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Classical dynamics of two-electron atoms near the triple collision

Min-Ho Lee! Gregor Tannef,and Nark Nyul Chdi
School of Natural Science, Kumoh National Institute of Technology, Kumi, Kyungbook 730-701, Korea
%School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
(Received 14 December 2004; published 24 May 2005

The classical dynamics of two electrons in the Coulomb potential of an attractive nucleus is chaotic in large
parts of the high-dimensional phase space. Quantum spectra of two-electron atoms, however, exhibit structures
which clearly hint at the existence of approximate symmetries in this system. In a recen{Phyper Rev.

Lett. 93, 054302(2004)], we presented a study of the dynamics near the triple collision as a first step towards
uncovering the hidden regularity in the classical dynamics of two electron atoms. The nonregularizable triple
collision singularity is a main source of chaos in three body Coulomb problems. Here, we will give a more
detailed account of our findings based on a study of the global structure of the stable and unstable manifolds
of the triple collision.
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[. INTRODUCTION standing of the classical dynamics in these systems. The ex-
Understanding the gravitational three-body problem as théstence_of a perfect _Smale ho_rseshoe giving rise to a com-
simplest nontrivial many-body system is of prime impor- PI€te binary symbolic dynamics were uncovered for the
tance when considering dynamical properties of the solafollinear configuration where the two electrons are on differ-
system such as its long term stability. Poincaré’s proof of thé&nt Sides of the nucleuthe eZeconfiguration [3,5-8. Such
nonintegrability of the three-body problem in 1890 showed@ Pehavior is a rare feature in physically relevant dynamical
that closed form solutions of many-body systems are th&yStems and is here intricately linked to the presence of the
exception rather than the rule. This insight stood at the be[lonregularlzable triple collision. The collinear phase space

ginning of modern dynamical systems theory concerned wit here both electrons stay on the same side of the nucleus—
developing tools to understand the structures and stabiliti/ﬂgijllegogrﬁggztif:;hﬁssgegn;gg?g;%Zellg r[%eéygftable n
properties of nonlinear dynamics. Still, more than one hun- P P T

dred years later, we know remarkably little about the dynam- Studies of the dynamics beyond the collinear configura-

. . . ; ions have so far remained rdrE0,11]. Quantum mechanical
ics of three-body problems due to the large dimensionality o alculations[12,13 suggest, however, that two-electron at-

the system., the long range interactipns and'the complexity Bms have a variety of approximate symmetries which ex-
the dynamics near the non-regularizable triple collision; Seress themselves in the form of approximate quantum num-
[1], for a well written account of the history of celestial pers in spectra of these atoms. This has been explained
dynamics before and after Poincaré’s discovery. qualitatively by group theoretical argumenf$2] and in

The microscopic counterpart of planetary motion, the dy-terms of adiabatic invarianfd4], see[5] for an overview. It
namics of electrically charged particles, occurs naturally inis thus only natural to ask how the existence of such approxi-
atoms and molecules; it has thus mainly been studied in thmate symmetries is reflected in the classical dynamics of the
context of quantum mechanics. First attempts to analyze theorresponding three-body Coulomb problem.
classical dynamics of many-body Coulomb systems such as Recently, we presented an analysis of the classical dynam-
two-electron atoms have been undertaken by the foundings near the triple collision in two-electron atoms in the full
fathers of quantum mechanics in order to extend Bohr’'s hyL. =0 phase spade.5]. The triple collision and associate col-
drogen quantization rules to more complex atoms. The faillision manifolds are the key in understanding the structure of
ure to do so and the discovery of Schrodinger’'s equatiorthe dynamics of the 5-dimensional phase space. Here, we
brought this project to an abrupt halt in 1925. Only a bettewill give a more detailed account of the surprising effects
understanding of the use of semiclassical methods for nomsbserved in classical scattering signals below the three par-
integrable systems pioneered by Gutzwiller and oth2fsn  ticle breakup energy as well as how these effects arise due to
the 1970’s brought three-body Coulomb systems back ontthe topology of the phase space and the particle exchange
the agenda. These efforts led to the successful semiclassicgfmmetry.
description of parts of the helium spectra in terms of collin- The paper is organized as follows: in Sec. Il we introduce
ear subspaces of the full three-body problem in the 1990’¢she McGehee scaling technique in hyperspherical coordi-
[3,4]. Surprising regularities and selection rules in the specnates. In Sec. Ill, we describe the structure of the collision
trum of two electron atoms, which have puzzled atomicmanifolds in the phase space fiéa=0 which turns out to be
physicists for decades, could now be explained in terms ofelatively simple. We then treat the dynamics near the triple
stability properties of an underlying classical dynamics; seeollision for E<O0 in Sec. IV and we present scaling laws
the review[5] for more details. similar to Wannier’s threshold lajd6] in some detail. In the

Advances in a semiclassical treatment of the three-bodyppendix, we give the equations of motions combining
Coulomb problems were possible only due to a better undeiKustaanheimo-Stiefel transformation with McGehee scaling
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and discuss the properties of a specific surface of sectiofor E>0, he was able to deduce his celebrated threshold law
used in the main text. for the total two-electron ionization cross section which turns
out to be completely classical in natUrs].
How are the spaceE=+1 andE=0 connected? When

Il. EQUATIONS OF MOTION considering scattering trajectories where one electron, say
electron 1, approaches the nucleus frojge with energy
gl_ﬁl, the energy scaling property, Eq4) and(2), implies that
}he dynamics depends on the rai6E,; only rather than on

The classical three-body system can be reduced to fo
degrees of freedom after eliminating the center of mass m

tion and incorporating the conservation of the total angulal _ .
momentum. We will focus here on the special case of zer he absolute values & andE, separately. The limig—0 is

angular momentum, for which the motion of the three par- hus equivalent tde/E, —0 which can for fixedE=E, +E,

; . . ' : ' : =+1 be achieved by for example considering the lifijt
ticles is confined to a plane fixed in configuration spgkcd . >
and the problem reduces to three degrees of freedom, that iﬂ,oo' (In the same way, we may consider the lifi 0 for

a five dimensional phase space for fixed energy. We will a Xed E;.) As we will see in Sec. IV, the I|m.|E—>0 IS also
closely related to the dynamics near the triple collision.

usual work in the infinite nucleus mass approximation; the The dynamics forE=0 can be reduced to 4 dimension

Hamiltonian including finite nuclear mass terms can beusin an additional scalina relation. Followina McGehee
found in[7,8]. In the following we will use scaling proper- 9 9 : 9

ties in the three body Coulomb problem in two different [19], one uses the sjmilarity of the overall_ dynamics when
ways: first, by scaling the phase space coordinates with rés scaling the total size of the system. This means that the
spect to energy and, second, by scaling out an overall siz%hape dy_namlcs given by the relative positions of the. thrge
parameter thus considering only the shape dynamics of th%artICIGS In space dec_ouple;s from'the overall change in size
system. of the system in certain limits. We introduce the hyperradius

— 22 ; _
By choosing a scaling transformation with respect to theR_‘r1+r2 as an overall scaling parameter and shape param

total energyE according to eters given by the hyperangte=tari’(r,/r,) and the inter-

electronic anglef= 2 (r4,r,)=6,— 6, with 6 being the azi-
muthal angles. The Hamiltoniar(3) written in these

=B, pi= Ep i @) hyperspherical coordinates has for angular momentsr
the form
wherer;, p; refer to the new coordinates and momenta of
electroni=1 or 2, respectively, and introducing a time trans- 1 pf)l X pf)z 1
formation H=2\P* 2 Pt 2 + EV(a, 0)
t=|ERY, 2) 2 2
:} 2+&+¢ +lv(a,0) (4)
one deduces the new equations of motion from the Hamil- 2 PR R R2coasifa) R
tonian
with
+1: E>O0,

H=P1 P2 2 2,2t 0 Ez0, (3 Viag)=-—2 - %, 1 _
-1 E<O. cosa sSina \1-2 coswSinacosd

Here, Z refers to the charge of the nucle(is units of the  Note, that forL=0, we have

elementary chargeand masses are given in units of the mass

of the electron. We will in general consid&=2, that is, Py =P, =~ Pa, (5)

helium, if not specified otherwise. Furthermorg, r,, de-

notes the nucleus-electron and electron-electron distanceghere p, is the momentum conjugate to the interelectronic

respectively. angle 6. The triple collision corresponds =0, here. For
From Eq.(3) it is clear that we only have to consider three Hamiltonians of the form(4), one can separate the shape

different values of the energy. Our ultimate goal is to betterdynamics from the overall scale dynamics given by the time

understand the bound and resonance states in quantum twgependence of the hyperradiBé). Such a separation is ex-

electron atoms and we are thus most interested in the classict forE=0 and reflects the dynamics in the linit— 0, that

cal dynamics forE<0, that is, we will consideE=-1. In s, close to the triple collision foE # 0. In analogy with(1)

this regime, only one electron can escape classically and gnd(2), one defines thé&ime-dependeniscaling transforma-
will do so for most initial conditions. It turns out, however, tion

that one can learn a lot about tBe<0—dynamics by ana-

lyzing the dynamics at the three-particle breakup threshold — — 1

E=0 in detail. The phase space can be reduced to 4 dimen- a=a, =6, R=_R=1,
sions in this case and the dynamics in the reduced space
turns out to be relatively simple as will be discussed in Sec.
[ll. A similar approach has been employed by Wanthiks]; _ 1 —_ 1
by extrapolating dynamical behaviori&t 0 to the dynamics - VR - VR
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1 — = parent than the hyperspherical coordinates and the latter are
dt=—gpdt. H=E=RE (6)  thus used in the discussion of the dynamics.
At the binary collisionsa=0 or a=7/2, the value ofp,

Note that the above transformations are invariant undemakes an instantaneous transition frafe to + whereas
rescaling the energy according ¢b) and (2), that is, it is  all other variables behave smoothly at these points. We may
again sufficient to consider the caBe=+1 or 0 only. The thus identifyp, before and after the collision by introducing
transformations(6) do, however, destroy the symplectic the regularized variable
structure of the original differential equations; the new

HamiltonianH is in particular no longer a constant of motion
for E# 0. The equations of motion with respect to the res-The resulting set of smooth hyperspherical coordinates in-

P, =P, Sin 2a. (9

caled time are cluding the regularizeg,, will be used in our description of
1 oL a-sita the phase space structures. Note, however, that in contrast to
@=P,  Pu=-=PrP.+ pf),— - —V(e,6), the case of the collineaZesubspacé¢6,7,19, (9) cannot be
2 sifacos’a  da used to remove the binary collision singularities in the equa-

tions of motions. Instead, one has to go to parabolic coordi-

Pe nates to obtain a set of fully regularized ODE’s as presented

: 1 d
0=—5——>, == - —Vl(a,0), . )
sifacoda’ P07 2PRPIT (e:6) in Appendix A.
H= ocH, b :}pz L1 P ‘Al 7) lil. DYNAMICS FOR E=0
R RToFe " 9o asirt a ' . . o
A. Fixed points and invariant subspaces
with In order to understand the dynamics near the triple colli-
— pg sion for E<O it is advantageous to analyse the topology of

) +V(a, 6) =RE, the flow generated by7) for E=0. We start by briefly dis-
cussing the fixed points and the invariant subspaces of the
(8)  dynamics in the rescaled coordinates. Eer0, the dynamics

where we skip the bar signs again for convenience except fdfKeS place on a 4-dimensional manifold in a 5- dimensional
) space. There are two fixed points of the flow, that is,

H:RH:1<p§+ R ./ B—
2 “ co asirt a

The new equations of motiofY) are indeed independent a=ml4, 6=m p,=0, p,=0,
of R; the explicit time dependence &(t) can be recovered

from (8) for E#0 or may be obtained by integrating
=pgR along a trajectory foE=0. These fixed points correspond to trajectories in the full phase
The problem simplifies when considering the special ini-space where both electrons fall into the nucleus symmetri-

tial conditionH=0, that is,E=0 or R=0. First, a true reduc- cally along the collinear axis, that is, théple collision point
tion in dimensionality is achieved a$ becomes a constant (TCP) with pR:_.PO and its time reverseq partner, the trajec-
of motion and we are left with only four independent coor- tory of symmetric double escape, that is, theuble escape

_ - . point (DEP) with pg=P,. In addition, there are three invari-
dinates. Secondly, fo=0 we havepz=0, and the scaled ,n; g pspaces: the collinear spadesr, p,=0 (the eZecon-

momentunpg increases monotonically with time. This leads figuration and #=0, p,=0 (the Zee configuration and the
to a relatively simple overall dynamics in thé=0 subspace so-called Wannier ridgéVR) of symmetric electron dynam-
which will be studied in detail in the next section. ics with a=/4, p,=0.

The triple collision itself has been lifted from the equa-  In the eZespace with Hamiltonian
tions of motions(7) by the time transformation if6). Two
fixed points are created instead which are related to the triple 7 _ } 2, 2\ z _ _

. - ) R H=—(pg+p3) — + —=0
collision. These fixed points cannot be reached in finite 2 COSa Sina coSsa+sSina
(scaled time which is a manifestation of the nonregulariz- (10)
ability of the triple collision singularity. Other singularities
are still present in(7), the binary collisions atr;=0 or a typical trajectory represents an outer electron coming from
equivalently ate=0 or /2. They can be regularized by infinity with pg=-%, =0 or 77/2 and one of the two elec-
standard techniques such as Kustaanheimo-Stiéf&)  trons leaving towards infinity wittpg—%©, a—0 or 7/2.
transformation8,23,24. A set of singularity-free equations Identifying the pointsp,=+% at the binary collisiongr=0,
of motions is obtained by first employing a KS transforma-/2 by usingp, as discussed in Sec. Il, the topology of the
tion using parabolic coordinates and then using McGehee'sZe—phase space takes on the form of a sphere with
scaling technique for this new set of coordinates. Details ofour points taken to infinity; see Fig(d) [6,7,19. The two
the derivation can be found in Appendix A; the resultingfixed points are located at the saddles between the arms
differential equation$A7), (A11), and(A14) have been used stretching in forward and backward directions along phe
throughout the paper for numerical calculations. The descripaxis. TheeZespace forE<0 fills the interior of the mani-
tion in terms of parabolic coordinates is, however, less transfold in Fig. 1(a).

Pr= +\V\2(4Z-1)= + P,

Z 1
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on the Wannier ridge. One obtains in particular for the eigen-
values at the TCIP16]

2
P 100z-9
g A&Ze= —O<1 -1/ —) eZe stable,
& o4 4z7-1
£ 4 P 10z -9
£ A= —°<1 + \/—) eZe unstable,
, T 4 47-1
L
N
¢ P [az-9
0 AR= —0(1 + —) Wannier ridge: unstable,
@ T 4 47-1
(12
T+,
o and for the DEP
<
= P 100z -9
£ o An, A§Fe= - —°<1 - \/—) eZe unstable,
'E - DEP 11; D 4 4Z_ 1
§ p TCp
2 / P 10az-9
1 )\gie:——o<1+ ﬂ—) eZe stable,
4 47-1
(b) 6o
wr_  Po 47-9 S
FIG. 1. (Color onling The eZe manifold (a) and the Wannier )‘SD T2 1+ 47 -1 Wannier ridge: stable.
ridge manifold(b) for E=0. The anglef, in (b) corresponds to the
maximal deviation from the collinear configuratiér 7 possible in (13

the WR for E=0 [in fact m—6@,=arcco$l-1/8%)]. The two- , o ) —
dimensional invariant subspaces are embedded in the full phast€ €igendirections Ie.a(.jlng out of th¢=0 subspace are
spaceE <0 of dimension 5; the subspaces are connected at the Tcfirected along thegg axis; the corresponding stable and un-

and DEP(for E=0) and along the Wannier orb{vO) for E<0.  stable manifoldsS;”°, U§7° are embedded both in tleze
and WR space and are thus identical to the Wannier orbit.
The Wannier ridge space described by That is, the WO forms a heteroclinic connection leading

from the DEP to the TCP. The stabilities along the eigendi-
— 1, ) 1 rections are
H=—-pi+2p;- 222+ ——==0 (11) — —
2R THe V1 - cosé 0= =Py, NTO=P;, (14)

is, on the other hand, a compact space with the topology of wherePy=1v2(4Z-1) as defined above.
sphere where the fixed points form opposite poles; see Fig. Table | gives an overview over how various parts of the
1(b). The dynamics foE=0 is trivial as the full space acts as stable and unstable manifold of the fixed points are embed-
the unstable manifold of the TCP as well as the stable manided within the invariant subspaces. The TCP has, in particu-
fold of the DEP. The interior of the sphere corresponds to théar, three unstable directions and two stable directions of
phase space of the WR f&< 0. The dynamics is of mixed which one is coming from outside tHe=0 subspace; see
type containing stable islands and ergodic regions Zor also Fig. 1. The converse holds for the DEP which has three
>1/4. In what follows we will not discuss the features of the stable directions all ilE=0 and two unstable directions.
WR dynamics in more detail, s¢B,21] for details as well as The TCP can only be reached by trajectories on the
[22] for a more rigorous approach. Note, that #@econ-  2-dimensional stable manifold of the TCP which is fully em-
figuration and the WR are connected at the fixed paiints bedded in theeZespace; see Fig.(d). Trajectories inE=0
E=0) and along the so-called Wannier or#/O) or sym-  approaching the TCP in theZespace close to th&*® will
metric stretch orbit withw=/4, 6=, p,=0 andp,=0 with  leave the neighborhood of the TCP along the unstable mani-
E<O0. fold U$*®which leads to single ionization of one of the elec-
The overall dynamics is invariant under the transforma-trons eventually. The dynamics near the TCP is thusEor
tion p;——p; and dt— —dt with j=R, 6 or « reflecting the =0 well separated from the DEP and the two fixed points are
time-reversal symmetry of the original problem. The triple dynamically not connectedStrictly speaking, this is true
collision point and double escape point are thus equivalentnly for Z>0.287742...; at the critical value the system is
and related by time reversal symmetry. degenerate, that i£)$%° coincides withS§*®[6]; this param-
The linearized dynamics near the fixed points can be obeter regime is, however, physically not relevant.
tained directly from Eqs(7); for each fixed point, two of the The situation changes when leaving #&espace into the
four eigenvectors if£=0 lie in theeZespace, the other two full 4-dimensional spac&=0. The Wannier ridge itself pro-
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TABLE |. Dimensions and embedding spaces of invariant subspaces of the stable or unstable manifolds
of the fixed points TCP and DEP.

$Ze g?;eo U_eI_Ze U¥VR %Ze S\SVR U%Ze UB#O ST UT SD UD

Dimension 1 1 1 2 1 2 1 1 2 3 3 2
Embedded in eZe eZe eZe eZe eZe eZe eZe eZe
WR WR WR WR
H=0 H#0 H=0 H=0 H=0 H=0 H=0 H=#0 H=0 H=0

vides now a connection between the TCP and DEP and tra- The S is for -Py< pst P, bounded by the
jectories approaching the TCP can leave along the Wanniet-dimensional stable manifolgi“°in the eZespace, and the
ridge and thus come close to the DEP. The 3-dimension&-dimensional Wannier ridge. Remarkable is the evolution of
stable manifoldS, of the DEP which contains the Wannier this manifold near the TCP giz=-P,, where the phase
ridge and theS3?® acts in fact as the stable manifold of the space itself splits into two distinct parts. Starting at the DEP
Wannier ridge itself or more preciseSyr=S U Si*®andS,  fixed point atpg=P,, we will discuss the form ofS; by
is thus connected t8:“% In what follows, theS, will be of ~ going towards decreasingg values which corresponds es-
special importance for understanding some of the strikingentially to an evolution of th&, backward in time. Th&;,
features in the classical electron-impact scattering signaindergoes the usual stretching and folding mechanism typi-
found forE=0; see Sec. Il C, as well as in tfie<0 regime  cal for an unstable manifold in bounded domains. The
discussed in detail in Sec. IV. stretching and folding is here facilitated by an overall rota-
A summary of the submanifolds of the stable and unstabléion of the space around the Wannier ridge axism/4, p,
manifolds of the fixed points and the spaces they are embed:0 and a certain “stickiness” nea=0 or 7/2 (see the cuts
ded in can be found in Table I. Note in particular thgtand B and C in Fig. 2. The behavior near the binary collision
Up are related t&, andS; by time reversal symmetry; thus, Points is due to our choice of regularized momentpm
U; together withUE?® form the unstable manifold of the Which projects the phase spacenatO or /2 onto the point
Wannier ridge Uy in E=0. P.=0.
As pr moves towards the TCP atPg, the phase space
B. The stable manifold of the DEP develops a bottleneck whereas tBg stretches over the

We analyze first the topology of the 4-dimensional invari-Whole phase space 5 times by now. That means, thaias
ant subspacéi=0 which is most conveniently studied by E. D C_ B S A w2
considering the 3-dimensional Poincaré surface of section DR N N N
(PSOS 6=, 6=0 in a-p,-pg coordinates. The surface N
=1 is indeed a good PSOS in the sense that the flow is not
tangential to the surface except for trajectories in ¢z
space which is an invariant subspace fully embedded in the
PSOS; theeZeforms in fact the boundary of the surface of
section as can be seen from E¢R). and (10). In addition,
almost all trajectories cross the surface at least once; see
Appendix B for details.

The PSOS has in-p,-pg coordinates the form of theZe
space in Fig. (@). The interior of the 2-dimensionaZe
manifold represents here, however, the domain of the
Poincaré map=w for p,=0 andE=0; see Fig. 2. The fixed
points TCP and DEP lie on the boundary of the PSOS,
whereas the 2-dimensional Wannier ridge space in the PSOS
forms a line connecting the TCP and DEP along pheaxis
ata=w/4, p,=0.

Due topr=0 in (7), pr increases monotonically with time P

leading to a relatively simple overall dynamics k0. Its FIG. 2. (Color onling The PSOSA= in the E=0 subspace in
important features can be characterized by the behavior of 5 . coordinates. Theeze space forms the boundary of the
the stable or unstable manifolds of the fixed points. Espepgos: the WR connects the TCP and DEP alongpthaxis ata
cially, the codimension one manifol§}, is a good candidate =7/4, p, =0. Various cuts of the PSOS at fixed values together
for supplying a dividing surface in the ful=0 phase space. with the S, are shown below. The two arms of tigg stretching
In Fig. 2, the topology of th&; in the PSOS is discussed by from the WR towards th&® on theeZeboundary are shown as
showing cuts through the PSOS at fixgd values with  full and dashed line, respectivel§The cuts C—E are drawn sche-
Pr< Po. matically to enhance important featupes.
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L=0 & ,’I
E=E;+ E,=0 /‘ E,

FIG. 4. (Color online Parametrization of three-body Coulomb
FIG. 3. (Color onling The 5 pieces of th& at the cut D in Fig.  dynamics as a scattering problem.
2 are labeled?l, R2, C, L2, andL1 as indicated in the figure.

dynamics forE <0 which will be investigated in the form of

decreases further passing throughy-the S is cut at the  a scattering problem in Sec. IV.
TCP into distinct parts; see D in Fig. 2. We end up with 5 A set of suitable parameters fully determining the initial
pieces of thes, in each arm. The only way to leave the TCP conditions of a scattering trajectory at enefgy0 and L
(backward in timg is along the stable manifol&zein the =0 are shown in Fig. 4; these are in particular the arfgle
eZe space. This implies that the 5 pieces in each arm areneasuring the angle between the major axis of the Kepler
connected at thﬁZe for pr<-P, forming two loops and ellipse of the inner electron and the incoming direction of the
one connection to theZe boundary at$$*® see Fig. 2e). outer electron, the eccentricigyof the ellipse and the angle
The S*¢itself is thus a boundary of th&, without being a  variablee of the action-angle variable pair of the inner elec-
part of it andS, connects the stable manifol@“©andS5*®  tron at timet=0. The dynamics aE=0 is invariant under
for pr<-Pg. changing the initial energ§, of electron 1 up to a scaling

There are two main routes to approach the DEP for electransformation a&/E; =0 independent dE;; we thus fix the
trons coming in frompg=—= close to theeZe boundary: E;=1. Fore=1 (degenerate ellip$ed.. coincides with the
first, a trajectory can approach the DEP “directly” by moving inter-electronic angled used in the hyperspherical coordi-
in the vicinity of the S5 this is the only path open in the nates. The angular momentum of the incoming electron is
eZespace. In the fulE=0 space, a second route opens up;determined by the eccentricity and chosen such that the
trajectories close to th&“® approaching the TCP can stay total angular momenturh=0. For numerical purposes, we
close to one of the 5 leaves of tBg and move along th§,  start the incoming electron &;=50Z and we compute the
toward the DEP. This twofold approach turns out to be therajectory until the outgoing electron reachgs 50, i=1
main new element when moving away from the collinearor 2.
spaces. For later reference, we will label the leaves ofsthe
according toR1, R2, C, L2 andL1 as indicated in Fig. 3. 1. The eZe configuration
Note that the central leg) is the one connected directly to ) ] o )
the WR for ps>—P,, whereas the leaves to the righ; », We start with the simple case—scattering in the collinear
and to the leftL, ,, do not stay close to the WR when leav- €2€ space—for which the dynamics takes place on the
ing the TCP. boundary of the PSOS, see Fig. 2. In Fig. 5, we record the

Figure 2 is based on numerical calculations Zor2; no ~ Scattering timga) and energy of the outgoing electrdn as
changes in the topological structure and in the number oft function of the phase angle. The initial conditions
leaves of theS, are recorded for nuclear charggsin the ~ "oughly coincide with a cut through treZemanifold atpg
range 1= Z=10. Note that the stability exponents are about=CONst<—Po. Note also that the scattering time is plotted
5 times larger in theZespace than those in the WR; thus, here in real time, not in the scaled time used in the McGehee

trajectories approaching the DEP will do so in general alongransformation. . . _ .
the Wannier ridge space. There are two exceptional orbits producing the dips and

peaks atp=~0.6 ande=0.8 in the scattering time. The dip
corresponds to an initial conditions d&“® and is thus a
C. Scattering signal for E=0 triple collision orbit ending in the TCP. Orbits coming from
pr<<—P, close to this collision orbit will approach the TCP
The phase space dynamics 0 is relatively simple; along the stable manifol&“®and will leave the triple colli-
the conditionpg=0 ensures in particular that the DEP and sion region along the unstable manifdﬂzeinto one of the
TCP are the only fixed points and there are no periodic orbiterms leading to single-ionization towapk> P,. The scat-
and thus no chaos. We will discuss in this section scatteringering time has a minimum at that point as the escaping
signals for theE=0 space in some detail and interpret themelectron leaves with a diverging amount of kinetic energy as
on the basis of the phase space structure presented abowse approaches the triple collision orbit; see Figp) 5(Note
This will be helpful when turning to the much more complex that it takes an infinite amount acaledtime to reach the
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0.001 Ll L ' ' ' L L E=0 ande=0.6, 6.=7/2, andE;=-E,=1; five distinct peaks ap-

pear in the “dip” associated with close encounters with the triple

Phase angle collision point.

FIG. 5. The scattering tim@unscaledl (a) and the energy of the
outgoing electronk,, (b) as a function of the phase angtéin the  ridge which is part of the 3-dimensional unstable manifold
collineareZeconfiguration(E=0 andE; =1). Note that the scatter- U;. The WR forms in fact a heteroclinic connection between
ing signals are shown on logarithmic scales. the TCP and DEP and is thus also part of the stable manifold

of the DEP,S;. This and the topology of the phase space
TCP fixed point along thﬁze, but asR— 0 in this limit, the  leads to the stretching, folding, and cutting mechanism of the
unscaled momenturpg becomes singular. S discussed in Sec. Il B. Orbits coming close to the TCP

The peak in the scattering time at=0.8 corresponds to can thus reach the DEP along the 5 sheets of the
an orbit with initial conditions on th&*® manifold converg- ~ 3-dimensional stable manifol§, giving rise to the 5 peaks
ing to the DEP fixed point and thus leading to double ioni-in the scattering signal, Fig. 6. The labél, L2, C, R1, and
sation. Orbits close to th%Zetake a large amount of scaled R2 depicted in the inset of Fig. 6 can indeed be identified
time to pass the DEP which leads to large values of thavith the leaves of thes, as shown in Fig. 3. The central
hyperradiusR. These orbits leave the DEP region along thepeak,C, is in particular associated with the part of t8g
unstable manifoldJ&?®into one of the arms with vanishing directly connected to the Wannier ridge; the outer peaks
unscaled momentum. This leads to the dip in the energy of2, R2, andR1 are related to the folded parts of tBg and
the outgoing electron in Fig.(B) and a diverging scattering contain orbits which move away from the Wannier ridge af-
time; see Fig. &). The total energy becomes equidistributedter passing the TCP and before reaching the DEP. The dif-
between the two electrons for trajectories close to the DEFference in the behavior of the orbits in the various leaves
the dynamics near the TCP leads, on the other hand, to decomes obvious when depicting their trajectoriesxip,
unequal partition of the total energy with an infinitely fast -pr space as shown in Fig. 7; note that the full orbits are
outgoing electron and an inner electron bound infinitely deeghown here by projecting out the dynamics. The center-
in the Coulomb singularity at the nucleus. peak orbit, Fig. 7a), moves indeed directly from the TCP to
the DEP along the WR which is in contrast to for example
the L1 orbit shown in Fig. %). (Note, that orbits corre-

We will consider off-collinear initial conditions wittg,, ~ SPonding to the.2, R1, or R2 peak show the same qualita-
< next. Typical scattering signals are very similar to thetive features as thel orbit) .
one described in the previous section for #ie configura- Note that the scattering time diverges at the peaks, both
tion; see, for example, Fig. 6 witt=0.6 andd,. =m/2. One  for the peal_<s in thg dip as well as for the primary peak. The
finds a primary peaR at ¢~ 0.5 and a dip ap~—0.4 which corresponding orbits are part of tigg which is completely
contains, however, a set of 5 peaks here. To understand théisnbedded in thél=0 subspace. Orbits on t& converge
signal, it is helpful to go back to the PSG& 7 in Fig. 2.  to the DEP and lead thus to double ionisation. The peaks
One can identify the peaR with an orbit on theS; near the  have forE=0 no internal structure which reflects the regu-
Si7¢ approaching the DEP “directly” similar to what one larity of the dynamics due to the monotonic increasepgf
finds in theeZeconfiguration. with time.

New structures emerge in the dip which hasibebeen We have so far not discussed the dependence on the
associated with a triple collision orbit cﬁze. The TCP fixed signal. From Sec. Il B, we expect that the peaks move to-
point is, however, no longer accessible to off-collinear initialgether and converge towards tBe as one approaches the
conditions as the stable manifold of the fixed poigt, is eZeboundaryé..— o, e—1. This is indeed what one ob-
fully embedded in theZespace; see Table I. Whereas nearserves, we will come back to this point when discussing
collision orbits ineZe move away from the TCP along the scaling laws in Sec. IV C. The other limit towards tdee
unstable manifoldU$?® another route opens up for off- configuration with6,,—0, e—1 is less obvious; one ob-
collinear orbits: escape from the TCP along the Wannieserves that peaks disappear in pairs consistent with the loop

2. Off-collinear configurations
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the number of symbols given.

6079

80

O (inm/2)

IV. DYNAMICS FOR E<O

We are now ready to venture into the full 5-dimensional
phase spac&<0 with L=0; we will approach the problem
by analyzing electron scattering signals in a similar way as in
the previous section foE=0. As mentioned in Sec. I, a

smooth transition fronE<<0 towardsH=0 is achieved by
taking the limitE/E;— 0 in the initial conditions, that is, by
considering for exampld,; —», E,— -« fixing the total
energy atE=-1. In this limit, the inner electron is bound
infinitely deep in the Coulomb well and interaction between
the incoming and bound electrons takes placR-at0. The

dynamics inH=0 is in this sense equivalent to a dynamics at
the triple collision poinfR=0. The smooth transition implies
that trajectories close td=0 will follow the dynamics in the
E=0 phase space except near the fixed points where the flow
close to the manifoldE=0 is perpendicular to the invariant

subspaceT =0 along the directiopg; see Eqs(7) and(14).

Pr

o5 el A. The eZe configuration

© S 00 We start again with theZeconfiguration which has been

studied extensively in the pak3,6,8,18§ and is well under-
stood by now. Figure 8 shows the scattering signalHer

-1 andE;=0.2; compared to Fig. 5 fdE=0, one finds that
the peak related to th&,; is replaced by a wildly fluctuating
signal typical for chaotic scatterin@6]. Note that the dip

FIG. 7. (Color onling Scattering orbits corresponding to te
peak(a) and theL1 peak(b), projected onto thex-p,-pr space.
(Note that this is not the PSO&-=, but the full orbit where the
dynamics has been projected o(the initial condition of the orbit
aree=0.6, 0..=7w/2, E;=1, E;,=-1 with phase angleg=-0.4256 . P .
in (a) and ¢=-0.6612 in(b) respectively. Projections of the orbit related to theS_T in E=0 is still present._ . .
onto thea-p, anda-pg planes are also shown. The circles represent The dynamics folE <0 takes place in the 3-dimensional

the positions of the DEP and TCP and their projections. phase space of Fig(d where the boundary is given by the
H=0 space. The 2-dimensional stable manifold of the TCP,
S, is embedded in the 3-dimensioredespace spanned by

configuration of theS, as shown in Fig. 2 until the scattering the 1-dimensional invariant manifolds”® and Si*$ note
signal becomes flat for smadl,. A detailed analysis of how that only the latter is in the spa¢¢=0; see Table I. Th&;
the nearZeedynamics is connected to the rest of the phasahus intersects the 1-dimensional set of initial conditions for
space will be presented [25]. bothE=0 andE # 0 independent oE;. Orbits close to th&;
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manifold approach the triple collision fixed pointRt0 and
follow the dynamics along the 1-dimensional unstable mani-
fold, US*® after passing the TCP. The dynamics here is thus
similar to the one foE=0 as discussed in Sec. Ill C 1; near
collision events lead to ionization of one of the electrons
where the ionizing electron escapes with a diverging amount
of kinetic energy thus giving rise to the dip in the scattering
time.

The behavior of the dynamics near the DEP is linked to
the TCP dynamics via time reversal symmetry. The DEP is
accessible only via the stable manifd@g®which is embed-
ded in theE=0 space; the DEP can thus not be reached for
E<0 and trajectories can come arbitrary close to the DEP _ ,
only in the limit E/E;— 0. Orbits near thes*® will, how-
ever, approach the DEP where they either follow the flow
along the unstable directiol&’® leading to ionization or

follow U™ [or equivalently the Wannier orbitvO)] into

the interior of theeZespace; see Fig.(d). In the latter case,

pr changes sign and electron trajectories fall back towards
the nucleus. The particles can now remain trapped for some o
time in achaotic scattering regiofocated between the TCP 95 S 50

and DEP inside thél=0 manifold. The DEP thus acts as an © o
entrance gate into this chaotic scattering region. The chaotic
scattering intervalCSl) in Fig. 8 replaces th&, peak in the

E=0 scattering time signal shown in Fig. 5; it is directly
linked to the existence of an entrance gate centered at th
DEP fixed point. By time-reversal symmetry, the TCP acts as

the exit gate for single electron ionization.

A closer analysis of the strongly fluctuating signal in the 4,
CSI reveals the well known binary symbolic dynamics
present in theeZe configuration[6—8]. Indeed, it is now ,’
widely believed(but still not rigorously proveyd that theeZe 407
configuration behaves like an ideal Smale horseshoe, wher
the partition leading to a binary symbolic dynamics is pro-
vided by the stable and unstable manifold of the triple colli- _°°
sion, that is,S; and Up. The chaotic signal in the CSI con- =
sists of a series of dips flanked by singularities in the delay
time on either side, see the magnified region in Fig. 8. The
dips correspond to orbits which approach the TCP along the 04
S after having entered the chaotic scattering region by com- '
ing close to the DEP. Each of these triple collision orbits is
embedded in an interval of escaping trajectories, the bound =
aries of these intervals are given by orbits escaping asymp a(m/z)os A
totically with zero kinetic energy of the outgoing electron. ® 00
These orbits are thus part of the stable manifold of the
asymptotic periodic orbit where one electron stays at infinity ~ FIG. 9. (Color onling The shortest chaotic scattering orbit in the
with zero kinetic energy. This is in contrast to the c&se collineareZespace is plotted im-p,-pr coordinates for the initial
=0 where orbits escaping with zero kinetic energy are part ofonditionsE/E;=-0.001(a); the corresponding orbit foE=0 re-
the stable manifoldS, which leads to double ionization as 'ated to the peak in Fig. 5 is plotted for comparisoritm
mentioned in Sec. Il C 1.

The shortest chaotic scattering orbits correspond to the oze ) o ] ]
widest dip in the CSIsee for example Fig. 8 at=1.075.  alongUp™"and chaotic scattering is not possible. Other dips
The corresponding orbit for initial enerdy; =1000 is plotted  in the CSI are associated with trajectories staying inside the
in Fig. 9a) in a—p,—-pg coordinates. One finds indeed that chaotic scattering region for longer times. The intervals be-
the orbit approaches the DEP first before turning toward théween dips can be labeled uniquely by a finite binary code
chaotic scattering region. In this particular case, the orbiteflecting the order in which binary collisions take place after
stays close to the WO and escapes thus immediately via thentering and before escaping the chaotic scattering region.
exit gate at the TCP. An orbit close to ti8y for E=0 is  We will not elaborate on the symbolic dynamics here, and
shown in Fig. gb) for comparison; this orbit can only escape refer the interested reader[t®-8]. Note, that the total width

6.0

20 %

-2.0

-4.09

807
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FIG. 10. The scattering time signal fer,= /2, e=0.6, andE;=0.2.

of the chaotic scattering interval reduces to zero in the limitchaotic region immediately again by coming close to the
E/E;— 0, the corresponding scaling law is presented in SecTCP. For smallE/E;, interaction between the two electrons
vV C. takes place at small values of the hyperradRignd thus
close to aR=E=0 dynamics; leaving the smaf regime into
_ ] _ the chaotic scattering region after passing the DEP is for
B. Off-collinear configurations E/E;— 0 only possible along the Wannier orlgiir equiva-

From the analysis of the dynamics in tiie=0 phase |ently alongUR”?). This can be observed in Fig. (). As
space and theZeconfiguration it is now possible to under-
stand the scattering signals for large parts offke0 phase
space by starting from th&/E; — 0 limit. We note first that
the stable and unstable manifolds of the triple collision fixed
points which have been so important so far are not contained
in the off-collinearE<0 phase space; indee®}, is fully
embedded irE=0 andS; is part of theeZephase space; see
Table I. The latter implies in particular that triple collisions
occur only in theeZeconfiguration. The overall dynamics is,
however, clearly influenced by the invariant manifolds of the
fixed points. A typical scattering time signal is shown in Fig.
10, here for the scattering parametexs0.6, 6..=m/2, E;
=0.2, andE=-1. It shows a primary dip aroungd=-2.3
containing 5 peaks as in the off-collinear scattering data for
E=0, see Fig. 6, as well as a chaotic scattering interval as in
the eZecase; see Fig. 8.

In analogy with theeZeresults, we can identify this pri-
mary CSI around _1'§e¢<0'7 with the “direct” route to_ FIG. 11. (Color onling Short chaotic scattering orbits in the
the DEP close to th&;™ The DEP and TCP act thus again , y pjane with initial conditions in the largest dip in the primary
as the entrance and exit gates, respectively, into or out of @g; for £,=0.2 (a), 10 (b), 100 (c), and 1000(d) with fixed total
chaotic scattering region. In Fig. 11, we show a sequence Qfnergye=-1. The full lines represent the trajectories of the initially
chaotic scattering orbits in configuration space for variousound electron(with e=0.6), the dashed lines correspond to the
E/E; belonging to initial conditions in the main dip of the initially incoming electron(with 6..=/2). The nucleus is at the
CSI (such as the region aroung=—0.495 in Fig. 10. The  origin and the direction of the semimajor axis of the initially bound
trajectories pass the entrance gate near the DEP, but leave tlectron is aligned along theaxis.

(d)

44 2 0 2 4
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- range of 6., values. Only the boundaries of the partition
WR (E=0, 2d) which is formed by thes; itself in theeZecase, is modified,
turning into channels from which it is possible to reenter the
chaotic scattering region. This suggests that the “dips” in
each CSI can be labeled by a binary symbol code related to

TCP § (<LeE<0) __ -?]]AOtlc_- _ O] pee the chaotic dynamics in the chaotic scattering region; from
/ \ wo :C;‘E‘)el”“g WO/ \ here, trajectories may either escape by coming close to the
eZe (E=0) et eZe (E=0) TCP or may reenter the chaotic scattering region along 5

distinct paths. We thus expect that the dynamics can be well

FIG. 12. (Color onling The conveyor belt mechanism: the TCP described in terms o2 +5=7 symbols. However, the exis-
and DEP fixed points and their heteroclinic connections, the Wantence of such a patrtition in this high dimensional problem is
nier ridge(WR) for E=0 and the Wannier orbitnvVO). not obvious and may be the key for explaining the approxi-

mate quantum numbers observed in two electron atoms in

E/E; increases, the trajectories move away from the WOterms of the classical dynamics.
but retain the symmetry of the Wannier ridge dynamics. This The analysis so far leaves many questions open. It is in
can be attributed to the fact, that trajectories coming close t@articular a big surprise that the dynamical features found in
the DEP will do so along the Wannier ridge due to the dif-certain limits, such as the folding of tI& in E=0 space or
ference in the stability exponents alorgy, that is, xgge the existence of a binary symbolic dynamics in #i&econ-
<)\VS\;FE see(13). figuration, can survive in phase space regions far from these

In contrast to the scattering signals for #8econfigura- ~ invariant subspaces. Our numerics suggests that the con-
tion, however, new structures appear at the center of the dipé€Yor belt mechanism together with &mpproximatg sym-
in the CSI; see Fig. 10. Indeed, when enlarging the interval§0lic dynamics works in the whole range> 6..> 0.~ w/4
containing the dips, one finds 5 separate peaks similar t"d 1>€>e.~0.6 for energy ratios as large ¢5/E,|=5.
those in the primary “dip” at —2.6 ¢<-2.0. In contrast to However, there must be a chang(_e in the structure of the dy-
theE=0 case, each of these peaks is in itself a CSI on furthep@mics eventually. Results obtained in the limiting cases
magnification. The origin of the 5 peaks is always the?-=0—theZeecase[4]—or e=0[27] certainly make this a
same—close encounters with the TCP either via a direcfecessity. Especially the transition froe¥eto Zeeis of
route close toS¢Ze (the primary dip or when leaving the Importance in assigning approximate guantum numbers in
chaotic scattering regiofthe primary CS). The 5 peaks can (quantum two-electron atom$5], but remain poorly under-
be related to the folding of th&, near the TCP as described stood from a class_lcal mechanlps pomt of view. The fact that
in Sec. 11l B. TheS, thus provides a bridge between the TCcpthe conveyor bel_t is so robust indicates tha_t there are large-
and DEP and trajectories can reenter the chaotic scatterirgf@le structures in phase space at work which have not been
region in this way. This leads to the secondary CSI's in eachincovered so far.
of the 5 peaks; see Fig. 10. Note that the secondary CSl’s C. Scaling laws

again show structures very similar to the primary CSl and in Even though the scope for analytic results is limited in

fact similar to the CSI in theZecase. two-electron atom problems, asymptotic scaling laws can be

__ The peaks in the dips suggest that it is possible to crealgq e from the linearized dynamics near the fixed points.
increasingly longer cycles of chaotic scattering events by re; the DEP is indeed the sole entrance gate into a chaotic

peatedly moving from the DEP to the exit channel, the T.Cpscattering region one would in particular expect universality
and then along one of the 5 branches of the stable manifolg o hehavior for all CSl's. In the previous sections it has

Sp near the TCP back to the DEP. Indeed, on further magnipeen argued that chaotic scattering trajectories need to come

fication of the secondary CSI's, one finds again dips whichyose t5'the DEP before they can flow out into the chaotic
contain 5 peaks which on further magnification turn out to be .

CSl's of third order and so on. A whole sequence of self-Scattering region along the unstable manifalf™®. In the

similar structures emerges in this way where dips give birtHMit E/E;—0, these trajectories converge towards the

to chaotic scattering pattern which in turn have dips contain=0 manifold and trajectories which will enter the chaotic

ing 5 peaks, etc. The scattering data are thus a macroscoggcattering region alonggg&0 need to come closer and closer

manifestation of the structure of the dynamics at the triplelo the DEP. The phase space region which eventually enters

collision point. They reflect a rather curious dynamical fea-into chaotic scattering is limited by ejection along the other

ture, namely a Smale horseshoe, whose entrance and exibstable manifold of the DERJE®

points are short-circuited by two different heteroclinic con-  This implies a scaling law for the width g, of the cha-

nections between the two fixed points: the Wannier ridge  otic scattering intervals fo/E; — 0 (which should be inde-

E=0) leading from the TCP to the DEP and the Wannierpendent of the prehistory of these trajectory before passing

orbit connecting the DEP back to the TCP. This gives rise tdhe DEP entrance gatelLet us consider the evolution of a

a conveyor beltdynamics as it is schematically sketched in one-dimensional set of initial conditiof-7m<¢<) for

Fig. 12. small E/E; and fixede and 6.,. The parts of this segment
The apparent similarities in the CSI signals for both theclosest to thes, come close to the DEP; see Fig. 13. Denote

collinear and off-collinear configurations suggests that thehe distance from the 4-dimensioria0 manifold and thus

binary symbolic dynamics remains largely intact for a widefrom S, as §, that is, we have
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eZe (unstable) eZe (unstable)

WR (2d)
S D{ eZe (stable)

WR (2d)
eZe (stable)
FIG. 13. (Color onling Dynamics near the DEP. FIG. 15. (Color online Dynamics near the TCP.
S |E/IE,|. (15) is thus in the limitE/E;— 0 given asAcg < Ag/ A(Tp) that
is,

Chaotic dynamics can be expected only if trajectories reach
some distanc® = P, from the DEP a!or?gJS*O. The timg Acgy (8ID)H o | — ’L’ (19)
Tp for the segment to get from to D is in linear approxi- 1

mation (valid for E/E; — 0) of the order
( 1—0) where the energy dependence follows fr(ih). The scaling

1 D law is confirmed by numerical calculations and is indeed
To~——1In S (16)  universal, that is, it is independent 6f, see Fig. 14) (as
)\UD well as ofe, a result not shown hereand is the same for the

primary CSI and the CSlI's forming the five peaks; see Fig.
14(b). This clearly demonstrates that the DEP is the sole
entrance gate into the chaotic scattering region.
- ez s In Sec. Il C 2, we showed that the 5 peaks in the primary
A(To) = Ao exdhg; Tol = Ao(D/9)*. (47 dip are associated with “cutting” the foldeg, at the TCP
which leads to 5 distinct paths from the TCP to the DEP; we
argued that the center peékis associated with parts of the
)\SZe 1 100 - 9 S, manifold directly connected to the Wannier ridge; see
w=—>== —< N\ 1) (18) Figs. 2 and 3. Trajectories in tl&peak thus move along the
NGZO 4 4z-1 Wannier ridge, that is, along tHé"'R The phase space vol-
ume which can be transferred from the TCP to the DEP along
is the well known Wannier exponent controlling two-electronthe Wannier ridge is limited by the flow along the other
ionization processes fde>0 [16] and quantum resonance unstable manifold of the TCFU?ZG. This implies an addi-
widths [20] near the three particle breakup threshold. Thetional scaling law for the width of the center peak in the
fraction of trajectories entering the chaotic scattering regiorimit 6,,— 7 as well asE/E;— 0 (see Fig. 1% the distance

During that time, intervals of the siz&, on the segment
stretch along th&J$7® direction according to

Here,

10 F T T T T 10 £ T T T T
| F*
I » 1L \ _ ]
1 E—— b <— 1 : . 0,.= 90
[ T > Y 01 F .
L ACSI [
01k — oot | 3
A 0001 L & 3
% 001 F . i \
< [ 0.0001 F g ]
0.001 F E 0.00001 F ‘\{\; . E
-6 | I SN
160° L 3. ]
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0.00001 [ . . %:.45. A Ll Ll . 10_8 - M |AS.PCE|.kS| . P P .
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(@) E, (b) E,

Z =2 (UW=1.0558932..)

FIG. 14. (Color onling Scaling behavior of the width of the primary CSI for differefit as well as for the 5 peakéhere for 6,
=m/2). The other parameters aee1 andE=-1.
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Ae 1 ——— ] be observed in scattering data for b&k 0 andE<0. In the
001 F [ o " d latter case, initial conditions close to ti8& form chaotic
000 |- - . ] . . .
00001 b i L 1 ] scattering interval$CSl) both for a direct route and for tra-
166 L e 4w avs om0 i jectories near the 5 leaves of tBg; the latter come close to

c the TCP before entering the chaotic scattering region near the

1210 i ] DEP. Scaling laws for the width of the CSI's in the
10,1 ] asymptotic limit E/E;—0 and 6,.— 7 can be derived in
1014 - ] terms of the linearized dynamics near the fixed points with
10 v =6.223573.. . scaling exponents given as ratios of stability eigenvalues.
10%¢ ] The results described here lay the foundations for a better
i S T understanding of the phase space dynamics for the full

10 100 1306 5-dimensional phase spaEe<0. That there is a very robust
structure becomes apparent when comparing Figs. 8 and 10.
FIG. 16. (Color online Scaling behavior of the center dip as The overall signalneglecting the 5 peaksemains largely
function of 6., here fore=1 andE/E;=-0.1. intact which suggests that the complete binary horseshoe
spanned by th&;”° and theUH™? in the eZespace is con-

of a segment of trajectories from te@espace and thus from tinued into the full phase space. Uncovering this continuation
the TCP can be measured in termsdof(m—6,). Following ~ Process will be the key in understanding the electron-

a procedure similar to the derivation ¢9), one finds that elgctron correlation gffects giving rise to, for gxample, the
the width of theC peak interval scales as existence of approximate quantum numbers in spectra of

two-electron atoms.
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and u given by (18). Note, that the second part G21) is
valid only for 1/4<Z=9/4; the eigenvaluea [~ become
real forZ>9/4, in which case the unstable direction with the
larger eigenvalue is expected to dominate the behavior along

the WR coordinates. Numerical result for the width of the APPENDIX A: NONSINGULAR EQUATIONS OF MOTION
center peak in the primary dip are shown in Fig. 16 as a ) ] . o
function of 7— 6., for fixed E/E;=-0.1 ande=1. The agree- We give here the fully regularllzed equa.t|ons of motion in
ment with the predicted scaling law demonstrates that théhe form of a McGehee regularized version of the 3-body
center peak is associated with the path from the TCP to thBroblem with Kustaanheimo-StieféKS) regularized binary

DEP along the Wannier ridge as described previously. ~ collisions. We follow here the treatment in R¢8], where
the regularisation of the nucleus-electron collisions has been

performed by using parabolic coordinates for each electron
V. CONCLUSIONS which are defined by the transformations

By using hyperspherical coordinates together with McGe- =Q-Q5 V1=2Q:Q, r=Ri=Qf+QJ,
hee scaling, it is possible to uncover the structure of the

dynamics near the triple collision in detail. We first analyze Xo = Qg - th Y2=2Q3Qs rp= RZ= Qg + szu
the dynamics for total energiz=0, for which the set of
equations of motions is reduced by one. The dynamics is QP - Q,P, QuP, + OQ;P,

here relatively simple compared to tBe<0 case due to the

monotonic increase in the momentypg with respect to the " 2ry " 2

scaled time. The DEP and TCP fixed points are identified as

the entrance and exit gate into and out of a chaotic scattering _ Q3P3= Q4P _ Q4P3+ Q3P (A1)
region within theE<O0 space, respectively. The two fixed X 2r, TP 2r, ’

points are connected along two different heteroclinic connec- . _ _ _ .
tions, namely the WR foE=0 (going from the TCP to the together with the Kustaanheimo-Stiefel time transformation
DEP) and the WO folE <0 (connecting the DEP back to the (23,24

TCE). This remarkable effect, which ha§ its origin in the dt=r,r,d7. (A2)
particle exchange symmetry, together with the topology of - _
the phase space leads to the emergefice ®leaves struc- Here,(x,y;) and(py.py) are the position and momentum in
ture of the stable manifold of the DEP connected to the stabl€artesian coordinates of electronl,2moving in the plane.
manifold of the TCP fopg<—P,. This beautiful effect can The notation®Q andP will be used for(Q,,Q»,Q3,Q,) and
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(P1,P5,P3,P,), respectively. The regularized Hamiltonién R= \"/(Qi + Q22+ (Q2+ Q22 (A8)

can now be written as . )
It is, however, still advantageous to employ McGehee

G=ryry(H-E) scaling as introduced in Sec. Il in addition to a KS transfor-

1 1 mation. By defining
= grz(Pi +P3)+ érl(Pg +P) =2Zr,= 27,
~_Q
1 Q= R (A9)
+r1r2<—E+r—>, (A3) v
- _ _ one arrives at a set of coordinates where ¢handry, can
where the electron-electron distangg is take on nonzero values at the triple collisi¢®ne can actu-

=[(02+ 022+ (02+ 022 -2 + 249 ally show thatr,,>0 everywhere forE<O0, for example
1127 [(Qr+ Q)"+ (Qs+ Q)" = 20QuQs + Q)™+ 2(QuQs r1,>0.156... forZ=2) This means in particular that expres-

- QQy)1M2. (A4)  sions containing, in (A7) remain in general finite in the

McGehee-scaled coordinates even at the triple collision. For
numerical calculations, it is thus more convenient to use the
dQ _dG dP_ G scaled coordinates which are less sensitive to numerical er-

The Hamilton’s equations of motion,

dr _oP’ dr Q' (A5 rors due to small denominators.
. After introducing the additional time transformation
are now given as _
dr 42" dr 4%7? (which leads to a speedup near the triple collision compared
to using KS-time transformation onlyone obtains the equa-
dQ; 1 dQ, 1 . . =
— =5MPs ——=-11Py, (AB)  tions of motion for the scaled coordinat@sas
d 4 dr 4
and dal 1 — 1—
—— = 12P1 = S Qar1ropPr,
dP, 1. 5. 1 dr 4 2
ar —Qu(P3+Py) —2ZQ; +2Qur| ~E+ —
T 4 rlz o
r1r2 2 2 &:%E_larr
- ZrT[rlQl"' (Q7—Q3)Q1 — 2Q,Q3Qu] dr 42?2 272! 2Pr:
12
dpP, 1 1 dQ, 1. — 1—
E == { ZQZ(PZ%) + Pézl) - ZZQZ + 2Q2r2(_ E+ r_]_z) % = ZF1P3 - §Q3rlr2pR,
rqr
257 nQ, = (Qf- Q9Q. - 2Q1Q3Q4]}, W 1 1
12 4
— =-1{P,-= , All
dr 4"1 4 2Q4r1r2pR ( )
daP; 1 2 o 1
ar ZQS(Pl +P3) - 2ZQ3+2Qqr| —E+ r_12 with
rar P=P, Al12
=225 Qs+ (Q5 - QDQs ~ 2QuQQu] (A12)
12 andpg is the scaled momentum of the hyperradius ag)n
dp 1 1 it can be expressed in terms of the scaled parabolic coordi-
—i:-ﬂyﬁ+@—ﬂ@+mm&E+—) nates as
d’T 4 r12

1l == —— ——

rar = Z(Q1P1+ QuP, + Q5P+ QuP,). A13

_ Zrsz[er4— (Q3-Q)Qs—2Q:QQs] (. (A7) Pr 2(Q1 1+ QP2+ Q3P3+ Q4Py) (AL13)
12

Singular behavior may occur at the triple collision and thusThe equations of motion fd? are the same as (A7) where

in terms containing Ik, in (A7); it turns out, however, that the variablesQ, P, 7 and the energ) are replaced by the

the KS-time transformatiofA2) also lifts the triple collision scaled variables; the scaled enefgys as in(6) given by

singularity from the equations of motion;j,=0 can indeed

only occur ifr;=r,=0 due to thee-e repulsion. Terms con- — . dE _____—

taining 1/, in (A7) indeed vanish proportional tgR when E=RE with P riropgrE. (A14)
r,— 0 where the hyperradiu® in the new coordinates takes

on the form The full set of equations of motiofA7), (All), and(A14)
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are free of singularities and are numerically stable both in the o=mn

vicinity of binary and triple collisions. \/— /\
D
0 F‘ a
APPENDIX B: POINCARE SURFACE OF SECTION L 8=0
t

A “good” global Poincaré surface of sectioiPSOS

should fulfill two basic ingredients, namely) almost all e ®
trajectories cross the PSOS afiid the vector field is trans-
versal to the PSO%except on lower dimensional invariant =-n
manifoldg. The latter condition is readily fulfilled for the
PSOSH=1 as FIG. 17. Impossible trajectories.
Py The other possibility is that therg exist traj_ectories wh_ich
0= S acola #0 never cross the PSOS by converging to a fixed valu@ in

with 6# 0 or 7 and thusp,— 0 for t— * as indicated by

for all points on the PSOS except those in the invareme  the cases C and D in Fig. 1®rbits converging towardg

space withé=7 and p,=0. =0 or 7 must lie at homoclinic or heteroclinic intersections
Next, we show that a generic orbit with total angular mo-of the stable and unstable manifolds of the invarizee or

mentumL=0 intersects the hypersurfads = in all three €Zesubspaces and are thus of measure zero in the full phase

energy regime€=0,+1 at least once. Let us assume thatspace). If convergence ind occurs fort— +co, this implies

there are trajectories which never interséstr for all times. ~ Pg— 0 and thuse— 0 or 7/2 in these limits; se¢B1). Fur-

A possible way for this to happen is, that trajectories oscillatéhermore, from Eq(5) we havep,=p, =-p,,—0, that is,

in the rangeé e [, 7] without crossing the PSOS. This both electrons have angular momentum zero asymptotically.

means, there must be turning points of the forms A and B inThis is possible only if9=0 or 7 or if one of the two elec-

Fig. 17, wherep,=0 with —7< §< 7. However, employing trons escapes to infinity. The final state must thus be an in-

(7), we have at such a point coming and outgoing scattering trajectory of the type shown
) _ in Fig. 4 with e=1. However, for finitea, the electron-
___ Sin2asind <0 for -m<6<0(B), electron interaction will push the inner electron onto an el-
Pe 2[1-sin 2vcosd]¥?| >0 for0< 6< m (A), liptic motion around the nucleus arwill thus crossé=1r.

(B1) This gives the contradiction and there are no trajectories of
the form C and D as depicted in Fig. 17. Consequently the
whereas we would neq,< 0 in scenario Aang,>0in B.  hypersurfacef== is a suitable Poincaré surface of section

These cases can thus be excluded. for all energies.
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