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We investigate the onset of chaotic dynamics of the one-dimensional discrete nonlinear Schrödinger equa-
tion with periodic boundary conditions in the presence of a single on-site defect. This model describes a ring
of weakly coupled Bose-Einstein condensates with attractive interactions. We focus on the transition to global
stochasticity in three different scenarios as the defect is changed. We make use of a suitable Poincaré section
and study different families of stationary solutions, where certain bifurcations lead to global stochasticity. The
global stochasticity is characterized by chaotic symbolic synchronization between the population inversions of
certain pairs of condensates. We have seen that the Poincaré cycles are useful to gain insight in the dynamics
of this Hamiltonian system. Indeed, the return maps of the Poincaré cycles have been used succesfully to
follow the orbit along the stochastic layers of different resonances in the chaotic self-trapping regime. More-
over, the time series of the Poincaré cycles suggests that in the global stochasticity regime the dynamics is, to
some extent, Markovian, in spite of the fact that the condensates are phase locked with almost the same phase.
This phase locking induces a peculiar local interference of the matter waves of the condensates.
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I. INTRODUCTION

A large number of recent investigations have been de-
voted to studying the combined effects of disorder and non-
linearity in one-dimensional lattices. A typical theoretical
model within this category is the discrete nonlinear
Schrödinger equationsDNLSEd f1g. This equation describes
a large class of discrete nonlinear systems such as optical
fibers f2,3g, polaronsf4g, small molecules such as benzene
f4,5g, and, more recently, dilute Bose-Einstein condensates
trapped in a multiwell periodic potentialf6g. One of the main
effects in these lattices is localized excitations in perfectly
periodic but strongly nonlinear systemsf1,7,8g. We refer to
discrete breathers, also known as intrinsic localized modes
f1g. These are spatially localized, time-periodic, and stable
stationary solutions of the DNLSEf1g, and have been ob-
served in many physical systemsf8g. Experimentalists are
currently interested in considering breathers in Bose-Einstein
condensatesf8g.

The experimental observation of Bose-Einstein condensa-
tion sBECd in a dilute gas of trapped atoms in an optical
multiwell lattice, created by a far-detuned, standing-wave la-
ser beamf9g, has generated much interest in the dynamical
properties of this state of matter. The condensates can coher-
ently tunnel between interwell barriers. The heights of the
barriers can be adjusted since they are proportional to the
intensity of the laser beam. These experimental techniques
have allowed direct observation of several phenomena origi-
nally believed to belong to solid-state physics such as quan-
tum phase transitionsf10g and Josephson regimesf9,11g. The
evolution of this BEC is governed by the Gross-Pitaevskii
equation and can be mapped, in the tight binding approxima-
tion, to a DNLSEf6g. Here, we consider the nonlinear dy-

namics of the DNLSE in a ring geometry in the presence of
a single defect. In a BEC the defects can be created with
additional lasers or magnetic fields. A double-well trapping
potential was obtained by superimposing a sharp barrier in-
duced by optical and magnetic trapsf12g. In this way, two
BECs were produced, one on each side of the barrierf12g. A
theoretical model describing two interacting BECs consid-
ered this experimentf13g. Indeed, the possibility to carry out
experiments with a small number of condensates in a ring
geometry will become a reality, as soon as greater control of
the microtrap technology is achievedf14g.

The DNLSE is a vast subject with many different and
relevant issues such as the dynamics of discrete breathers in
one- or two-dimensional infinite latticesf1g, propagation of
excitations in the presence of disorderf15g, and mobility and
interaction of breathersf7g. Motivated by the dynamics of
BEC, we concentrate on the special issue concerning the
onset of chaos in the DNLSE with a small number of oscil-
lators. The DNLSE is a nonlinear Hamiltonian system with
M degrees of freedom, whereM refers to the number of
condensates. The DNLSE, as is well known, has two con-
stants of motionf1g. Therefore, whenM =2, the DNLSE is
integrable. However, whenM ù3, the DNLSE can exhibit an
amazing degree of complexity. The chaotic dynamics for
M =3 and 4 was studied, to our knowledge, for the first time
almost two decades agof16g, considering, in particular,
power spectra and the spectra of Lyapunov exponents of the
system. The nonlinear dynamics forM =3 has also been con-
sidered more recentlyf17,18g. For M =3, symmetry argu-
ments show that the dynamics is that of an area-preserving
two-dimensional map. As a result, it provides a rich behav-
ior, which is of interest for both theory and experiment of
BEC. WhenM =3, the passage of a trajectory from one sto-
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chastic region in phase space to another is blocked by
Kolmogorov-Arnold-MosensKAM d surfacesf19g. WhenM
.3, however, Arnold diffusion can take place, that is, in the
phase space of the system, stochastic layers of different reso-
nances intersect. Therefore, the motion will spread out over
the entire system of intersecting layersf19g. Arnold conjec-
tured that this instability is generic to higher-dimensional
nonlinear Hamiltonian systems. Indeed, in the context of
DNLSE, Arnold diffusion was considered forM =4 f20g.

In this work, we study different types of chaotic solutions
of the DNLSE with periodic boundary conditions and a
single on-site defect. In a recent articlef21g we have given a
global picture of the dynamics of this system. In the current
paper we focus on the transition to global stochasticity,
where the single one-site defect induces interesting complex
dynamics. The number of condensates,M =7, allows for the
manifestation of phenomena such as Arnold diffusionf19g.
The present study of the dynamical properties of this model
is carried out considering the Poincaré section in the param-
eter region of the on-site defect. Moreover, we found several
families of stationary solutions. Relevant information on the
dynamics was found using suitable return maps of the
Poincaré cycles, which, to the best of our knowledge, is con-
sidered for the first time in multidimensional conservative
systems. These Poincaré cycles allowed us to have a better
understanding of the robust properties of this system, which
have, we believe, physical relevance. For instance, in con-
tinuous time, the population inversions of certain pairs of
condensates occur almost simultaneously. That is, these
population inversions synchronize in an information sense
f21,22g. We systematically study three different routes that
lead to this behavior. Moreover, the statistics of these
Poincaré cycles display, surprisingly, an almost Markovian
behavior in spite of the fact that the condensates are to a
good extent phase locked and, therefore, the system shows
coherent motion. In fact, a good interference between the
matter waves of the condensates is the hallmark of phase
locking.

This article has seven sections. The DNLSE and the initial
conditions are discussed in Sec. II. In Sec. III, we introduce
two types of qualitatively different instabilities induced by
the single on-site defect, and we define a suitable Poincaré
section. Chaotic symbolic synchronization between spatially
symmetric pairs of condensates is also discussed. The onset
of chaotic self-trapping as a precursor of chaotic symbolic
synchronization is considered in Sec. IV. Two different
branches of stationary solutions are considered in Sec. V,
where certain bifurcations trigger the onset of the aforemen-
tioned symbolic synchronization. In Sec. VI, we discuss the
phase locking effect between condensates and the resulting
local interference. Finally, in Sec. VII, we give our conclu-
sions.

II. THE MODEL AND THE INITIAL CONDITIONS

We consider a one-dimensional ring of coupled BECs.
When the height of the interwell barriers is much larger than
the chemical potential of the system, the latter corresponds to
an array of weakly coupled condensates, whose equation of
motion f6g is given by

i
]Cm

]t
+ DmCm + KsCm−1 + Cm+1d + rucmu2Cm = 0, s1d

whereCm stands for the condensate complex amplitude in
the mth well, r is the nonlinear coefficient arising from the
interatomic interaction,K is proportional to the microscopic
tunneling rate between adjacent sites,Dm stands for the on-
site defect and is proportional to an external field superim-
posed on the lattice, and, finally,t is the time. By introducing
the dimensionless amplitudecm=Îr /2KCm expf−isD
+2Kdtg, Eq. s1d transforms into the discrete nonlinear
Schrödinger equation given by

i
]cm

]t
+ dmcm + scm−1 + cm+1 − 2cmd + 2ucmu2cm = 0, s2d

wheredm=sDm−Dd /K stands for the defects,t=Kt, andD is
any arbitrary number. As a result, the only parameters of the
DNLSE in Eq.s2d correspond to the defectsdm. The system
is assumed to have periodic boundary conditions. The posi-
tive sign before the nonlinear term indicates that we are con-
sidering an attractive interatomic interaction between the
condensates, such as in the case of lithium atomsf23g.

There are two integrals of motion in Eq.s2d. The first is
the Hamiltonian, from which Eq.s2d is derived f1g. It is
given by

H = o
m=1

M

sucm − cm+1u2 − ucmu4 − dmucmu2d. s3d

The second constant is the norm, which is given by

N = o
m=1

M

ucmu2. s4d

HereM stands for the number of condensates.
We can rewrite the DNLSE by transforming into action-

angle variablessNm,umd, wherecm=ÎNm exps−iumd, to stress
the physical meaning of the equations of motion. The equa-
tions for Nmù0 andum are the following:

dNm

dt
= 2ÎNmNm−1 sinsum−1 − umd + 2ÎNmNn+1 sinsum+1 − umd,

dum

dt
= 2 −dm −ÎNm−1

Nm
cossum−1 − umd −ÎNm+1

Nm
cossum+1

− umd − 2Nm. s5d

We will see that, in the chaotic regimes that we study, the
inequality uum−unu!1 holds, and therefore the system is
phase lockedf24g. Nm stands for the population of sitem.

We will use as initial conditions a set of stationary solu-
tions which arise when the defect parameter is given bydm
=0 f21,25g. To find these DNLSE stationary solutions, we
use the nonlinear map approachf26,27g. This map is ob-
tained by settingdNn/dt=0, andun=um, for anynÞm in Eq.
s5d. Moreover, we can define the frequency of the resulting
periodic orbit by settingdum/dt=l, wherel is a constant.
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Therefore, the stationary solutions have the formcmstd
=ÎNm exps−iltd. As a result, the following cubic mapsCMd
is obtained:

Xn+1 = Yn,

Yn+1 = sGn − 2Yn
2dYn − Xn, s6d

where Gn=2−l−dn and Yn=ÎNn. In the CM we will set
Gn=G=2−l for which dn=0. The JacobianJ of this map is
area preserving, i.e., J=1. The fixed points
s±ÎG /2−1, ±ÎG /2−1d of the CM are elliptic for 2,G,4.
WhenG=2.5, we find a period-7 orbit surrounding the ellip-
tic fixed point. The periodic orbit is surrounded by island
chainsf25g. We will consider those stationary solutions of
the DNLSE that are determined by thesellipticd stable peri-
odic orbits of the CM. Such a periodic orbit with periodicity
7 generates linearly stable stationary solutions in a ring with
seven condensates. The amplitudes of this stationary solution
are shown in Fig. 1sad.

III. DEFECT-INDUCED OSCILLATIONS AND THE
POINCARÉ SECTION

From here on we consider the DNLSE with a single de-
fect,d3,0, anddn=0 for nÞ3, in a ring with seven conden-
sates. We make use of the exact stationary DNLSE solution
of the previous section as initial condition for this perturbed
DNLSE. This contrasts with a previous articlef21g, where
we added small random perturbations of the order of 10−3 to
the initial conditions to test for the stability and robustness of
the solutions. Keeping the initial condition fixed allows us to
study the onset of chaos as the defect parameter is changed.
As the parameterd3,0 increases in absolute value, we find
a transition from a quasiperiodic solution to a chaotic solu-
tion where the oscillations ofNm are localized within a small
neighborhood of the stationary solutions. These regimes are
observed in Figs. 1sbd and 1scd, for which d3=−0.005 and

20.006 25, respectively. These localized chaotic oscillations
occur in a narrow interval −0.0069,d3,−0.0055 and are
not typical whend3,0. In contrast, the presence of a defect
d3.0, in the quasiperiodic or chaotic regime, typically in-
duces localized oscillations ofNm f21g. The localized solu-
tions are referred to as self-trapping solutionsf17,18,20g. As
the parameterd3,0 decreases further, we find a typical sce-
nario where the oscillations ofNm become delocalized, as
observed in Fig. 1sdd. Here, the initial behaviour ofNm is
characterized by time sequences, that are reminiscent of qua-
siperiodic and localized chaotic motions.

In order to measure the extent of localization in the
DNLSE, the quantityh=−f1/ lnsMdgoi=1

M skNil /NdlnskNil /Nd
has been used whenM =3 f17g. k l stands for the sample
average or mean, andM is the number of condensates. The
quantityh is unity when the populationsNi are the same on
average, and is zero in the limit when only one of the popu-
lationsNi is different from zero. In the chaotic self-trapping
regime, whend3=−0.006 25, we find thath<0.9056. As a
reference we can consider the stationary solution whend3
=0, where we obtainh<0.88. However, whend3=−0.007,
the continuous-time chaotic delocalized solutions giveh
<0.9905. As a result, the populations of the condensatesNi
have almost the same mean. WhenM =3, chaos usually leads
to h<1 for relatively small constants of motionN f17g. In
these different oscillatory regimes, the change ofd3,0 in-
duces an increment of the distance fromUsd3d, the stationary
solution whend3,0, to the fixed initial conditionUs0d
=sÎN1,ÎN2,ÎN3,ÎN4,ÎN5,ÎN6,ÎN7d, the stationary solu-
tion whend3=0, shown in Fig. 1sad. The distance between
these two points is given bys;uUsd3d−Us0du. The depen-
dence ofs on d3,0 is approximated bys<−2d3+C, where
C is a constant. This is shown in Fig. 2sad. We have found
these central resonancesUsd3d, when d3,0, using a root
finding scheme with initial guesses in the vicinity ofUs0d,
the stationary solution atd3=0.

The picture that emerges is, therefore, that of an initial
condition, given in Fig. 1sad, moving away from the central
resonanceUsd3d, as shown in Fig. 2sad. As in any Hamil-
tonian system, this leads to a closer vicinity to the stochastic
layers where chaotic behavior occurs. Moreover, since the

FIG. 1. sad Plot of stationary solution amplitudeÎNm versus
condensate indexm whereG=2.5. Plot ofNm versus timet for d3

= sbd 20.005,scd 20.0065, andsdd 20.007. The labels 1, 2, 3, and
7 are the condensate indices. The variablet has been further res-
caled by dividing by 4p.

FIG. 2. sad Distances versus −d3. Plot of m versus timet for
d3= sbd 20.005,scd 20.0065, andsdd 20.007.
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number of degrees of freedom of our system is larger than 2,
these stochastic layers are expected to form an intercon-
nected network, which is known as an Arnold webf19g. The
thickness of these layers, typically, expands with increasing
perturbationf19g. This is observed when we decrease the
parameterd3,0 in the interval −0.0069,d3,−0.0055. In
fact, the time series ofNm, in Fig. 1scd, increase their oscil-
lation amplitudes with decreasingd3,0. At a given point,
however, when the thickness of these layers is wide enough,
resonance overlap and motion across certain stochastic layers
occurs, leading to the onset of a stronger chaotic motion.
This is precisely what one sees in Fig. 1sdd. We will return to
this issue below, considering a suitable Poincaré section.

Let us define the new variablem;NL−NR, where NL
=N7+N1+N2 andNR=N4+N5+N6 are the left and right wing
populations, respectively. In the quasiperiodic, self-trapping
chaotic, and delocalized chaotic regimes, the trajectory inter-
sects an 11-dimensional surfacem=0 transversally, as sug-
gested by Figs. 2sbd, 2scd, and 2sdd. m=0 defines an 11-
dimensional surface due to the existence of the constants of
motion H andN. The Poincaré surface of section is defined
to be where the trajectory intersects this surface fromm,0
to m.0, as shown in Fig. 2, that is, whenm=0 anddm /dt
.0. The associated map of a Hamiltonian flow is also area
preservingf19g. Since the DNLSE is a Hamiltonian flow
with two constants of motion, there are four Floquet multi-
pliers equal to 1 for each periodic orbitf19g. As a result, the
associated volume-preserving map is ten dimensional when
M =7. Similarly, the corresponding map becomes two dimen-
sional whenM =3. These four Floquet multipliers imply the
presence of four vanishing Lyapunov exponents in the
DNLSE.

Let us consider first the self-trapping chaotic regime for
which d3=−0.006 25. At the Poincaré section, we find that
uN1−N5u,10−3, uN2−N4u,10−3, and uN6−N7u,10−3. There-
fore, taking into account the typical magnitudes ofNm from
Fig. 3sad, we have thatN1<N5, N2<N4, andN6<N7 at the
Poincaré section. In the case whered3=−0.007, the popula-
tion differencesN1−N5, N2−N4, andN6−N7 have the same
sign most of the time, as is clearly appreciated in Figs. 3scd
and 3sdd. Thus, these population differences, to a significant
extent, undergo inversion at the same time and have the same
sign of m;NR−NL. The characteristic magnitudes of the
population inversionsN1−N5, N2−N4, and N6−N7 at the
Poincaré section and at their maxima differ by almost two
orders of magnitude whend3=−0.007. Moreover, this behav-
ior seems to be robust, as confirmed by extensive numerical
simulations. This is precisely what makes this continuous-
time synchronous inversion relevant, we believe, from an
experimental standpoint.

The behavior whend3=−0.007 is an example of synchro-
nization of symbolic informationsSSId, and holds, at least,
for time units as large ast,105. According to this notion,
two arbitrary oscillators are perfectly synchronized in an in-
formation sense if they produce the same information at the
same rate, i.e., symbols generated by one system map one-
to-one to symbols emitted by the other systemf28,29g.
Strictly speaking, this form of synchronization requires that
the common information be emitted at precisely the same
time. Figures 3scd and 3sdd suggest that the population inver-

sions exhibit almost equivalent information at the same av-
erage rate. In our Hamiltonian system, we compare the sym-
bolic dynamics of these three chaotic population inversions.

IV. CHAOTIC SELF-TRAPPING AS A PRECURSOR OF
SSI

We now focus on the dynamics in the Poincaré section.
The time series ofNm, when d3=−0.0065 and20.007, are
shown in Figs. 3sad and 3sbd, respectively. Figure 3sad sug-
gests that in the self-trapping regime there is some underly-
ing fine structure in the dynamics, which is more clearly
appreciated forN3. Instead, Fig. 3sbd suggests that there is no
such structure whend3=−0.007 and, moreover, this figure
shows that the trajectory has been in the self-trapping region
roughly during the time intervals 0,ti ,60 and 3200,ti
,3600. In fact, in a high-precision calculation consisting of
105 time units, only these jumps between these two chaotic
regions have taken place. The variablet has been rescaled by
dividing by 4p.

We show evidence suggesting that the dynamics when
d3=−0.0065, to some extent, consists of a sequence of mo-
tions along the stochastic layers of different resonances. To
support this, we address the dynamics shown in Fig. 4. We
have considered the Poincaré cyclesti+1−ti as return maps.
The indicesi label consecutive Poincaré sections andti is the
Poincaré recurrence timef19g. In Fig. 4sad, the motion wan-
ders stochastically around a multiple resonance of period 5.
In fact, if we sample this map each five Poincaré sections, we
only see a single stochastic layer. This occurs in the interval
2700, i ,3900. Figure 4sbd suggests that the associated
resonance is of period 7. Figure 4scd indicates that the orbit
is in the neighborhood of a resonance torus of period 12.
This seems to be a secondary generation resonance where the
primary has period 3. Figure 4sdd suggests that the related
resonance is a simple resonance. The intervals of the indices
i of Figs. 4sbd, 4scd, and 4sdd, are 8580, i ,8670, 6600, i

FIG. 3. sad Plot of Nm versus timeti at the Poincaré section
when d3=−0.0065. The labels 1, 2, 3, and 7 are the condensate
indices. sbd Plot of N3 versus timeti when d3=−0.007 at the
Poincaré section.scd Plot of N2−N4 versus N1−N5 when d=
−0.007 for continuous time.sdd Plot of N7−N6 versusN1−N5 when
d=−0.007 for continuous time.
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,7100, and 5100, i ,5380, respectively. In Fig. 5sad we
have shown the time series ofti+1−ti versus indexi for
12 000, i ,26 000. During this long time interval the mo-
tion sticks to the neighborhood of a period-5 resonance torus
as indicated by Fig. 5sbd. Indeed, by sampling this time se-
ries every five Poincaré sections, we will only see a single
stochastic layer. This period-5 resonance is, however, differ-
ent from that of Fig. 4sad. Therefore, we have seen that the
stochastic layers of different resonances are connected and
that the trajectory spreads out over this system of intersecting
layers. This behavior takes place for time units oft as large
as 105 as suggested by Fig. 5.

We believe that these long residence times near reso-
nances can be explained as follows. In Hamiltonian systems
with three or more degrees of freedom, a dense set of reso-
nant tori can persist. Generically, the stable and unstable
manifolds of each preserved torus intersect transversally
yielding a homoclinic tangle. Moreover, the homoclinic

tangle of each torus becomes intertwined with the ho-
moclinic tangles of nearby tori, leading to the possibility that
orbits starting near any one of these tori may diffuse along
this dense set of homoclinic tangles in a chaotic fashionf33g.
This is at the heart of what is known as Arnold diffusion
f19g.

Figures 1scd and 1sdd suggest that there are orbits having
three time scales for the motion: First, a small time scale,
where the system looks integrable; second, a widely ex-
tended intermediate time scale, where the actions are con-
fined in a bounded domain with a nontrivial dynamics; fi-
nally, a long time scale, where the motion is no longer local
and, seemingly, all the degrees of freedom are involvedf30g.
The second stage of evolution can be supported by the
Nekhoroshev theorem. In this theorem, where the evolution
of the system is considered only for finitesbut larged times,
one obtains estimates which are valid in small neighbor-
hoods of phase space for the variations of the action vari-
ablesf31g. Nekhoroshev considers a quasi-integrable Hamil-
tonian, where the perturbation to the integrable part of the
Hamiltonian is small enough. Moreover, if this integrable
part is convex then the actions are confined in a small neigh-
borhood during an exponentially long time, which increase
exponentially with the smallness of the perturbationf31g.

To apply this theorem to the HamiltonianH, which is
given in Eq.s3d, we have to show that the integrable part,
which we label asH0sN1,N2,… ,NMd, is convex. Here we
have to make use ofN=oi=1

M Ni, the second constant of mo-
tion. That is, we need to show that the Hessian matrix of
H0sN1,N2,… ,NMd is definite in a vicinity of the initial con-
ditions. To obtainH0sN1,N2,… ,NMd, we have replacedcm

=ÎNm exps−iumd in Eq. s3d and, moreover, we have consid-
ered the term with the factord3 as a small perturbation. In
addition, on the basis of our numerical simulations, we as-
sume thatuum−unu!1 is valid for the long time scales con-
sidered in this theorem. These angle differences also corre-
spond to a small perturbation. Upon these considerations, the
HamiltonianH0 takes the form

H0 = o
m=1

M

fsÎNm − ÎNm+1d2 − Nm
2 g. s7d

WhenM =7, the Hessian of the HamiltonianH0 depends on
six actions, since the constantN has been taken into account.
The evaluation of the Hessian, at the stationary solution of
Fig. 1sad, gives the spectrum of eigenvaluesnn, after replac-
ing N7 in H0. These aren1=0.1148…, n2=0.1933…, n3
=3.8664…, n4=6.8310…, n5=15.6296…, and n6
=126.7421…. Observe that these eigenvalues have the same
sign. This suggests that the HamiltonianH0 is convex in the
neighborhood of the aforementioned initial conditions. As a
result, the conditions of the Nekhoroshev theorem appear to
hold in our simulations and what we see in Fig. 1scd is the
Nekhoroshev regime, where the actionsNm are bounded in a
small neighborhood allowed by the two conservation laws. A
similar set of eigenvalues is obtained if we replace any of the
actionsNm, instead ofN7, in H0.

As we decrease the negative parameterd3 further, the os-
cillation amplitudes ofNm expand slightly, leading, for a

FIG. 4. Return map of the Poincaré cycles, that is,ti+2−ti+1

versusti+1−ti when d3=−0.0065 at the Poincaré section forsad
2700, i ,3900, sbd 8580, i ,8670, scd 6600, i ,7100, andsdd
5100, i ,5380.

FIG. 5. sad Plot of the time series ofti+1−ti for 12 000, i
,26 000 whend3=−0.0065.sbd ti+2−ti+1 versusti+1−ti for the
time series ofsad.
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given parameterd3, to the onset of a stronger stochastic mo-
tion in a larger region as shown in Figs. 1sdd, 3scd, and 3sdd.
Moreover, we see that when SSI takes place, in spite of the
small change ofd3, the largest Lyapunov exponent increases
several times. This qualitative change can be understood as
the overlap of certain resonances which belong to different
regions of phase space. The self-trapping chaotic regime,
whend3=−0.0065, can also be affected if the region contains
a large amount of KAM tori, which act as effective barriers
for limiting large excursions of chaotic orbitsf32g. Instead,
for d3=−0.007, these barriers no longer operate, due to the
overlapping of certain resonances and, therefore, the orbit
can explore both the region of self-trapping and that of SSI,
as observed in Fig. 3sbd.

To have a quantitative measure of the stochasticity, we
consider the time series ofti+1−ti as well as the spectra of
the Lyapunov exponents of the system. The time seriesti+1
−ti when d3=−0.0065 is narrow, sharply bounded, and has
time intervals with some regularity, as shown in Figs. 5sad
and 6sad. These intervals are typically generated by the mo-
tion around a given resonance torus. Instead, whend3
=−0.007 there are no signs of such a regularity. In fact, the
time series looks quite noisy, as shown in Fig. 6sbd. The
probability distribution function sPDFd of the Poincaré
cycles ti+1−ti is sharply peaked and bounded whend3
=−0.0065, while the core of this PDF, whend3=−0.007, has
to a good extent a broad exponential dependence. These
PDFs are shown in Fig. 6scd. We stress that the exponential
dependence of this PDF core indicates that these Poincaré
cycles have, to a good degree, a Markovian character. In
other words, in case we have a perfect Markovian process
f34g, the probability that the trajectory continues with a
given symbol ofm until t** .t* is independent of the past
durationt* −ti .0, wheret** ,ti+1. Here,ti is the last time
that the trajectory intersected the Poincaré surface of section.
The prevalent Markovian character of this time series implies
small memory. This is precisely what we show below by
calculating the autocorrelation functionsACFd CsDid for

these time series, whereCsDid=oi=1
i=R−SsDti −DtdsDti+Di

−Dtd /oi=1
i=R−SsDti −Dtd2. In this equation,Dti =ti+1−ti and

Dt are the time series and its sample average, respectively.
Di is the time lag,R is the number of data points,Di ,S, and
R@S f19g. The ACFCsDid of ti+1−ti for the time series of
Fig. 6sad has a slow nonexponential decay, whend3
=−0.0065, as a result of the presence of intervals with some
regularity. Instead, the ACFCsDid has a fast decay which
implies a small memory for the time series of Fig. 6sbd, as
indicated on the basis of the aforementioned exponential de-
pendence. The plots of these ACFsCsDid are shown in Fig.
6sdd. However, there are, besides some fitting arguments, at
least two reasons that make the time series of Fig. 6sbd some-
what different from a Markovian process. First, there is the
presence of temporal jumps to the self-trapping region,
where the motion is highly correlated, as suggested by Fig.
3sbd. The second is the existence of very long time intervals
ti+1−ti that appear as rare events. The latter arise in the tails
of our PDF and, typically, have power law dependencef35g.
These are not shown in the dashed line of of Fig. 6scd since
its probability is negligible, at least during our time series
consisting of 105 time units. It should be underlined that, in
spite of this quasi-Markovian behavior, certain pairs of con-
densates can synchronize the symbolic dynamics of their
population inversions. This is related to phase locking, since
lack of the latter inhibits the presence of SSIf21g.

To verify the stochasticity of the motion, let us consider
the spectra of the Lyapunov exponents. These are shown for
d3=−0.0065 and20.007 in Figs. 7sad and 7sbd, respectively.
The largest positive Lyapunov exponentL1, for d3
=−0.0065, is almost six times smaller than that whend3
=−0.007. To understand this, we point out that in the chaotic
self-trapping regime there is some regularity, as appreciated
in Figs. 4 and 5. In contrast, whend3=−0.007, the system
behaves almost like a Markovian process. When both the
chaotic self-trapping and SSI take place, there is a single
positive Lyapunov exponent whose magnitude is much larger
than that of the other positive Lyapunov exponents. The evo-
lution of the ratio between the two largest Lyapunov expo-
nents,L1/L2, for d3=−0.0065 and20.007 is given in Figs.

FIG. 6. Plot ofti+1−ti versus the Poincaré section indexi when
d3= sad 20.0065 andsbd 20.007. scd Plot of log10Psti+1−tid for
d3=−0.0065scontinuous lined and20.007sdashed lined. sdd Plot of
the ACF CsDid for d3=−0.0065 scontinuous lined and 20.007
sdotsd.

FIG. 7. Plot of the Lyapunov exponentsLm versus indexm for
d3= sad 20.0065 andsbd 20.007. Plot of log10sL1/L2d versus time
ti for d3= scd 20.0065 andsdd 20.007.
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7scd and 7sdd respectively. As indicated above, the two con-
servation laws of our autonomous Hamiltonian system imply
that we have at least four Lyapunov exponents which are
equal to zero.

V. FAMILIES OF STATIONARY SOLUTIONS

We have carried out a numerical study of stationary solu-
tions for the case of a ring with seven condensates. Partial
results are shown in Fig. 8, where the real part of the station-
ary solutionc1 is shown versus the parameterd3. Evidently,
there are many stationary solutions in the indicated param-
eter range. The solution point with label 2 in Fig. 8 corre-
sponds to a branch pointsor pitchfork bifurcationd. Solid
curves denoteslinearlyd stable stationary solutions, while
dashed curves denote unstable solutions. The period of the
stationary solutions, 2p /l, along the two bifurcation
branches remains constant. In the neighborhood of the stable
stationary solutions, just before the bifurcations, the dynam-
ics is quasiperiodic, such as near the stationary solutions
with labels 4 and 1. Instead, just after the bifurcation points,
initial conditions in the vicinity of the unstable stationary
solution trigger the onset of the chaotic dynamics, such as
near the stationary solutions with labels 3 and 5, whered3

s3d

=−0.028 andd3
s5d=−0.032 99, respectively.

The dependence of the amplitudesÎNm on the the indexm
for the unstable stationary solution atd3

s5d=−0.032 99 is
given in Fig. 9sad. In this figure, we can see that the ampli-
tude dependence is not symmetric with respect to the on-site
defect position at the indexm=3, as in the case of Fig. 1sad.
However, as shown by Fig. 9sbd, SSI takes place to a good
degree in the continuous flow. Moreover, at the Poincaré
section, we find thatuN1−N5u,10−3, uN2−N4u,10−3, and
uN6−N7u,10−3. That is, the population inversions atm=0
are about a hundred times smaller than their maximum mag-
nitude. A qualitatively similar behavior was observed before
for d3=−0.007. Quite a different story is, however, the case
for which d3

s3d=−0.028. Here the dependence of the ampli-
tudesÎNm on the the indexm is symmetric as shown in Fig.

9scd; however, the behavior of SSI has been somehow de-
graded as suggested by Fig. 9sdd. In fact, the aforementioned
population inversions atm=0 are only about ten times
smaller than their maximum magnitude and do not change
sign in a synchronous way with the accuracy of the previous
cases whend3

s5d=−0.032 99 andd3=−0.007.
Figure 10sad suggests that the positive Lyapunov expo-

nentL1 for d3
s3d is larger than that ford3

s5d, where SSI happens
with accuracy. Moreover, while the ratioL1/L2,102 for
d3

s5d, L1/L2,1 for d3
s3d. In fact, from previous calculations

we know that lack of SSI implies that the nonvanishing
Lyapunov exponents have roughly the same order. In addi-
tion, the cores of the PDF for the Poincaré cyclesti+1−ti

when d3
s5d and d3

s3d are shown in Fig. 10sbd. Both have
roughly an exponential dependence which accounts for the
rough Markovian behavior in these time series ofti+1−ti.
We have carried out a study of the bifurcations of the sta-
tionary solutions as the parameterd3 is changed for different
number of condensatesM. WhenM =6, the behavior of these

FIG. 8. Plot of the real part of the stationary
solutionc1 of Eq. s2d versusd3. Here the period
of the solution, 2p /l, remains constant. See text.

FIG. 9. sad Plot of stationary solution amplitudeÎNm versus
condensate indexm when d3=d3

s5d. sbd Plot of N2−N4 versusN1

−N5 when d=d3
s5d for continuous time.scd Same assad but for d3

=d3
s3d. sdd Same assbd but for d3=d3

s3d.
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stationary solutions is qualitatively similar to that forM =7.
However, whenM =9 and 11, the related stationary solutions
are unstable within an interval ofd3 similar to that of the
case withM =7. Moreover, as expected, these unstable sta-
tionary solutions display a richer bifurcation behavior.

VI. PHASE LOCKING AND LOCAL INTERFERENCE

In the tight binding approximation, besides the number of
particles in each site,Nm, the relative phasesum−um+1 of
neighboring condensates are relevant quantities. In fact,
these determine the robusteness of a constructive interfer-
ence patternf23,36g. We show below that phase locking
takes place in our model, i.e.,uum−um+1u,2p for all m f24g.
It should be emphasized that lack of a significant degree of
phase locking inhibits the presence of SSI, as discussed else-
wheref21g. A good interference pattern arises, however, only
whenuum−um+1u!1. It is remarkable that when chaos arises,
in the form of self-trapping or SSI, we find thatuum−unu
!1, in spite of the fact that nearby trajectories diverge ex-
ponentially fast. Indeed, whend3=−0.0065 we have obtained
that uum−unu,10−2. Instead, in Fig. 10scd, where d3
=−0.007, we show thatuum−unu,10−1.

The value of the HamiltonianH in Eq. s3d can be approxi-
mated whend3=−0.0065 at any time by

H1 = o
m=1

M

sÎNm − ÎNm+1d2 − Nm
2 − dmNm. s8d

Defining the parametera1;sH1−Hd /H, we find that 0
,a1,10−3. Now, we can make use of the definition of the
Poincaré section to find thatN=2N1+2N2+2N7+N3 is con-
served whenm=0. Our simulations suggest that, at the
Poincaré section, we can replaceN4→N2, N5→N1, andN6
→N7 in the expression forH1. As a result, for the value ofH,
we get the following approximate expression:

H2 = 2sN − N7 − 2ÎN1N2 − 2ÎN2N3 − 2ÎN1N7d − 2N1
2 − 2N2

2

− 2N7
2 − N3

2 − d3N3. s9d

N7 can be eliminated using, at the Poincaré section, the iden-
tity N=2N1+2N2+2N7+N3. Defining now the parameter
a2;sH2−Hd /H, we find that ua2u,3310−4 when d3

=−0.0065. In Eq.s9d, H2 is a two-dimensional surface em-
bedded in a three-dimensional spacesN1,N2,N3d, provided
that H2 is constant. SinceH2 is preserved to a good extent,
we can qualitatively explain why the spectrum of the
Lyapunov exponents has approximately a single positive
Lyapunov exponent as suggested by Fig. 7sad. Therefore, it
appears that there is a two-dimensional map on the afore-
mentioned surface in the spacesN1,N2,N3d, which approxi-
mately emulates the dynamics of our system at the Poincaré
sections. A chaotic orbit of this map would give two
Lyapunov exponents, which can be related to the largest, in
absolute value, Lyapunov exponents of Fig. 7sad. The re-
maining nonvanishing Lyapunov exponents are negligible
when compared to the largest one, as suggested by Fig. 7scd.
We underline, however, that, by no means, does our system
have the dynamics of a two-dimensional map. We have
shown evidence of motion along different resonances, which
we believe is, at least, partially due to Arnold diffusion. The
latter was also supported by the apparent fulfilment of the
conditions of the Nekhoroshev theorem whend3=−0.0065.

One of the manifestations of the wave nature of Bose-
Einstein condensates is the observation of interference when
the condensed and initially separated clouds of atoms are
allowed to overlapf12g. This is carried out in the experi-
ments by turning off, after different evolution times, both the
magnetic and optical traps. Therefore, upon expansion the
condensates overlap and interfere, and if the effects of par-
ticle interactions in the overlap region can be neglected, the
particle density at any point on the central axis of the ring of
atoms, which is perpendicular to the plane of the ring, is
proportional to

Sstd = Uo
m=1

M

cmU2

. s10d

If Sstd is measured just after the traps are turned off att,
we can have an idea of the dynamics by considering several
evolution timest of the system. Since the phase differences
satisfy uum−um+1u!1, we can approximateSstd as follows:

S1std = So
m=1

M

ÎNmD2

. s11d

Indeed,Sstd approximatesS1std with good accuracy. More-
over, we further assume that the measurement timest, where
the traps are turned off, are distributed uniformly over a large
enough span of time for many replicas of the same experi-
ment having only differentt. In this case, the probability
distribution function ofS, which we label asPsSd, will have
a relatively small width when SSI takes place. This is the
case whend3=−0.007 andd3=d3

s5d. However, when SSI oc-
curs to a smaller degree, such as whend3=d3

s3d, the PDFPsSd

FIG. 10. sad Plot of the Lyapunov exponentsLm versus indexm
for d3=d3

s5d ssolid lined and d3
s3d sdashed lined. sbd Plot of

log10Psti+1−tid for d3=d3
s5d ssolid lined and d3

s3d sdashed lined. scd
Plot of u3−u2 versus u2−u1 at the Poincaré section whend=
−0.007.sdd Plot of the PDFPsSd for d=−0.007scontinuous lined,
d3

s5d sdotted lined, andd3
s3d sdashed lined.
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will have a broader width with larger tails. In this latter case,
we find thatuum−um+1u,1.

To assess the possibility of an experiment to detect SSI,
let us consider Eq.s1d for which the particle’s conservation
law takes the formNtot=om=1

M uCmu2. HereNtot stands for the
total number of atoms in the experiment. Moreover, since
ucmu=Îr /2KuCmu, we get the expressionzsom=1

M ucmu2d
= 1/2, wherez;K /rNtot. From Fig. 1sad, we obtain that
om=1

7 ucmu2<1.5 and, therefore,z< 1/3. Buonsante, Fran-
zosi, and Pennaf18g suggest that the range 0,z,4 is suit-
able for a physical experiment consisting of a ring with three
condensates. Our estimates,K<0.07ER and, roughly, 1000
atoms in each well, are taken from Ref.f11g, where ER
stands for the recoil energy. Taking into account the popula-
tion distribution in each well, we getr<10−4ER. Moreover,
we find that the estimateD3=d3K,0.000 45ER can generate
SSI. This value ofD3 is realistic in experiments with mi-
crotraps, where also the regime of weakly coupled conden-
sates can be achieved with suitable interwell barriersf14g.
This defect value forD3 has the order of magnitude of the
parabolic external potential in experiments with Josephson
junction arrays realized with atomic Bose-Einstein conden-
satesf11g.

VII. CONCLUSIONS AND DISCUSSION

We have studied a family of chaotic solutions in a system
consisting of a ring of seven weakly coupled BECs with
attractive interactions described by the DNLSE. The initial
conditions are determined by the stable periodic orbits of a
suitable Hamiltonian map. The onset of the chaotic solutions
has been systematically considered by changing the on-site
defect and, also, by studying a suitable Poincaré map of the
system. This allowed us to gain further insight into the dy-
namics of this system. In particular, the consideration of re-
turn maps of successive Poincaré cycles has been useful to
describe the dynamics of our system which, to our knowl-
edge, represents an original example of the usefulness of
these return maps to study the evolution of many-
dimensional Hamiltonian systems.

For a small negative on-site defect, the system undergoes
first a transition from the quasiperiodic regime to a chaotic
self-trapping regime as the defectd3,0 is decreased. Next, a
transition from the chaotic self-trapping regime to a chaotic

regime displaying synchronization of symbolic information,
among the populations inversions of different pairs of con-
densates, occurs asd3,0 is decreased further. These popu-
lations have, however, the same mean. We have shown that
the change of the parameterd3,0, to reach the chaotic self-
trapping regime, induces an effective displacement of the
initial conditions from the central resonance corresponding
to a given defectd3,0. Once the chaotic self-trapping re-
gime sets in, it is characterized by relatively small fluctua-
tions of the populations of the condensates. Moreover, the
dynamics consists mostly of a sequence of motions along the
stochastic layers of different resonances, as suggested by the
return maps of successive Poincaré cycles. We attribute this
behaviour mainly to Arnold diffusion. This is also suggested
by the theorem of Nekhoroshev, whose conditions are satis-
fied in our simulations. In contrast, the SSI regime, which is
continuous in time, is characterized by large changes of the
populations of the condensates. This regime displays small
memory effects as suggested by the time series of the
Poincaré cycles, which remind us of an almost Markovian
process. However, the coherence of the system, related to the
good degree of phase locking, is a necessary condition for
the onset of SSI. In the self-trapping and SSI regimes, the
system has basically a single positive Lyapunov exponent.
We have also studied the stationary solutions as the on-site
defect undergoes large changes. We find that a pitchfork bi-
furcation triggers the onset of the SSI dynamics, where the
defect is negative. The case of six weakly coupled conden-
sates behaves similarly to the abovementioned case with
seven condensates. An increase in the number of conden-
sates, to nine and eleven, gives unstable stationary solutions
with complicated bifurcations. Finally, we have seen that the
presence of phase locking in the SSI regime induces a sharp
distribution of the particle density along a spatial axis of
symmetry of the ring of BEC. The present study suggests
that the interesting and complex dynamics of the SSI regime
can be a good candidate for experimental verification.

ACKNOWLEDGMENTS

We would like to thank Felix Izrailev for his useful com-
ments. We also would like to thank Ennio Arimondo, Aranya
Bhattacherjee, and M. Saba for interesting discussions. This
work was supported by CONACYT-México and the Interna-
tional Centre for Theoretical PhysicssICTPd.

f1g P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Int. J.
Mod. Phys. B 15, 2833 s2001d; M. Johansson and S. Aubry,
Nonlinearity 10, 1151s1997d.

f2g D. N. Christodoulides and R. I. Joseph, Opt. Lett.13, 794
s1988d.

f3g D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature
sLondond 424, 817 s2003d.

f4g A. Scott,Nonlinear Science: Emergence and Dynamics of Co-
herent Stuctures, 2nd ed.sOxford University Press, New York,
2003d.

f5g A. S. Davydov, J. Theor. Biol.38, 559 s1973d.
f6g A. Trombettoni and A. Smerzi, Phys. Rev. Lett.86, 2353

s2001d; A. Trombettoni, A. Smerzi and A. R. Bishop, Phys.
Rev. E 67, 016607s2003d.

f7g S. Flach and C. R. Willis, Phys. Rep.295, 182 s1998d.
f8g D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today57

s1d, 43 s2004d.
f9g B. P. Anderson and M. A. Kasevich, Science282, 1686

s1998d.
f10g M. Greineret al., NaturesLondond 415, 39 s2002d.

ONSET OF CHAOTIC SYMBOLIC SYNCHRONIZATION… PHYSICAL REVIEW E 71, 056201s2005d

056201-9



f11g F. S. Cataliottiet al., Science293, 843 s2001d.
f12g M. R. Andrewset al., Science275, 637 s1997d.
f13g A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.

Rev. Lett. 79, 4950s1997d.
f14g H. Ott et al., Phys. Rev. Lett.87, 230401s2001d; M. Sabaet

al., in Proceedings of the 13th International Laser Physics
Workshop. LPHYS4, Trieste, Italy, 2004sunpublishedd.

f15g D. Hennig and G. P. Tsironis, Phys. Rep.307, 334 s1999d.
f16g J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, Physica D16,

318 s1985d; J. H. Jensenet al., Phys. Lett.110A, 429 s1985d;
S. De Filippo, M. Fusco Girard, and M. Salerno, Physica D
26, 411 s1987d.

f17g K. W. DeLong, J. Yumoto, and N. Finlayson, Physica D54, 36
s1991d.

f18g L. Cruzeiro-Hanssonet al., Phys. Rev. B42, 522 s1990d; D.
Henniget al., Phys. Rev. E51, 2870s1995d; R. Franzosi and
V. Penna,ibid. 67, 046227s2003d; P. Buonsante, R. Franzosi,
and V. Penna, Phys. Rev. Lett.90, 050404s2003d; M. Johans-
son, J. Phys. A37, 2201s2004d.

f19g A. J. Lichtenberg and M. A. Lieberman,Regular And Stochas-
tic Motion sSpringer-Verlag, Berlin, 1993d.

f20g D. Hennig and H. Gabriel, J. Phys. A28, 3749s1995d.
f21g C. L. Pando L. and E. J. Doedel, Phys. Rev. E69, 036603

s2004d.
f22g C. L. Pando L., e-print nlin/0305011.
f23g F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys.71, 463 s1999d.
f24g A. Pikovsky, M. Rosenblum, and J. KurthsSynchronization: A

Universal Concept in Nonlinear SciencessCambridge Univer-
sity Press, Cambridge, U.K., 2001d.

f25g C. L. Pando L., Phys. Lett. A309, 68 s2003d.
f26g D. Hennig and H. Gabriel, Phys. Rev. E57, 2371s1998d; D.

Hennig, K. Rasmussen, H. Gabriel, and A. Bülow,ibid. 54,
5788 s1996d.

f27g T. Bountis, H. W. Capel, M. Kollmann, J. C. Ross, J. M. Ber-
gamin, and J. P. van der Weele, Phys. Lett. A268, 50 s2000d.

f28g A. Shabunin, V. Demidov, V. Astakhov, and V. Anishchenko,
Phys. Rev. E65, 056215s2002d; M. Palus, V. Komarek, Z.
Hrncir, and K. Sterbova,ibid. 63, 046211s2001d.

f29g N. J. Corron, S. D. Pethel, and K. Myneni, Phys. Rev. E66,
036204s2002d.

f30g G. Benettin and G. Gallavotti, J. Stat. Phys.44, 293 s1986d.
f31g P. Lochak and C. Meunier,Multiphase Averaging for Classical

SystemssSpringer-Verlag, New York, 1988d.
f32g J. Laskar, Physica D67, 257 s1993d.
f33g S. Wiggins, Chaotic Transport in Dynamical Systems

sSpringer-Verlag, New York, 1992d.
f34g W. Feller, An Introduction to Probability Theory and Its Ap-

plication sWiley, New York, 1968d, Vol. 1.
f35g D. Sornette,Critical Phenomena in Natural Sciences: Chaos,

Fractals, Selforganization and Disorder: Concepts and Tools
sSpringer-Verlag, Berlin, 2000d.

f36g C. J. Pethick and H. Smith,Bose-Einstein Condensation in
Dilute GasessCambridge University Press, Cambridge, U. K.,
2002d.

C. L. PANDO L. AND E. J. DOEDEL PHYSICAL REVIEW E71, 056201s2005d

056201-10


