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Synchronization of spectral components and its regularities in chaotic dynamical systems
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The chaotic synchronization regime in coupled dynamical systems is considered. It has been shown that the
onset of a synchronous regime is based on the appearance of a phase relation between the interacting chaotic
oscillator frequency components of Fourier spectra. The criterion of synchronization of spectral components as
well as the measure of synchronization has been discussed. The universal power law has been described. The
main results are illustrated by coupled Rdssler systems, Van der Pol and Van der Pol-Duffing oscillators.
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I. INTRODUCTION oscillators are shifted in time relative to each othey(t

Chaotic synchronization is one of the fundamental phe- 7)=X,(1). A further coupling parameter increase leads to a

nomena actively studied recenfly], having both important dgcrease of the time shift The qscﬂlators tend to the re-
theoretical and applied significancés.g., for information 9ime of complete synchronization(t) =x(t), and the
transmission by means of deterministic chaotic sigfag], ~ Phase differencesg(t) - ¢o(t)] tends to be zero on all time
in biological [4] and physiological5] tasks, etd. Several —Scales. _ _ _ _
different types of chaotic synchronization of coupled The time scales introduced into consideration t_)y means
oscillators—i.e., generalized synchronizat{@i, phase syn- Of @ continuous vyavelet transform can be considered as a
chronization[1], lag synchronizatiofi7], and complete syn- quantity which is inversely proportional to the frequerfcy
chronization[8]—are traditionally distinguished. There are defined with the help of a Fourier transformation. For the
also attempts to find a unifying framework for the chaotic Morlet mother wavelet functiofil6] with parametet) =27
synchronization of coupled dynamical systef@s11]. the relationship between the frequerfcgnd the time scale is

In our works[12,13) it was shown that phase, generalized, duite S|mple:s:;/f. Therefore, time-scale synchronlzatlon_
lag, and complete synchronization are closely connecte@hould also manifest in the appearance of the phase relation
with each other and, as a matter of fact, they are differenpetween frequency componerftoof corresponding Fourier
manifestations of one type of synchronous oscillation behavsPectraS(f) of interacting oscillators.
ior of coupled chaotic oscillators called time-scale synchro- In this paper we consider the synchronization of spectral
nization. The synchronous regime characgrase, general- components of the Fourier spectra of coupled oscillators. We
ized, lag, or complete synchronizatjois defined by the discuss the mechanism of the chaotic synchronization regime
presence of synchronous time scaeitroduced by means Mmanifestation in coupled dynamical systems based on the
of continuous wavelet transforil4—16 with a Morlet  appearance of the phase relation between frequency compo-
mother wavelet function. Each time scale can be characteRents of the Fourier spectra of interacting chaotic oscillators
ized by the phasepg(t)=argW(s,t), where W(s,t) is the (see alsq18]). One can also consider the obtained results as
complex wavelet surface. In this case, the phenomenon Gt criterion of the existenceor, otherwise, the impossibility
the chaotic synchronization of coupled systems is manifeste@f the existenceof a lag synchronization regime in coupled
by a synchronous behavior of the phases of coupled chaotféynamical systems. . .
oscillators ¢ ,(t) observed on a certain synchronized time-  The structure of this paper is the following. In Sec. Il we
scale ranges,<s<s, for time scaless from which the discuss the synchronization of spectral components of Fou-
phase-locking condition rier spectra. We illustrate our approach with the help of two

coupled Rossler systems in Sec. Ill. The quantitative mea-

|a1(t) — Ppeo(t)] < const (1) sure of synchronization is described in Sec. IV. The universal
power law taking place in the presence of the time scale
synchronization regime is discussed in Secs. V and VI. The
final conclusion is presented in Sec. VII.

is satisfied, and the part of the wavelet spectrum energy fall
ing in this range does not equal zésee[12,17] for details.
The range of synchronized time scass;s,] expands when

the coupling parameter between systems increases. If the
coupling type between oscillators is defined in such a way !l- SYNCHRONIZATION OF SPECTRAL COMPONENTS

that the lag synchronization appearance is possible, then all OF FOURIER SPECTRA
time scales become synchronized with further coupling pa- 1 shoyid be noted that the continuous wavelet transform
rameter increasing, while the coinciding states of interactingg ~haracterized by a frequency resolution lower than the
Fourier transformatiolisee[15,16]). The continuous wavelet
transform appears as a smoothing of the Fourier spectrum,
*Electronic address: aeh@cas.ssu.runnet.ru whereby the dynamics on a time scalés determined not
"Electronic address: alkor@cas.ssu.runnet.ru only by the spectral componeffit1/s of the Fourier spec-
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trum. This dynamics is also influenced by the neighboringspectra[12]. Accordingly, one can expect that a part of the
components as well; the degree of this influence dependspectral components of the Fourier spectra in the phase syn-
both on their positions in the Fourier spectrum and on theichronization regime will also lose synchronism and the
intensities. Thus, the fact that coupled chaotic oscillators expoints on the(f,A¢;) plane will deviate from the straight
hibit synchronization on a time scaseof the wavelet spec- line (5) mentioned above.lt is reasonable to assume that
trum by no means implies that the corresponding composynchronism will be lost primarily for the spectral compo-
nentsf=1/s of the Fourier spectrum of these systems arenentsf characterized by a small fraction of energy in the
also synchronized. Fourier spectré; 5(f), while the components corresponding
Let x,(t) andx,(t) be the time series generated by the firstto a greater energy fraction will remain synchronized and the
and second coupled chaotic oscillators, respectively. The cotorresponding points on thé, A¢;) plane will be located at
responding Fourier spectra are determined by the relationsthe straight line as before. As the lag synchronization regime
+0 does not occur in the system anymore, the time stitin be
&’Z(f):f xlyz(t)e—izﬂftdt_ (2) determined by the delay of the most energetic frequency
- component f, in the Fourier spectra T:(gbfmz

Accordingly, each spectral componenof the Fourier spec- _¢fml)/(277fm)' . . .
trum S(f) can be characterized by an instantaneous phase AS the coupling parameter decreases further, an increasing
bi(1) = eo+ 2mft, Where ¢o=argS(f). However, since the part of the spectral components will deviate _from synchro-
phased(t) corresponding to the frequendyof the Fourier NS However, as long as the most “energetic” components

spectrumS(f) increases with time linearly, the phase differ- :2”;2:2 c?]‘)ltl}]r%gr-c;r(l:lazlids’ tr?c(;ahr(i)%ﬁ;?i%nsycs)qugsugm fg;(?r:téltstrr]f
ence of the interacting oscillators at this frequengy(t) 9 y ) Y, y

~ _ _ . . chronized spectral component the phase differefige is
ti(;ﬁ;(lt)c:)fcfﬁtlioffglz‘ Ip?hjs\t\tlea)ésnt?gi%rr]:;(:lsaendd}:reggteé(;t?c?ntrcz)i]‘dl-Iocated after the transient finished independently of initial

e . conditions.
the phase synchronization regiime To describe the synchronization of spectral components,
|p1(t) — do(t)] < const, 3 let us introduce a quantitative characteristic of a number of

spectral components of the Fourier spe@ya(f) occurring

is useless. Apparently, a different criterion should be used t the regime of synchronism,

detect the synchronization of coupled oscillators at a given

frequencyf.
In the regime of lag synchronization, the behavior of +o0
coupled oscillators is synchronized on all time scale§the f H(|Sy(F)|2 = LYH(|Sy(f)[2 = L) (A ¢ — 27r7f)2df
0

wavelet transformsee[12]). Therefore, one can expect that _
all frequency components of the Fourier spectra of the sys- - J“" '

tems under consideration should be synchronized as well. In H(S((]? = DH(IS(F)[? - Lydf
this casex;(t—7) =x,(t) and, hence, taking into account Eq.
(2) one has to obtain (6)

Sy(f) = Sy(Fe?™™. (4)

Thus, in the case of coupled chaotic oscillators occurring if?here H(é) is the Heaviside functionl. is the threshold
the regime of lag synchronization their instantaneous phasd¥®'er level(in dB) above which the spectral components are
corresponding to the spectral componénof the Fourier taken into account, and is determined by the time shnft of
spectra S, ,(f) will be related to each other agy(t) the most energetic frequency componéfrp{{) in the Fourier

~ ¢iy(t)+27rf and, hence, the phase differenes(t) spectra,r=(¢s o~ ¢x 1)/ (27fy,). The quantityo tends to be

— ¢p1(1) of coupled oscillators on the frequenéynust obey 260 in the regimgs of complete and lag s.ync.hroniza_tion.
the relation After the destruction of the lag synchronization regime

caused by the decrease of the coupling strength the value of

A¢s = pra(t) = bra(t) = pro1 = Proz = 277f. (5 ¢, increases with the number of desynchronized spectral

_components of the Fourier specBa,(f) of coupled oscilla-

0

Accordingly, the points corresponding to the phase differ
enceA g of the spectral components of chaotic oscillators intO'S: _ _ _
the regime of lag synchronization on thig A¢) plane must Re_al data are usually represented by_ a discrete time series
fit a straight line with slopé&=27. In the case of the com- of finite length. In such cases, the continuous Fourier trans-

plete synchronization of two coupled identical oscillators theform (2) has to be replaced by its discrete analeg was

slope of this linek, is equal to zergsee alsd19]). done in[19] and the integra(6) by the sum

The destroying of the lag synchronization regiteqy., as
a result of a decrease of the coupling strength between oscil-The same effect will take place if the instantaneous phase of the
latorg and the transition to the regime of phase synchronichaotic signal cannot be introduced correctly due to the noncoher-
zation(in the case when the instantaneous phase of the chant structure of the chaotic attractor. In this case the phase synchro-
otic signal can be introduced correcf80]) results in a loss nization cannot be detected, but one can observe the presence of
of synchronism for a part of the time scalesf the wavelet time-scale synchronization.
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1 N 27 f; therefore, the points on thig,A¢;) plane lie on the
o = NE (A(;Sfj - 2mf)?, (7)  straight line(5) and the value ofr_is equal to zero.
=1 Another important question is which spectral components

taken over all spectral components of the Fourier specter the Fqurier _spectra of i_nteracting chaptic oscillators are
S, A(f) with the power abové. In calculatingor, it is expe- synchronized first and which are last. Figur@)2shows a
dient to perform averaging over a set of time sesigs(t).  Pl0t of the o value for the coupling strength=0.05 (cor-
The phase shifA¢; can be calculated either as was done mrespondlng to the weak phase synchronizatirsus power

L at which the spectral componerftsof the Fourier spectra
19] or by means of a cross spectrygi]. - .
[19] y pectryat] S, o(f) are taken into account in E¢Z). One can see that the

“truncation” of the spectral components with small energy
leads to a decrease of tlwg value. Figures (b)-1(e) illus-
trate the distribution of the phase differente; of the spec-
tral componentg with the power exceeding the preset level
In order to illustrate the approach proposed above, let us. The data in Fig. 2 show that the most “energetic” spectral

lll. TWO MUTUALLY COUPLED ROSSLER SYSTEM
SYNCHRONIZATION

consider two coupled Rdssler systems components are first synchronized upon the onset of time-
. scale synchronization. On the contrary, the components with
X127~ 01 Y127 212+ (X217 X1 0, low energies are the first to go out from synchronism upon

destruction of the lag synchronization regime.
Yi2= @1 X1 0+ aY1 0% (Y217 Y12,
IV. CRITERION AND MEASURE OF SYNCHRONIZATION

2427 P+214%1,2=0), ®) Let us briefly discuss a criterion of spectral components

wheree is the coupling parameteg;=0.98, andw,=1.03.  synchronization. Obviously, the relatidb) is quite conve-
By analogy with the case studied [@2], the values of the nient as a criterion of synchronism in the case of lag syn-
control parameters have been selected as follaw<0.22, chronization destruction in the way considered above. If the
p=0.1, andc=8.5. It is known[22] that two coupled Rossler type of coupling between systems has been defined in such a
systems withe=0.05 occur in the regime of phase synchro-manner that the lag synchronization regime cannot appear,
nization, while fore=0.15 the same systems exhibit lag syn-relation (5) cannot be the criterion of spectral component
chronization. synchronization. So as a general criterion of synchronism of

Figure Xa) shows a plot of the value, versus coupling identical spectral componentsof coupled systems we have
paramete. One can see that, tends to be zero when the to select a different condition rather than Ef). As such a
coupling parametee increases, which is evidence of the criterion we have chosen the establishment of the phase shift
transition from phase to lag synchronization. Figures
1(b)—1(f) illustrate the increase in the number of synchro- Agr = ¢ro1~ Proz = coNst, (9)
nized spectral components of the Fourier spe&gf) of  which must not depend on initial conditions. To illustrate it
two coupled systems with coupling strengthincreasing. et us consider the distribution of the phase differeneg
Indeed, Fig. ) corresponds to the asynchronous dynamicsobtained from the series of 1@xperiments for Réssler sys-
of coupled oscillator§e=0.02. There are no synchronous tems (8). Figure 3a) corresponds to the asynchronous dy-
spectral components for such coupling strength and dots argamics of coupled oscillators when the coupling parameter
scattered randomly over thé,A¢;) plane. The weak phase £=0.02 is below the threshold the appearance of chaotic syn-
synchronization(¢=0.095 after the regime occurrence is chronization[see also Fig. ()]. One can see that the phase
shown in Fig. 1c). There are a few synchronized spectral differenceA¢; for the spectral componentsof the Fourier
components the phase shiftp; of which satisfies the condi- spectraS, ,(t) in this case is distributed randomly over all
tion (5). Almost all spectral components are nonsynchro-intervals from - to 7r. It means that the phase shift between
nized; therefore, the points corresponding to the phase difspectral componentkis different for each experimertie.,
ferences\ ¢; are spread over thg, A ¢;) plane and the value for different initial condition$ and, therefore, there is no
of g is rather large. synchronism whereas the considered frequdhnisythe same

Figures 1d) and Xe) correspond to the well-pronounced for both spectrés, ,(f). Similar distributions are observed for
phase synchronizatioa=0.08 and 0.1, respectivglyFigure  all spectral componentt in the case of the asynchronous
1(f) shows the state of lag synchronizatign=0.15, when  regime[see also Figs.(&) and 3b)], though one can distin-
all spectral componentisof the Fourier spectra are synchro- guish the maximum in the distribution on the frequerfcy
nized. Accordingly, in this case all points on tite,A¢;)  close to the main frequency of the Fourier spect®(fi) as a
plane are at ling5) with slopek=2#7. With the coupling prerequisite the beginning of synchronization.
strengthe increasing, the value of, decreases monotoni- When the systems demonstrate synchronous behavior the
cally, which verifies the assumption that when two coupleddistributionsN(A¢) of the phase shift\¢; are quite differ-
chaotic systems undergo a transition from asynchronous dyent. In this case one can distinguish both synchronized and
namics to lag synchronization, more and more spectral conmonsynchronized spectral components characterized by dis-
ponents become synchronized. When all spectral compdributions of the phase shift of different types. In Figc)3he
nentsf are synchronized, the phase shiftp; for them is  distribution of A¢; for the synchronous spectral component
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FIG. 1. (a) The valued; versus coupling pa-
rametere and(b)—(f) the phase differenc&¢; of
various spectral components of the Fourier
spectreS; ,(f) of two coupled Rdssler systems for
different values of coupling strength (b) The
asynchronous dynamics for the coupling param-
eter £=0.02, (c) the chaotic synchronization re-
gime £=0.05, (d) £€=0.08, (¢) £¢=0.1, and(f) &
=0.15. The plots are constructed for the time se-
ries x; o(t) with a length of 2000 dimensionless
time units at a discretization step bE0.2 at a
power level of L=-40 dB of Fourier spectra
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A¢; is shown. One can see that it looks likesdunction,  to be synchronized. The same effect can be observed in Figs.
which means the phase shiftp; is always the same after the 1(b)-1(f). With an increase of the coupling parametethe
transient finished. Obviously, this phase shii$; does not points on the(f,A¢;) plane tend to fit a straight line with
depend on initial conditions. slopek=277 and their scattering decreases.

For the nonsynchronized spectral components the distri- So the general criterion of synchronism of identical spec-
butions N(A¢y) are different[see Fig. 8d)]. Evidently, in  tral component$ of coupled systems is the establishment of
this case the phase shifi¢; is varied from experiment to the phase shift9) after the transient finished. It is important
experiment. At the same time, the tendency to synchronizato note that the case of classical synchronization of periodi-
tion of these spectral components can be observed. The disal oscillations also obeys the considered critefi@n(see,
tribution N(A¢;) looks Gaussian. With the coupling param- e.g.,[23]).
eter increasing the dispersion of it decreases and the spectral Let us consider now the quantitative characteristic of syn-
components of the considered Fourier spectBa,(f) tend  chronization. In[12] the measure of synchronization based
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FIG. 3. DistributionN(A¢) of the phase differencéA¢; ob-
tained from a series of 2@xperiments for Rossler systert®. (a)
The asynchronous dynamics takes place0.02), and the distribu-
tion of the phase shifA¢; has been obtained for the spectral com-
ponentsf=0.0711,(b) £=0.02, f=0.1764,(c) the distribution of

0 05 10 15 2nf 0 05 10 15 2nf
d

FIG. 2. () The valueo, versus powet at which the spectral componentf=0.0711 for the same coupling parametsr0.08.

phase shift for synchronous spectral componért0.1764 (s
=0.08, and(d) the analogous distribution for asynchronous spectral

componentd; of the Fourier spectr&, ,(f) are taken into account Compare with Fig. 1.

in Eq. (7). (b)—(e) The phase differencé¢; of various spectral

componentd of the Fourier spectr&, ,(f) of two coupled Rdssler For the real data represented by a discrete time series of

systems for various power levels=-40 dB (b), L=-30dB (c), finite length one has to use the discrete analog of the Fourier

L=-20 dB(d), andL=-10 dB(e) for coupling strengtts=0.05. transform while the integrals in relatiof10) should be re-
placed by the sums

on the normalized energy of synchronous time scales has 1

been introduced. The analogous quanfitynay be defined pLo==2, S, Af; )|?Af, (12)

for Fourier spectr&(f) as B

where

_1 2
pLa=5 st|sl,2(f)| df, (10) p:E |y o)A f. (13
J

whereF is the set of synchronized spectral components andVhile the sum in Eq(12) is being calculated only the syn-
chronized spectral componerﬁﬁs should be taken into ac-
oo count.
P:f ISy o(F)[Pdf (11 Figure 4 presents the dependence of the synchronization
0 measure for the first Rossler oscillator of systef@) on the
, ) o coupling parametes. It is clear that the part of the energy
is the full energy of chaotic oscillations. In fact, the value of corresponding to the synchronized spectral components

pis the part of f[he full system energy corresponding to SYNyrows with an increase in the coupling strength.
chronized Fourier components. This measpiris 0 for the

nonsynchronized oscillations and 1 for the case of complete

and lag synchronization regimes as well as the quanti?y in- V. SPECTRAL COMPONENT BEHAVIOR IN THE

troduced in[12]. When thg systems undergo a transition PRESENCE OF SYNCHRONIZATION

from asynchronous behavior to the lag synchronization re-

gime the measure of synchronism takes a value between 0 Let us now consider how the closed frequency compo-
and 1, which corresponds to the case when there are botients of two coupled oscillators behave with an increase of
synchronized and nonsynchronized spectral components the coupling strength. As a model of such a situation let us
the Fourier spectr&, (f). select two mutually coupled Van der Pol oscillators
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P > The oscillations of two Van der Pol generatdfsl) are
i i synchronized when conditions
0.8} . .
I ri2=0, ¢;,=0 (19
0.6 are satisfied. Assuming that the phase difference of oscilla-
: tions Ap=¢,— ¢, is small enough and taking into account
0.4} only components of first infinitesimal order ov&p, one can
I obtain the relation for the phase shift,
021 . MWOZ+ A2+ 2J0A(s + OA) 0
I 1= , 20
q . . . . L2 26 + 40A
0 0.05 0.1 0.15 0.2 €

and frequency,
FIG. 4. The dependence of the synchronization meagufie = > ,
the first Rossler systeit8) on the coupling parameter. w1,= VO + AT+ 2V0A(e + QA), (21

which correspond to the stable and nonstable fixed points of
%30= (N =2 )Xy o+ 0F X 5= £e(X1-X% ), (14)  the system(18). From relations(20) and (21) one can see
_ o o , that the phase differendeyp of coupled generators is directly
where{), ,=Q+A are slightly mismatched natural cyclic fre- .55 ignal to the frequency of oscillationsand inversely

quencies ana; , are the variables describing the behavior of 04 fional to the coupling parametefor the small values
the first and second self-sustained oscillators, respectively; detuning parametex:

The parametes characterizes the coupling strength between
oscillators. The nonlinearity parameter0.1 has been cho- Aw

sen small enough in order to make the oscillations of self- Ap= 26" (22)
sustained generators close to the single-frequency ones. ) ) )

An asymmetrical type of coupling in systefi4) ensures So in the synchronous regime the phase shitfor syn-
the appearance of the synchronous regime which is similar tghronized frequencies obeys the relation
the lag synchronization in chaotic systems. For such a type Ap~ we™™. (23)

of coupling the oscillations in the synchronous regime are
characterized by one frequenay=2#f while the small It is important to note that the time delay between synchro-
phase shiftA¢; between time series, (1), decreasing when nized spectral components,
the coupling strength increases, takes place. Ag
Using the method of complex amplitudes, the solution of r=— ~¢g 1, (29

Eq. (14) can be found in the form w

does not depend upon the frequency, and therefore, the time
delays for all frequenciet are equal to each other. Accord-
o ) _ ingly, the phase shiff\¢; for the frequencyf obeys relation
Ay £+ A*lyze"“’t =0, (15 (5) which is the necessary condition for the appearance of lag
synchronization. Evidently, if the type of coupling between
oscillators is selected in such a manner that the phase shift
Ag; of synchronized spectral components satisfies the con-
dition (23), the appearance of the lag synchronization regime
) 1 N 1 5 , _ is possible for large enough values of the coupling strength.
A1 o= 5(7\ - |APA+ |Z[(Ql,2_ @)A1 F e(Ag1 = Ag )] Otherwise, if the established phase shift does not satisfy the
condition(23), realization of the lag synchronization regime
(16) in the system is not possible for such a kind of coupling. So
relation (23) can be considered as the criterion of the possi-
bility of the existence(or, otherwise, impossibility of the
existence of the lag synchronization regime in coupled dy-
Ap o= €912, 17 namical systems.

The regularity(24) takes place for a large number of dy-
namical systems and, probably, is universal. Let us consider
manifestations of this regularity for several examples of
) 1 5 ey coupled chaotic dynamical systems.
f12= (A= [r1d9ryz+ o Sine2= ®2,1), As the first example we consider the coupled Réssler sys-

tems(8) described above. Obviously, one has to consider the

) ) phase shiftAg; (or time shift 7) of synchronized spectral
Qi,-w'te - P Cog¢L - @p 7). (18) components to verify relatiorf24). As has been shown

2w 20l Pr27 P20 above, spectral components characterized by a large value of

Xp2= A+ AL £,

where an asterisk means complex conjugation and the
cyclic frequency at which oscillations in systdii) are re-
alized. One can reduce Eq44) and(15) to the form

by means of averaging over the fast-changing variables.
Choosing complex amplitudes in the form of

one can obtain the equations for the amplitudes and
phasesp; , of the coupled oscillators as follows:

¢12=
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FIG. 5. The dependence of time shiftbetween base spectral FIG. 6. The dependence of time shifbetween time series (1)

andx,(t) (solid squareson the coupling parameter for two uni-

componentgsolid squareson the coupling parameter for two
coupled Rossler systent8). The straight line corresponds to the directionally coupled chaotic oscillatof&5) and (26). The straight
1

power law 7~ ¢~1. The value of the coupling parametgr=0.14 . _
; . ._line corresponds to the power lam~ ™.
corresponding to the appearance of the lag synchronization regime

is shown by the arrow.
the parameterg; and v, provides the slight nonidentity of

tWe considered generators.
In Fig. 6 the dependence of the time ladetween time
g?alizations of coupled oscillators on the coupling parameter
aluee is shown. In this range of coupling parameter values
the lag synchronization regime is realized. Obviously, the
time lag 7 also obeys the power law~ &" with exponent
n=-1, which corresponds to relatidg4).

energy become synchronized first when the coupling streng
increases. So the main spectral componéptsf the Fourier
spectra of coupled systems are synchronized in the mo
lengthy range of the coupled parameter value. Therefore, it i
appropriate to consider the time shiftof the main spectral
components for coupling strength values 0.05.
In Fig. 5 the dependence of the time lagbetween
Fourier-spectra-based frequency components of interacting
chaotic oscillators on the coupling parametes shown. The V1. UNSTABLE PERIODIC ORBITS
base frequencw,,=2=f,, of the spectrum is close te=1 o . .
and slightly changes with an increase of the coupling param- It iS important to note another manifestation of the power
eter. In Fig. 5 one can see that after entrainment of Fouried@W (24). It is well known that the unstable periodic orbits
spectrum-based spectral components of interacting oscilldPO’9 embedded in chaotic attractors play an important
tors (which corresponds to the establishment of the timeJole in the system dynamid26-2§ including the cases of
scale synchronization regime; see aJ48]) the time lagr, qhaotlc synchronization reg|m(£§9—3]].'The synchroniza-
which is between them, obeys the universal power (2.  tion of two coupled chaotic systems in terms of unstable
As the second example we consider the chaotic synchrdle”Od'C orbits has been discussed in deta|[_3r2]. It _has
nization of two unidirectionally coupled Van der Pol-Duffing P€en shown that UPO's are also synchronized with each
oscillators[2,24,25. The drive generator is described by a other when chaotic synchronization in the coupled systems is

system of dimensionless differential equations realized[32]. Let us consider the synchronized saddle orbits
m:n (m=n=1,2,..), wherem andn are the length of the
== v~ axy ~ y4], unstable periodic orbits of the first and second Réssler sys-
tems(8), respectively. It was shown that such synchronized
Vi=X — V1 — 27, orbits may be both “in phase” and “out of phase,” but only

“in-phase” orbits exist in all range of coupling parameter

2= By (25) values starting from the point of the beginning of the syn-
1 b chronization(see[32] for detail9. It is known that the time

while the behavior of the response generator is defined bghift between synchronized “in-phase” orbits decreases with

the system an increase in coupling strength. As the UPQO'’s have an in-
fluence on the system dynamind on the Fourier spectra
Xp== Vz[Xg = aXy = Yol + voe(X — Xo), of the considered systems, o@t seems to be interesting to
examine whether the time shiftbetween UPQ's obeys the
Vo= Xo— Yo~ Zp, power law(24).

To calculate the synchronized saddle orbits we have used
2,= By (26) the Schmelcher-Diakond$D) method[33,34] in the same
2m P2 way as it had been done [82]. The UPO embedded in the
wherex, 5, Y1 o andz, , are dynamical variables, character- chaotic attractor of the first Rossler system and the time se-
izing states of the drive and response generators, respeties X; ,(t) corresponding to the *“in-phase” synchronized
tively. The values of the control parameters are chosen adPQ’s realized in syster8) for coupling strengtle=0.07 is
«=0.35,8=300, »,=100, andv,=125, and the difference of shown in Fig. 7. One can see the presence of the time shift
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0.1

0.01 .
0.03 0.1 03 €

FIG. 8. The dependence of the time shifbetween time series
x1(t) and x,(t) corresponding to the synchronized saddle orbits of
the first and second Rd&ssler systems on the coupling parameter
The open squares correspond to unstable orbits with lemgth,
the open circles demonstrate the time shiffor the orbits with
lengthm=2, and the solid squares show this dependence for orbits

with lengthm=3. The straight line corresponds to the power law
1

T~g .
0 2 4 6 8 10 one will also detect easily the phase synchronization by
b means of a traditional approacsee, e.g.[1]).

With a further increase of the coupling parameter, more
FIG. 7. (a) The unstable periodic orbit of length=2 embedded  spectral components become synchronized. If the coupling
in the chaotic attractor of the first systeth) Time series(t) and  between interacting systems is selected in such a way that the
X;(t) corresponding to the “in-phase” unstable saddle orbits ofiag synchronization regime can be realized, then the time
lengthm=2 in the first(solid line) and the seconddashed ling  gpift petween synchronized spectral components obeys the
Rossler systems, respectively. The coupling parameter is chosen 6ﬁwer law (24). The spectral components characterized by
£=0.07. The time shiftr is denoted by means of the arrow. . .
the large value of the energy become synchronized first. Ac-
_ . ) ) cordingly, the part of the energy falling on the synchronized
between these time series which can be easily calculated. spectral components increases frorta8ynchronous dynam-
The calculated time shift between such “in-phase” syn- o) 15 1 (the lag synchronization regimeSynchronization

ihrc_)llﬂlzed s”addlte;] orbits taripears to ok;)eyfirr]]e I;:)owgr aw of all frequency components corresponds to the appearance
& ~aswel as the spectral components of th€ | ourler“.specdf the lag synchronization regime. With a further increase of
tra do(see Fig. 8 We have examined this relation for “in-

phase” UPO’s with lengtim=1—6 andfound that the time "€ coUPling strength, the time lagobeying relation(24)

shift dependence on the coupling strength agrees with powéﬁnds to be zero, and rglatgd oscﬂ!aﬂons teqd to demonsFrate
law (24) well, but the data are shown in Fig. 8 only for t e complete synchromza_\tlon regime. In this case the time
UPO’s with lengthm=1-3 for clearness and simplicity. So shift 7 between synchronized .components doesi not depend
the power law(24) seems to be universal and is manifested®n the frequencyt of the considered componen( is the

in different ways. same for all synchronized componerasid obeys the power
law (24) with exponenin=-1. The time shift between syn-
chronized “in-phase” UPO’s embedded in chaotic attractors
also obeys the same power law.

In conclusion, we have considered the chaotic synchroni- So in the present paper the mechanism of the appearance
zation of coupled oscillators by means of Fourier spectrapf the chaotic synchronization regime in coupled dynamical
several regularities have been observed. systems, based on the arising of the phase relation between

The chaotic synchronization of coupled oscillators isfrequency components of the Fourier spectra of interacting
manifested in the following way. Starting from a certain cou-chaotic oscillators, has been discussed. The obtained results
pling parameter value synchronization of the main spectratoncerning the power la\i24) may be also considered as a
components of the Fourier spectra of interacting chaotic oseriterion of the possible existencer, otherwise, impossibil-
cillators takes place. Therefore, for these spectral compaty of the existencg of the lag synchronization regime in
nentsf, condition(9) is satisfied. In this case one can detectcoupled dynamical systenfise., the lag synchronization re-
the presence of the time-scale synchronization regisee  gime cannot be observed in the coupled chaotic oscillator
[12,17). If for the considered systems one can introducesystem unless the time shift between synchronized compo-
correctly the instantaneous phase of chaotic sifjha|2q, nents obeys the power la@4)].

VII. CONCLUSION
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