal structure. The transition observed
shows how spiking maps can produce bursting behavior if
they form a spatially extended system. Why does collective
chaos differ for intermittent and spiking maps? This is due to
the interplay between fast and slow dynamics that produces
spiking behavior. The slow variable regulates the threshold
value and when the threshold gets too high, it forces spike
events to stop propagating along the chain and the burst
ends. Until the fastest neuron is recovered, no spiking is
observed in the chain and this quiescent state separates the
bursts clearly. Quite on the contrary, there is no slow variable
in the intermittent map that would regulate turbulent out-
bursts and they multiply freely in the regime of spatiotem-
poral chaos. A more detailed consideration of this phenom-
enon will be reported elsewhere.

VI. CONCLUSIONS

In conclusion, we have found the existence of global and
cluster phase synchronization effects in a chain of noniden-

FIG. 6. The dependence of the ratioD on the
coupling for a 50-element chain with« j randomly
distributed in the intervalf0.000 005; 0.000 015g.
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tical chaotic oscillators with type-I intermittent behavior. A
very important feature is that an increase of the coupling
strength can also lead to desynchronization phenomena, i.e.,
global or cluster synchronization is changed to a regime
where synchronization is intermittent with the incoherent
state. Then a regime of a fully incoherent nonsynchronous
state, spatiotemporal intermittency, appears. Analogous syn-
chronization phenomena, especially synchronization-
desynchronization transitions with increase of coupling, have
been observed in a chain of locally coupled nonidentical
maps demonstrating spiking activity. It is important to note
that the appearing chaotic traveling spikessforming triangu-
lar embeddingd, which correspond to fully developed spatio-
temporal intermittency, show nothing but space-time fractal
bursting. Our results show that the transition to spatiotempo-
ral intermittency is quite typical for intermittent systems dis-
crete in time and spacessee alsof20gd, which are often used
for modeling of dynamical processes in oscillatory media.

Obtained findings elucidate complex and intriguing collec-
tive dynamics of intermittent and spiking spatially extended
systems, and may be potentially used in applied problems
like developedsspatio-temporald turbulence and complex be-
havior in neurobiological networks. We also expect experi-
mental studies of these results in various fields, where type-I
intermittency has been reported so farsseef29–35gd.
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