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The chaotic synchronization regime in coupled dynamical systems is considered. It has been shown that the
onset of a synchronous regime is based on the appearance of a phase relation between the interacting chaotic
oscillator frequency components of Fourier spectra. The criterion of synchronization of spectral components as
well as the measure of synchronization has been discussed. The universal power law has been described. The
main results are illustrated by coupled Rössler systems, Van der Pol and Van der Pol–Duffing oscillators.
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I. INTRODUCTION

Chaotic synchronization is one of the fundamental phe-
nomena actively studied recentlyf1g, having both important
theoretical and applied significancesse.g., for information
transmission by means of deterministic chaotic signalsf2,3g,
in biological f4g and physiologicalf5g tasks, etc.d. Several
different types of chaotic synchronization of coupled
oscillators—i.e., generalized synchronizationf6g, phase syn-
chronizationf1g, lag synchronizationf7g, and complete syn-
chronizationf8g—are traditionally distinguished. There are
also attempts to find a unifying framework for the chaotic
synchronization of coupled dynamical systemsf9–11g.

In our worksf12,13g it was shown that phase, generalized,
lag, and complete synchronization are closely connected
with each other and, as a matter of fact, they are different
manifestations of one type of synchronous oscillation behav-
ior of coupled chaotic oscillators called time-scale synchro-
nization. The synchronous regime charactersphase, general-
ized, lag, or complete synchronizationd is defined by the
presence of synchronous time scaless, introduced by means
of continuous wavelet transformf14–16g with a Morlet
mother wavelet function. Each time scale can be character-
ized by the phasefsstd=argWss,td, where Wss,td is the
complex wavelet surface. In this case, the phenomenon of
the chaotic synchronization of coupled systems is manifested
by a synchronous behavior of the phases of coupled chaotic
oscillatorsfs1,2std observed on a certain synchronized time-
scale rangesm,s,sb, for time scaless from which the
phase-locking condition

ufs1std − fs2stdu , const s1d

is satisfied, and the part of the wavelet spectrum energy fall-
ing in this range does not equal zerosseef12,17g for detailsd.
The range of synchronized time scalesfsm;sbg expands when
the coupling parameter between systems increases. If the
coupling type between oscillators is defined in such a way
that the lag synchronization appearance is possible, then all
time scales become synchronized with further coupling pa-
rameter increasing, while the coinciding states of interacting

oscillators are shifted in time relative to each other:x1st
−td.x2std. A further coupling parameter increase leads to a
decrease of the time shiftt. The oscillators tend to the re-
gime of complete synchronization,x1std.x2std, and the
phase differenceffs1std−fs2stdg tends to be zero on all time
scales.

The time scales introduced into consideration by means
of a continuous wavelet transform can be considered as a
quantity which is inversely proportional to the frequencyf
defined with the help of a Fourier transformation. For the
Morlet mother wavelet functionf16g with parameterV=2p
the relationship between the frequencyf and the time scale is
quite simple:s=1/ f. Therefore, time-scale synchronization
should also manifest in the appearance of the phase relation
between frequency componentsf of corresponding Fourier
spectraSsfd of interacting oscillators.

In this paper we consider the synchronization of spectral
components of the Fourier spectra of coupled oscillators. We
discuss the mechanism of the chaotic synchronization regime
manifestation in coupled dynamical systems based on the
appearance of the phase relation between frequency compo-
nents of the Fourier spectra of interacting chaotic oscillators
ssee alsof18gd. One can also consider the obtained results as
a criterion of the existencesor, otherwise, the impossibility
of the existenced of a lag synchronization regime in coupled
dynamical systems.

The structure of this paper is the following. In Sec. II we
discuss the synchronization of spectral components of Fou-
rier spectra. We illustrate our approach with the help of two
coupled Rössler systems in Sec. III. The quantitative mea-
sure of synchronization is described in Sec. IV. The universal
power law taking place in the presence of the time scale
synchronization regime is discussed in Secs. V and VI. The
final conclusion is presented in Sec. VII.

II. SYNCHRONIZATION OF SPECTRAL COMPONENTS
OF FOURIER SPECTRA

It should be noted that the continuous wavelet transform
is characterized by a frequency resolution lower than the
Fourier transformationsseef15,16gd. The continuous wavelet
transform appears as a smoothing of the Fourier spectrum,
whereby the dynamics on a time scales is determined not
only by the spectral componentf =1/s of the Fourier spec-
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trum. This dynamics is also influenced by the neighboring
components as well; the degree of this influence depends
both on their positions in the Fourier spectrum and on their
intensities. Thus, the fact that coupled chaotic oscillators ex-
hibit synchronization on a time scales of the wavelet spec-
trum by no means implies that the corresponding compo-
nents f =1/s of the Fourier spectrum of these systems are
also synchronized.

Let x1std andx2std be the time series generated by the first
and second coupled chaotic oscillators, respectively. The cor-
responding Fourier spectra are determined by the relations

S1,2sfd =E
−`

+`

x1,2stde−i2pftdt. s2d

Accordingly, each spectral componentf of the Fourier spec-
trum Ssfd can be characterized by an instantaneous phase
f fstd=f f0+2pft, where f f0=argSsfd. However, since the
phasef fstd corresponding to the frequencyf of the Fourier
spectrumSsfd increases with time linearly, the phase differ-
ence of the interacting oscillators at this frequencyf f1std
−f f2std=f f01−f f02 is always bounded and, hence, the tradi-
tional condition of phase entrainmentsused for detection of
the phase synchronization regimed,

uf1std − f2stdu , const, s3d

is useless. Apparently, a different criterion should be used to
detect the synchronization of coupled oscillators at a given
frequencyf.

In the regime of lag synchronization, the behavior of
coupled oscillators is synchronized on all time scaless of the
wavelet transformsseef12gd. Therefore, one can expect that
all frequency components of the Fourier spectra of the sys-
tems under consideration should be synchronized as well. In
this case,x1st−td.x2std and, hence, taking into account Eq.
s2d one has to obtain

S2sfd . S1sfdei2ptf . s4d

Thus, in the case of coupled chaotic oscillators occurring in
the regime of lag synchronization their instantaneous phases
corresponding to the spectral componentf of the Fourier
spectra S1,2sfd will be related to each other asf f2std
.f f1std+2ptf and, hence, the phase differencef f2std
−f f1std of coupled oscillators on the frequencyf must obey
the relation

Df f = f f1std − f f2std = f f01 − f f02 = 2ptf . s5d

Accordingly, the points corresponding to the phase differ-
enceDw f of the spectral components of chaotic oscillators in
the regime of lag synchronization on thesf ,Df fd plane must
fit a straight line with slopek=2pt. In the case of the com-
plete synchronization of two coupled identical oscillators the
slope of this line,k, is equal to zerossee alsof19gd.

The destroying of the lag synchronization regimese.g., as
a result of a decrease of the coupling strength between oscil-
latorsd and the transition to the regime of phase synchroni-
zationsin the case when the instantaneous phase of the cha-
otic signal can be introduced correctlyf20gd results in a loss
of synchronism for a part of the time scaless of the wavelet

spectraf12g. Accordingly, one can expect that a part of the
spectral components of the Fourier spectra in the phase syn-
chronization regime will also lose synchronism and the
points on thesf ,Df fd plane will deviate from the straight
line s5d mentioned above.1 It is reasonable to assume that
synchronism will be lost primarily for the spectral compo-
nents f characterized by a small fraction of energy in the
Fourier spectraS1,2sfd, while the components corresponding
to a greater energy fraction will remain synchronized and the
corresponding points on thesf ,Df fd plane will be located at
the straight line as before. As the lag synchronization regime
does not occur in the system anymore, the time shiftt can be
determined by the delay of the most energetic frequency
component fm in the Fourier spectra t=sf fm2

−f fm1d / s2pfmd.
As the coupling parameter decreases further, an increasing

part of the spectral components will deviate from synchro-
nism. However, as long as the most “energetic” components
remain synchronized, the coupled systems will exhibit the
regime of time-scale synchronization. Obviously, for the syn-
chronized spectral component the phase differenceDw f is
located after the transient finished independently of initial
conditions.

To describe the synchronization of spectral components,
let us introduce a quantitative characteristic of a number of
spectral components of the Fourier spectraS1,2sfd occurring
in the regime of synchronism,

sL =

E
0

+`

H„uS1sfdu2 − L…H„uS2sfdu2 − L…sDf f − 2ptfd2df

E
0

+`

H„uS1sfdu2 − L…H„uS2sfdu2 − L…df

,

s6d

where Hsjd is the Heaviside function,L is the threshold
power levelsin dBd above which the spectral components are
taken into account, andt is determined by the time shift of
the most energetic frequency componentsfmd in the Fourier
spectra,t=sf fm2−f fm1d / s2pfmd. The quantitysL tends to be
zero in the regimes of complete and lag synchronization.
After the destruction of the lag synchronization regime
caused by the decrease of the coupling strength the value of
sL increases with the number of desynchronized spectral
components of the Fourier spectraS1,2sfd of coupled oscilla-
tors.

Real data are usually represented by a discrete time series
of finite length. In such cases, the continuous Fourier trans-
form s2d has to be replaced by its discrete analogsas was
done inf19g and the integrals6d by the sum

1The same effect will take place if the instantaneous phase of the
chaotic signal cannot be introduced correctly due to the noncoher-
ent structure of the chaotic attractor. In this case the phase synchro-
nization cannot be detected, but one can observe the presence of
time-scale synchronization.

HRAMOV et al. PHYSICAL REVIEW E 71, 056204s2005d

056204-2



sL =
1

N
o
j=1

N

sDf f j
− 2ptf jd2, s7d

taken over all spectral components of the Fourier spectra
S1,2sfd with the power aboveL. In calculatingsL, it is expe-
dient to perform averaging over a set of time seriesx1,2std.
The phase shiftDw f can be calculated either as was done in
f19g or by means of a cross spectrumf21g.

III. TWO MUTUALLY COUPLED RÖSSLER SYSTEM
SYNCHRONIZATION

In order to illustrate the approach proposed above, let us
consider two coupled Rössler systems

ẋ1,2= − v1,2y1,2− z1,2+ «sx2,1− x1,2d,

ẏ1,2= v1,2x1,2+ ay1,2+ «sy2,1− y1,2d,

ż1,2= p + z1,2sx1,2− cd, s8d

where« is the coupling parameter,v1=0.98, andv2=1.03.
By analogy with the case studied inf22g, the values of the
control parameters have been selected as follows:a=0.22,
p=0.1, andc=8.5. It is knownf22g that two coupled Rössler
systems with«=0.05 occur in the regime of phase synchro-
nization, while for«=0.15 the same systems exhibit lag syn-
chronization.

Figure 1sad shows a plot of the valuesL versus coupling
parameter«. One can see thatsL tends to be zero when the
coupling parameter« increases, which is evidence of the
transition from phase to lag synchronization. Figures
1sbd–1sfd illustrate the increase in the number of synchro-
nized spectral components of the Fourier spectraS1,2sfd of
two coupled systems with coupling strength« increasing.
Indeed, Fig. 1sbd corresponds to the asynchronous dynamics
of coupled oscillatorss«=0.02d. There are no synchronous
spectral components for such coupling strength and dots are
scattered randomly over thesf ,Df fd plane. The weak phase
synchronizations«=0.05d after the regime occurrence is
shown in Fig. 1scd. There are a few synchronized spectral
components the phase shiftDw f of which satisfies the condi-
tion s5d. Almost all spectral components are nonsynchro-
nized; therefore, the points corresponding to the phase dif-
ferencesDw f are spread over thesf ,Df fd plane and the value
of sL is rather large.

Figures 1sdd and 1sed correspond to the well-pronounced
phase synchronizations«=0.08 and 0.1, respectivelyd. Figure
1sfd shows the state of lag synchronizations«=0.15d, when
all spectral componentsf of the Fourier spectra are synchro-
nized. Accordingly, in this case all points on thesf ,Df fd
plane are at lines5d with slopek=2pt. With the coupling
strength« increasing, the value ofsL decreases monotoni-
cally, which verifies the assumption that when two coupled
chaotic systems undergo a transition from asynchronous dy-
namics to lag synchronization, more and more spectral com-
ponents become synchronized. When all spectral compo-
nents f are synchronized, the phase shiftDw f for them is

2ptf; therefore, the points on thesf ,Df fd plane lie on the
straight lines5d and the value ofsL is equal to zero.

Another important question is which spectral components
of the Fourier spectra of interacting chaotic oscillators are
synchronized first and which are last. Figure 2sad shows a
plot of the sL value for the coupling strength«=0.05 scor-
responding to the weak phase synchronizationd versus power
L at which the spectral componentsf j of the Fourier spectra
S1,2sfd are taken into account in Eq.s7d. One can see that the
“truncation” of the spectral components with small energy
leads to a decrease of thesL value. Figures 1sbd–1sed illus-
trate the distribution of the phase differenceDw f of the spec-
tral componentsf with the power exceeding the preset level
L. The data in Fig. 2 show that the most “energetic” spectral
components are first synchronized upon the onset of time-
scale synchronization. On the contrary, the components with
low energies are the first to go out from synchronism upon
destruction of the lag synchronization regime.

IV. CRITERION AND MEASURE OF SYNCHRONIZATION

Let us briefly discuss a criterion of spectral components
synchronization. Obviously, the relations5d is quite conve-
nient as a criterion of synchronism in the case of lag syn-
chronization destruction in the way considered above. If the
type of coupling between systems has been defined in such a
manner that the lag synchronization regime cannot appear,
relation s5d cannot be the criterion of spectral component
synchronization. So as a general criterion of synchronism of
identical spectral componentsf of coupled systems we have
to select a different condition rather than Eq.s5d. As such a
criterion we have chosen the establishment of the phase shift

Dw f = f f01 − f f02 = const, s9d

which must not depend on initial conditions. To illustrate it
let us consider the distribution of the phase differenceDw f
obtained from the series of 103 experiments for Rössler sys-
tems s8d. Figure 3sad corresponds to the asynchronous dy-
namics of coupled oscillators when the coupling parameter
«=0.02 is below the threshold the appearance of chaotic syn-
chronizationfsee also Fig. 1sadg. One can see that the phase
differenceDw f for the spectral componentsf of the Fourier
spectraS1,2std in this case is distributed randomly over all
intervals from −p to p. It means that the phase shift between
spectral componentsf is different for each experimentsi.e.,
for different initial conditionsd and, therefore, there is no
synchronism whereas the considered frequencyf is the same
for both spectraS1,2sfd. Similar distributions are observed for
all spectral componentsf in the case of the asynchronous
regimefsee also Figs. 1sad and 3sbdg, though one can distin-
guish the maximum in the distribution on the frequencyf
close to the main frequency of the Fourier spectrumSsfd as a
prerequisite the beginning of synchronization.

When the systems demonstrate synchronous behavior the
distributionsNsDf fd of the phase shiftDf f are quite differ-
ent. In this case one can distinguish both synchronized and
nonsynchronized spectral components characterized by dis-
tributions of the phase shift of different types. In Fig. 3scd the
distribution ofDf f for the synchronous spectral component
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Dw f is shown. One can see that it looks like ad function,
which means the phase shiftDf f is always the same after the
transient finished. Obviously, this phase shiftDf f does not
depend on initial conditions.

For the nonsynchronized spectral components the distri-
butions NsDf fd are differentfsee Fig. 3sddg. Evidently, in
this case the phase shiftDf f is varied from experiment to
experiment. At the same time, the tendency to synchroniza-
tion of these spectral components can be observed. The dis-
tribution NsDf fd looks Gaussian. With the coupling param-
eter increasing the dispersion of it decreases and the spectral
componentsf of the considered Fourier spectraS1,2sfd tend

to be synchronized. The same effect can be observed in Figs.
1sbd–1sfd. With an increase of the coupling parameter«, the
points on thesf ,Df fd plane tend to fit a straight line with
slopek=2pt and their scattering decreases.

So the general criterion of synchronism of identical spec-
tral componentsf of coupled systems is the establishment of
the phase shifts9d after the transient finished. It is important
to note that the case of classical synchronization of periodi-
cal oscillations also obeys the considered criterions9d ssee,
e.g.,f23gd.

Let us consider now the quantitative characteristic of syn-
chronization. Inf12g the measure of synchronization based

FIG. 1. sad The valuesL versus coupling pa-
rameter« andsbd–sfd the phase differenceDw f of
various spectral componentsf of the Fourier
spectraS1,2sfd of two coupled Rössler systems for
different values of coupling strength«. sbd The
asynchronous dynamics for the coupling param-
eter «=0.02, scd the chaotic synchronization re-
gime «=0.05, sdd «=0.08, sed «=0.1, andsfd «
=0.15. The plots are constructed for the time se-
ries x1,2std with a length of 2000 dimensionless
time units at a discretization step ofh=0.2 at a
power level of L=−40 dB of Fourier spectra
S1,2sfd.
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on the normalized energy of synchronous time scales has
been introduced. The analogous quantityr may be defined
for Fourier spectraSsfd as

r1,2=
1

P
E

Fs

uS1,2sfdu2df , s10d

whereFs is the set of synchronized spectral components and

P =E
0

+`

uS1,2sfdu2df s11d

is the full energy of chaotic oscillations. In fact, the value of
r is the part of the full system energy corresponding to syn-
chronized Fourier components. This measurer is 0 for the
nonsynchronized oscillations and 1 for the case of complete
and lag synchronization regimes as well as the quantity in-
troduced in f12g. When the systems undergo a transition
from asynchronous behavior to the lag synchronization re-
gime the measure of synchronism takes a value between 0
and 1, which corresponds to the case when there are both
synchronized and nonsynchronized spectral components in
the Fourier spectraS1,2sfd.

For the real data represented by a discrete time series of
finite length one has to use the discrete analog of the Fourier
transform while the integrals in relations10d should be re-
placed by the sums

r1,2=
1

P
o
js

uS1,2sf js
du2Df , s12d

where

P = o
j

uS1,2sf jdu2Df . s13d

While the sum in Eq.s12d is being calculated only the syn-
chronized spectral componentsf js

should be taken into ac-
count.

Figure 4 presents the dependence of the synchronization
measurer for the first Rössler oscillator of systems8d on the
coupling parameter«. It is clear that the part of the energy
corresponding to the synchronized spectral components
grows with an increase in the coupling strength.

V. SPECTRAL COMPONENT BEHAVIOR IN THE
PRESENCE OF SYNCHRONIZATION

Let us now consider how the closed frequency compo-
nents of two coupled oscillators behave with an increase of
the coupling strength«. As a model of such a situation let us
select two mutually coupled Van der Pol oscillators

FIG. 2. sad The valuesL versus powerL at which the spectral
componentsf j of the Fourier spectraS1,2sfd are taken into account
in Eq. s7d. sbd–sed The phase differenceDw f of various spectral
componentsf of the Fourier spectraS1,2sfd of two coupled Rössler
systems for various power levelsL=−40 dB sbd, L=−30 dB scd,
L=−20 dB sdd, andL=−10 dB sed for coupling strength«=0.05.

FIG. 3. DistributionNsDf fd of the phase differenceDw f ob-
tained from a series of 103 experiments for Rössler systemss8d. sad
The asynchronous dynamics takes places«=0.02d, and the distribu-
tion of the phase shiftDw f has been obtained for the spectral com-
ponentsf .0.0711,sbd «=0.02, f .0.1764,scd the distribution of
phase shift for synchronous spectral componentf .0.1764 s«
=0.08d, andsdd the analogous distribution for asynchronous spectral
componentf .0.0711 for the same coupling parameter«=0.08.
Compare with Fig. 1.
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ẍ1,2− sl − x1,2
2 dẋ1,2+ V1,2

2 x1,2= ± «sx2,1− x1,2d, s14d

whereV1,2=V±D are slightly mismatched natural cyclic fre-
quencies andx1,2 are the variables describing the behavior of
the first and second self-sustained oscillators, respectively.
The parameter« characterizes the coupling strength between
oscillators. The nonlinearity parameterl=0.1 has been cho-
sen small enough in order to make the oscillations of self-
sustained generators close to the single-frequency ones.

An asymmetrical type of coupling in systems14d ensures
the appearance of the synchronous regime which is similar to
the lag synchronization in chaotic systems. For such a type
of coupling the oscillations in the synchronous regime are
characterized by one frequencyv=2pf while the small
phase shiftDw f between time seriesx1,2std, decreasing when
the coupling strength increases, takes place.

Using the method of complex amplitudes, the solution of
Eq. s14d can be found in the form

x1,2= A1,2e
ivt + A1,2

* e−ivt,

Ȧ1,2e
ivt + Ȧ1,2

* e−ivt = 0, s15d

where an asterisk means complex conjugation andv is the
cyclic frequency at which oscillations in systems14d are re-
alized. One can reduce Eqs.s14d and s15d to the form

Ȧ1,2=
1

2
sl − uAu2dA + i

1

2v
fsV1,2

2 − v2dA1,2 7 «sA2,1− A1,2dg

s16d

by means of averaging over the fast-changing variables.
Choosing complex amplitudes in the form of

A1,2= r1,2e
w1,2, s17d

one can obtain the equations for the amplitudesr1,2 and
phasesw1,2 of the coupled oscillators as follows:

ṙ1,2=
1

2
sl − ur1,2u2dr1,2±

«r2,1

2v
sinsw1,2− w2,1d,

ẇ1,2=
V1,2

2 − v2 ± «

2v
7

«r2,1

2vr1,2
cossw1,2− w2,1d. s18d

The oscillations of two Van der Pol generatorss14d are
synchronized when conditions

ṙ1,2= 0, ẇ1,2= 0 s19d

are satisfied. Assuming that the phase difference of oscilla-
tions Dw=w2−w1 is small enough and taking into account
only components of first infinitesimal order overDw, one can
obtain the relation for the phase shift,

Dw1,2=
lÎV2 + D2 ± 2ÎVDs« + VDd

2« + 4VD
, s20d

and frequency,

v1,2= ÎV2 + D2 ± 2ÎVDs« + VDd, s21d

which correspond to the stable and nonstable fixed points of
the systems18d. From relationss20d and s21d one can see
that the phase differenceDw of coupled generators is directly
proportional to the frequency of oscillationsv and inversely
proportional to the coupling parameter« for the small values
of detuning parameterD:

Dw .
lv

2«
. s22d

So in the synchronous regime the phase shiftDw for syn-
chronized frequencies obeys the relation

Dw , v«−1. s23d

It is important to note that the time delay between synchro-
nized spectral components,

t =
Dw

v
, «−1, s24d

does not depend upon the frequency, and therefore, the time
delays for all frequenciesf are equal to each other. Accord-
ingly, the phase shiftDw f for the frequencyf obeys relation
s5d which is the necessary condition for the appearance of lag
synchronization. Evidently, if the type of coupling between
oscillators is selected in such a manner that the phase shift
Dw f of synchronized spectral components satisfies the con-
dition s23d, the appearance of the lag synchronization regime
is possible for large enough values of the coupling strength.
Otherwise, if the established phase shift does not satisfy the
conditions23d, realization of the lag synchronization regime
in the system is not possible for such a kind of coupling. So
relation s23d can be considered as the criterion of the possi-
bility of the existencesor, otherwise, impossibility of the
existenced of the lag synchronization regime in coupled dy-
namical systems.

The regularitys24d takes place for a large number of dy-
namical systems and, probably, is universal. Let us consider
manifestations of this regularity for several examples of
coupled chaotic dynamical systems.

As the first example we consider the coupled Rössler sys-
temss8d described above. Obviously, one has to consider the
phase shiftDw f sor time shift td of synchronized spectral
components to verify relations24d. As has been shown
above, spectral components characterized by a large value of

FIG. 4. The dependence of the synchronization measurer for
the first Rössler systems8d on the coupling parameter«.
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energy become synchronized first when the coupling strength
increases. So the main spectral componentsfm of the Fourier
spectra of coupled systems are synchronized in the most
lengthy range of the coupled parameter value. Therefore, it is
appropriate to consider the time shiftt of the main spectral
components for coupling strength values«.0.05.

In Fig. 5 the dependence of the time lagt between
Fourier-spectra-based frequency components of interacting
chaotic oscillators on the coupling parameter« is shown. The
base frequencyvm=2pfm of the spectrum is close tov=1
and slightly changes with an increase of the coupling param-
eter. In Fig. 5 one can see that after entrainment of Fourier-
spectrum-based spectral components of interacting oscilla-
tors swhich corresponds to the establishment of the time-
scale synchronization regime; see alsof13gd the time lagt,
which is between them, obeys the universal power laws24d.

As the second example we consider the chaotic synchro-
nization of two unidirectionally coupled Van der Pol–Duffing
oscillatorsf2,24,25g. The drive generator is described by a
system of dimensionless differential equations

ẋ1 = − n1fx1
3 − ax1 − y1g,

ẏ1 = x1 − y1 − z1,

ż1 = by1, s25d

while the behavior of the response generator is defined by
the system

ẋ2 = − n2fx2
3 − ax2 − y2g + n2«sx1 − x2d,

ẏ2 = x2 − y2 − z2,

ż2 = by2, s26d

wherex1,2, y1,2, andz1,2 are dynamical variables, character-
izing states of the drive and response generators, respec-
tively. The values of the control parameters are chosen as
a=0.35,b=300,n1=100, andn2=125, and the difference of

the parametersn1 and n2 provides the slight nonidentity of
the considered generators.

In Fig. 6 the dependence of the time lagt between time
realizations of coupled oscillators on the coupling parameter
value« is shown. In this range of coupling parameter values
the lag synchronization regime is realized. Obviously, the
time lag t also obeys the power lawt,«n with exponent
n=−1, which corresponds to relations24d.

VI. UNSTABLE PERIODIC ORBITS

It is important to note another manifestation of the power
law s24d. It is well known that the unstable periodic orbits
sUPO’sd embedded in chaotic attractors play an important
role in the system dynamicsf26–28g including the cases of
chaotic synchronization regimesf29–31g. The synchroniza-
tion of two coupled chaotic systems in terms of unstable
periodic orbits has been discussed in detail inf32g. It has
been shown that UPO’s are also synchronized with each
other when chaotic synchronization in the coupled systems is
realizedf32g. Let us consider the synchronized saddle orbits
m:n sm=n=1,2, . . .d, wherem and n are the length of the
unstable periodic orbits of the first and second Rössler sys-
temss8d, respectively. It was shown that such synchronized
orbits may be both “in phase” and “out of phase,” but only
“in-phase” orbits exist in all range of coupling parameter
values starting from the point of the beginning of the syn-
chronizationsseef32g for detailsd. It is known that the time
shift between synchronized “in-phase” orbits decreases with
an increase in coupling strength. As the UPO’s have an in-
fluence on the system dynamicssand on the Fourier spectra
of the considered systems, tood, it seems to be interesting to
examine whether the time shiftt between UPO’s obeys the
power laws24d.

To calculate the synchronized saddle orbits we have used
the Schmelcher-DiakonossSDd methodf33,34g in the same
way as it had been done inf32g. The UPO embedded in the
chaotic attractor of the first Rössler system and the time se-
ries x1,2std corresponding to the “in-phase” synchronized
UPO’s realized in systems8d for coupling strength«=0.07 is
shown in Fig. 7. One can see the presence of the time shiftt

FIG. 5. The dependence of time shiftt between base spectral
componentsssolid squaresd on the coupling parameter« for two
coupled Rössler systemss8d. The straight line corresponds to the
power lawt,«−1. The value of the coupling parameter«l .0.14
corresponding to the appearance of the lag synchronization regime
is shown by the arrow.

FIG. 6. The dependence of time shiftt between time seriesx1std
andx2std ssolid squaresd on the coupling parameter« for two uni-
directionally coupled chaotic oscillatorss25d ands26d. The straight
line corresponds to the power lawt,«−1.
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between these time series which can be easily calculated.
The calculated time shiftt between such “in-phase” syn-

chronized saddle orbits appears to obey the power lawt
,«−1 as well as the spectral components of the Fourier spec-
tra do ssee Fig. 8d. We have examined this relation for “in-
phase” UPO’s with lengthm=1–6 andfound that the time
shift dependence on the coupling strength agrees with power
law s24d well, but the data are shown in Fig. 8 only for
UPO’s with lengthm=1–3 for clearness and simplicity. So
the power laws24d seems to be universal and is manifested
in different ways.

VII. CONCLUSION

In conclusion, we have considered the chaotic synchroni-
zation of coupled oscillators by means of Fourier spectra;
several regularities have been observed.

The chaotic synchronization of coupled oscillators is
manifested in the following way. Starting from a certain cou-
pling parameter value synchronization of the main spectral
components of the Fourier spectra of interacting chaotic os-
cillators takes place. Therefore, for these spectral compo-
nentsf, conditions9d is satisfied. In this case one can detect
the presence of the time-scale synchronization regimessee
f12,17gd. If for the considered systems one can introduce
correctly the instantaneous phase of chaotic signalf12,20g,

one will also detect easily the phase synchronization by
means of a traditional approachssee, e.g.,f1gd.

With a further increase of the coupling parameter, more
spectral components become synchronized. If the coupling
between interacting systems is selected in such a way that the
lag synchronization regime can be realized, then the time
shift between synchronized spectral components obeys the
power law s24d. The spectral components characterized by
the large value of the energy become synchronized first. Ac-
cordingly, the part of the energy falling on the synchronized
spectral components increases from 0sasynchronous dynam-
icsd to 1 sthe lag synchronization regimed. Synchronization
of all frequency components corresponds to the appearance
of the lag synchronization regime. With a further increase of
the coupling strength, the time lagt obeying relations24d
tends to be zero, and related oscillations tend to demonstrate
the complete synchronization regime. In this case the time
shift t between synchronized components does not depend
on the frequencyf of the considered componentssit is the
same for all synchronized componentsd and obeys the power
law s24d with exponentn=−1. The time shift between syn-
chronized “in-phase” UPO’s embedded in chaotic attractors
also obeys the same power law.

So in the present paper the mechanism of the appearance
of the chaotic synchronization regime in coupled dynamical
systems, based on the arising of the phase relation between
frequency components of the Fourier spectra of interacting
chaotic oscillators, has been discussed. The obtained results
concerning the power laws24d may be also considered as a
criterion of the possible existencesor, otherwise, impossibil-
ity of the existenced of the lag synchronization regime in
coupled dynamical systemsfi.e., the lag synchronization re-
gime cannot be observed in the coupled chaotic oscillator
system unless the time shift between synchronized compo-
nents obeys the power laws24dg.

FIG. 7. sad The unstable periodic orbit of lengthm=2 embedded
in the chaotic attractor of the first system.sbd Time seriesx1std and
x2std corresponding to the “in-phase” unstable saddle orbits of
length m=2 in the first ssolid lined and the secondsdashed lined
Rössler systems, respectively. The coupling parameter is chosen as
«=0.07. The time shiftt is denoted by means of the arrow.

FIG. 8. The dependence of the time shiftt between time series
x1std and x2std corresponding to the synchronized saddle orbits of
the first and second Rössler systems on the coupling parameter«.
The open squares correspond to unstable orbits with lengthm=1,
the open circles demonstrate the time shiftt for the orbits with
lengthm=2, and the solid squares show this dependence for orbits
with length m=3. The straight line corresponds to the power law
t,«−1.
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