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We investigate the onset of chaotic dynamics of the one-dimensional discrete nonlinear Schrédinger equa-
tion with periodic boundary conditions in the presence of a single on-site defect. This model describes a ring
of weakly coupled Bose-Einstein condensates with attractive interactions. We focus on the transition to global
stochasticity in three different scenarios as the defect is changed. We make use of a suitable Poincaré section
and study different families of stationary solutions, where certain bifurcations lead to global stochasticity. The
global stochasticity is characterized by chaotic symbolic synchronization between the population inversions of
certain pairs of condensates. We have seen that the Poincaré cycles are useful to gain insight in the dynamics
of this Hamiltonian system. Indeed, the return maps of the Poincaré cycles have been used succesfully to
follow the orbit along the stochastic layers of different resonances in the chaotic self-trapping regime. More-
over, the time series of the Poincaré cycles suggests that in the global stochasticity regime the dynamics is, to
some extent, Markovian, in spite of the fact that the condensates are phase locked with almost the same phase.
This phase locking induces a peculiar local interference of the matter waves of the condensates.
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[. INTRODUCTION namics of the DNLSE in a ring geometry in the presence of
a single defect. In a BEC the defects can be created with
A large number of recent investigations have been deadditional lasers or magnetic fields. A double-well trapping
voted to studying the combined effects of disorder and nonpotential was obtained by superimposing a sharp barrier in-
linearity in one-dimensional lattices. A typical theoretical duced by optical and magnetic traffs2]. In this way, two
model within this category is the discrete nonlinearBECs were produced, one on each side of the bdrtigr A
Schrédinger equatiofDNLSE) [1]. This equation describes theoretical model describing two interacting BECs consid-
a large class of discrete nonlinear systems such as opticated this experimentL3]. Indeed, the possibility to carry out
fibers[2,3], polarons[4], small molecules such as benzeneexperiments with a small number of condensates in a ring
[4,5], and, more recently, dilute Bose-Einstein condensategeometry will become a reality, as soon as greater control of
trapped in a multiwell periodic potentif]. One of the main  the microtrap technology is achievet4].
effects in these lattices is localized excitations in perfectly The DNLSE is a vast subject with many different and
periodic but strongly nonlinear systerfis,7,8. We refer to  relevant issues such as the dynamics of discrete breathers in
discrete breathers, also known as intrinsic localized modesne- or two-dimensional infinite latticd4], propagation of
[1]. These are spatially localized, time-periodic, and stablexcitations in the presence of disord&6], and mobility and
stationary solutions of the DNLSEL], and have been ob- interaction of breatherf7]. Motivated by the dynamics of
served in many physical systemi8]. Experimentalists are BEC, we concentrate on the special issue concerning the
currently interested in considering breathers in Bose-Einsteinnset of chaos in the DNLSE with a small number of oscil-
condensatefs]. lators. The DNLSE is a nonlinear Hamiltonian system with
The experimental observation of Bose-Einstein condensaM degrees of freedom, wherd refers to the number of
tion (BEC) in a dilute gas of trapped atoms in an optical condensates. The DNLSE, as is well known, has two con-
multiwell lattice, created by a far-detuned, standing-wave lastants of motio{1]. Therefore, wherM =2, the DNLSE is
ser bean{9], has generated much interest in the dynamicaintegrable. However, wheld = 3, the DNLSE can exhibit an
properties of this state of matter. The condensates can coheamazing degree of complexity. The chaotic dynamics for
ently tunnel between interwell barriers. The heights of theM =3 and 4 was studied, to our knowledge, for the first time
barriers can be adjusted since they are proportional to thalmost two decades ag[dl6], considering, in particular,
intensity of the laser beam. These experimental techniqugsower spectra and the spectra of Lyapunov exponents of the
have allowed direct observation of several phenomena origisystem. The nonlinear dynamics figi=3 has also been con-
nally believed to belong to solid-state physics such as quarsidered more recently17,18. For M=3, symmetry argu-
tum phase transitio40] and Josephson regimgk 11). The  ments show that the dynamics is that of an area-preserving
evolution of this BEC is governed by the Gross-Pitaevskiitwo-dimensional map. As a result, it provides a rich behav-
equation and can be mapped, in the tight binding approximaior, which is of interest for both theory and experiment of
tion, to a DNLSE[6]. Here, we consider the nonlinear dy- BEC. WhenM =3, the passage of a trajectory from one sto-
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chastic region in phase space to another is blocked by 5w ,
Kolmogorov-Arnold-MosenKAM ) surfaceg19]. WhenM = T AW+ KWy + W) + oYY, =0, (1)
>3, however, Arnold diffusion can take place, that is, in the
phase space of the system, stochastic layers of different resathere ¥, stands for the condensate complex amplitude in
nances intersect. Therefore, the motion will spread out ovethe mth well, p is the nonlinear coefficient arising from the
the entire system of intersecting layéf®]. Arnold conjec- interatomic interactionk is proportional to the microscopic
tured that this instability is generic to higher-dimensionaltunneling rate between adjacent sitAs, stands for the on-
nonlinear Hamiltonian systems. Indeed, in the context okite defect and is proportional to an external field superim-
DNLSE, Arnold diffusion was considered fdi =4 [20]. posed on the lattice, and, finallyis the time. By introducing

In this work, we study different types of chaotic solutionsthe dimensionless amplitude ¢,=p/2K¥,, exd —i(A
of the DNLSE with periodic boundary conditions and a +2K)t], Eg. (1) transforms into the discrete nonlinear
single on-site defect. In a recent arti€®l] we have given a Schrédinger equation given by
global picture of the dynamics of this system. In the current
paper we focus on the transition to global stochasticity, . Jdim B
where the single one-site defect induces interesting complex '7 + St (U1 Yines = 20) + 20l *Yin =0, (2
dynamics. The number of condensatelss 7, allows for the
manifestation of phenomena such as Arnold diffusing].  whered,=(A,—A)/K stands for the defects=Kt, andA is
The present study of the dynamical properties of this mode&iny arbitrary number. As a result, the only parameters of the
is carried out considering the Poincaré section in the paranl?NLSE in Eq.(2) correspond to the defect, The system
eter region of the on-site defect. Moreover, we found severabs assumed to have periodic boundary conditions. The posi-
families of stationary solutions. Relevant information on thetive sign before the nonlinear term indicates that we are con-
dynamics was found using suitable return maps of thesidering an attractive interatomic interaction between the
Poincaré cycles, which, to the best of our knowledge, is coneondensates, such as in the case of lithium at#8$
sidered for the first time in multidimensional conservative There are two integrals of motion in E). The first is
systems. These Poincaré cycles allowed us to have a bettdve Hamiltonian, from which Eq(2) is derived[1]. It is
understanding of the robust properties of this system, whiclgiven by
have, we believe, physical relevance. For instance, in con- v
tinuous time, the population inversions of certain pairs of _ 2 4 2
condensates occur almost simultaneously. That is, these H= zlq‘ﬂm' Peal* = [l * = Sl ] 9. Q)
population inversions synchronize in an information sense
[21,22. We systematically study three different routes thatThe second constant is the norm, which is given by
lead to this behavior. Moreover, the statistics of these
Poincaré cycles display, surprisingly, an almost Markovian M 5
behavior in spite of the fact that the condensates are to a N=2 | el = 4)
good extent phase locked and, therefore, the system shows M=l
coherent motion. In fact, a good interference between th@iere M stands for the number of condensates.

matter waves of the condensates is the hallmark of phase \ve can rewrite the DNLSE by transforming into action-

locking. angle variable$N,,, 6,,), wherey,,= VN, exp(—i 6, to stress

This article has seven sections. The DNLSE and the initiaj,o physical meaning of the equations of motion. The equa-
conditions are discussed in Sec. Il. In Sec. Ill, we introducg;jons for N,,=0 and4,, are the following:

two types of qualitatively different instabilities induced by

the single on-site defect, and we define a suitable PoincaréN,, — _—

section. Chaotic symbolic synchronization between spatially . = 2VNmNm-1 SIN(6n-1 = Om) + 2VNpNpea SIN(Gnes = O,
symmetric pairs of condensates is also discussed. The onset

of chaotic self-trapping as a precursor of chaotic symbolic

synchronization is considered in Sec. IV. Two different din —2-5 — [Nm-1 cod 6, 1 6) - N1 cog 8
branches of stationary solutions are considered in Sec. V,dr m Nm -t Nm mrl
where certain bifurcations trigger the onset of the aforemen- ~6.)-2N 5)
tioned symbolic synchronization. In Sec. VI, we discuss the m m:

phase locking effect between condensates and the resultinge will see that, in the chaotic regimes that we study, the

chal interference. Finally, in Sec. VII, we give our conclu- inequality |6,,— 6,/ <1 holds, and therefore the system is

sions. phase lockedi24]. N,, stands for the population of sita.

Il. THE MODEL AND THE INITIAL CONDITIONS . We Wi.|| use as initial conditions a set of sta}tior]ary solu-
tions which arise when the defect parameter is givershy
We consider a one-dimensional ring of coupled BECs=0 [21,25. To find these DNLSE stationary solutions, we

When the height of the interwell barriers is much larger tharuse the nonlinear map approaf®6,27. This map is ob-

the chemical potential of the system, the latter corresponds t@ined by settingIN,/d==0, andé,= 6, for anyn# min Eq.

an array of weakly coupled condensates, whose equation ¢5). Moreover, we can define the frequency of the resulting

motion[6] is given by periodic orbit by settingd6,,/dr=\, where\ is a constant.
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FIG. 1. (a) Plot of stationary solution amplitudeN,, versus FIG. 2. (a) Distanceo versus . Plot of u versus timer for

condensate indem whereI'=2.5. Plot ofN,, versus timer for 8, 93= (0) —0.005,(c) —0.0065, andd) —0.007.
= (b) —0.005,(c) —0.0065, andd) —0.007. The labels 1, 2, 3, and
7 are the condensate indices. The variableas been further res-
caled by dividing by 4.

—0.006 25, respectively. These localized chaotic oscillations
occur in a narrow interval —0.00696;<-0.0055 and are
not typical whend;<0. In contrast, the presence of a defect
83>0, in the quasiperiodic or chaotic regime, typically in-
Therefore, the stationary solutions have the for(7)  duces localized oscillations ®,, [21]. The localized solu-
=yNp exp(-ik7). As a result, the following cubic mafCM) tions are referred to as self-trapping soluti¢hg,18,2Q. As

is obtained: the parameted; <0 decreases further, we find a typical sce-
nario where the oscillations dfl,, become delocalized, as

Kne1 = Yo, observed in Fig. ). Here, the initial behaviour oN,, is
) characterized by time sequences, that are reminiscent of qua-
Yne1 = Uy = 2YD) Yo = X, (6)  siperiodic and localized chaotic motions.
= ; In order to measure the extent of localization in the
where',=2-\-4, and Y,,=v In the CM we will set
I'y,=I'=2-\ for which §,=0. The Jacobiad of this map is DNLSE, the quantityr= _[1“”(M)]2 =1((N)/N)In((Ny)/N)
area preserving, i.e., J=1. The fixed points has been used wheM =3 [17]. () stands for the sample

average or mean, and is the number of condensates. The
quantity » is unity when the populationl; are the same on
average, and is zero in the limit when only one of the popu-
lations N; is different from zero. In the chaotic self-trapping
regime, whend;=-0.006 25, we find thaty=~0.9056. As a
reference we can consider the stationary solution whgn
=0, where we obtainy~0.88. However, wherd;=-0.007,
he continuous-time chaotic delocalized solutions giye
0.9905. As a result, the populations of the condenddtes
have almost the same mean. Whér 3, chaos usually leads
to »=1 for relatively small constants of motidd [17]. In
IIl. DEFECT-INDUCED OSCILLATIONS AND THE these different oscillatory regimes, the changesgt 0 in-
POINCARE SECTION duces an increment of the distance froifs;), the stationary

From here on we consider the DNLSE with a single de-solution when §;<0, to the fixed initial conditionU(0)
fect, 3,<0, ands,=0 for n# 3, in a ring with seven conden- =(VN1, VN5, VN3, YNy, VN5, \Ng,\N), the stationary solu-
sates. We make use of the exact stationary DNLSE solutiotion when 8;=0, shown in Fig. (a). The distance between
of the previous section as initial condition for this perturbedthese two points is given by=|U(8;)—-U(0)|. The depen-
DNLSE. This contrasts with a previous artidi21], where  dence ofo on 5;<<0 is approximated by~ —-29;+C, where
we added small random perturbations of the order 6f1®  C is a constant. This is shown in Fig(eé2. We have found
the initial conditions to test for the stability and robustness ofthese central resonancéXd;), when §;<0, using a root
the solutions. Keeping the initial condition fixed allows us tofinding scheme with initial guesses in the vicinity df0),
study the onset of chaos as the defect parameter is changehe stationary solution a$;=0.

As the parametef; <0 increases in absolute value, we find  The picture that emerges is, therefore, that of an initial
a transition from a quasiperiodic solution to a chaotic solu-condition, given in Fig. (@), moving away from the central
tion where the oscillations dfl,, are localized within a small resonancdJ(d;), as shown in Fig. @). As in any Hamil-
neighborhood of the stationary solutions. These regimes ar@nian system, this leads to a closer vicinity to the stochastic
observed in Figs. (b) and Xc), for which §3=-0.005 and layers where chaotic behavior occurs. Moreover, since the

(x\I'/2-1,+\I'/2-1) of the CM are elliptic for 2<I" <4,

WhenI'=2.5, we find a period-7 orbit surrounding the ellip-
tic fixed point. The periodic orbit is surrounded by island
chains[25]. We will consider those stationary solutions of
the DNLSE that are determined by tkelliptic) stable peri-

odic orbits of the CM. Such a periodic orbit with periodicity
7 generates linearly stable stationary solutions in a ring wit
seven condensates. The amplitudes of this stationary solution
are shown in Fig. ().
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number of degrees of freedom of our system is larger than 2, O e s 0.45 4
these stochastic layers are expected to form an intercon- @ 9 ) -
nected network, which is known as an Arnold wél8]. The c - .03

=z =z

thickness of these layers, typically, expands with increasing
perturbation[19]. This is observed when we decrease the -
parameterd; <0 in the interval —0.006% §;<-0.0055. In \ @
fact, the time series dfl,,, in Fig. 1(c), increase their oscil- 0
lation amplitudes with decreasingg<<0. At a given point,
however, when the thickness of these layers is wide enough,
resonance overlap and motion across certain stochastic layers
occurs, leading to the onset of a stronger chaotic motion. 2 0
This is precisely what one sees in FigdiL We will return to z
this issue below, considering a suitable Poincaré section.

Let us define the new variable=N, —Ng, where N_ -0 : os 045 5 o6
=N;+N;+N, andNg=N,+ N5+ Ng are the left and right wing - N, N, ' - N,-N, ‘
populations, respectively. In the quasiperiodic, self-trapping
chaotic, and delocalized chaotic regimes, the trajectory inter- FIG. 3. (a) Plot of N, versus timer, at the Poincaré section
sects an 11-dimensional surfape=0 transversally, as sug- when §;=-0.0065. The labels 1, 2, 3, and 7 are the condensate
gested by Figs. ®), 2(c), and 2d). ©=0 defines an 11- indices. (b) Plot of N3 versus timer, when §;=-0.007 at the
dimensional surface due to the existence of the constants &oincaré section(c) Plot of N,—N,; versus N;—Ns when &=
motion H andN. The Poincaré surface of section is defined—0.007 for continuous timed) Plot of N;—Ng versusN; —Ns when
to be where the trajectory intersects this surface fgom0  6=-0.007 for continuous time.
to >0, as shown in Fig. 2, that is, whep=0 anddu/dr
>0. The associated map of a Hamiltonian flow is also areaions exhibit almost equivalent information at the same av-
preserving[19]. Since the DNLSE is a Hamiltonian flow erage rate. In our Hamiltonian system, we compare the sym-
with two constants of motion, there are four Floquet multi- bolic dynamics of these three chaotic population inversions.
pliers equal to 1 for each periodic orhit9]. As a result, the
assouat_eq volume-preserving map is ten dlmensmnal' when IV. CHAOTIC SELF-TRAPPING AS A PRECURSOR OF
M=7. Similarly, the corresponding map becomes two dimen- Ss|
sional whenM =3. These four Floquet multipliers imply the
presence of four vanishing Lyapunov exponents in the We now focus on the dynamics in the Poincaré section.
DNLSE. The time series oN,,, when §;=-0.0065 and—-0.007, are

Let us consider first the self-trapping chaotic regime forshown in Figs. 8) and 3b), respectively. Figure (3) sug-
which §;=-0.006 25. At the Poincaré section, we find thatgests that in the self-trapping regime there is some underly-
IN;=Ns| ~ 1073, [N,—N,|~ 1073, and|Ng—N;|~1073. There- ing fine structure in the dynamics, which is more clearly
fore, taking into account the typical magnitudesNyf from  appreciated foN;. Instead, Fig. @) suggests that there is no
Fig. 3@, we have thalN; =Ns, N,~N,, andNg=N; at the  such structure whe;=-0.007 and, moreover, this figure
Poincaré section. In the case wheke=—-0.007, the popula- shows that the trajectory has been in the self-trapping region
tion differencesN;—Ns, N,—N,4, andNg—N; have the same roughly during the time intervals ©7 <60 and 3206< 7;
sign most of the time, as is clearly appreciated in Figs) 3 <3600. In fact, in a high-precision calculation consisting of
and 3d). Thus, these population differences, to a significantL0® time units, only these jumps between these two chaotic
extent, undergo inversion at the same time and have the samegions have taken place. The variableas been rescaled by
sign of u=Ng—N,. The characteristic magnitudes of the dividing by 4.
population inversiondN;—Ns, N,—N,, and Ng—N; at the We show evidence suggesting that the dynamics when
Poincaré section and at their maxima differ by almost twod;=-0.0065, to some extent, consists of a sequence of mo-
orders of magnitude whefy=-0.007. Moreover, this behav- tions along the stochastic layers of different resonances. To
ior seems to be robust, as confirmed by extensive numericaupport this, we address the dynamics shown in Fig. 4. We
simulations. This is precisely what makes this continuoushave considered the Poincaré cycigs— 7 as return maps.
time synchronous inversion relevant, we believe, from ariThe indiced label consecutive Poincaré sections anid the
experimental standpoint. Poincaré recurrence tinj&9]. In Fig. 4(a), the motion wan-

The behavior whed;=-0.007 is an example of synchro- ders stochastically around a multiple resonance of period 5.
nization of symbolic informatior(SSI), and holds, at least, In fact, if we sample this map each five Poincaré sections, we
for time units as large as~ 10°. According to this notion, only see a single stochastic layer. This occurs in the interval
two arbitrary oscillators are perfectly synchronized in an in-2700<i<3900. Figure ) suggests that the associated
formation sense if they produce the same information at theesonance is of period 7. Figuréc# indicates that the orbit
same rate, i.e., symbols generated by one system map ons-in the neighborhood of a resonance torus of period 12.
to-one to symbols emitted by the other syst¢28,29.  This seems to be a secondary generation resonance where the
Strictly speaking, this form of synchronization requires thatprimary has period 3. Figure(d) suggests that the related
the common information be emitted at precisely the same&esonance is a simple resonance. The intervals of the indices
time. Figures &) and 3d) suggest that the population inver- i of Figs. 4b), 4(c), and 4d), are 8586<i <8670, 6606<i

o
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44 = tangle of each torus becomes intertwined with the ho-
(b) moclinic tangles of nearby tori, leading to the possibility that
G ‘ orbits starting near any one of these tori may diffuse along
'y this dense set of homoclinic tangles in a chaotic fash3.
° ~ : This is at the heart of what is known as Arnold diffusion
29 - [19]._ _ _
4.3 5 4.6 8 o 4.4 Figures 1c) and 1d) suggest that there are orbits having

three time scales for the motion: First, a small time scale,
- ) where the system looks integrable; second, a widely ex-
/ (c) : T o (d) . . . . }
“‘ tended intermediate time scale, where the actions are con

‘TE > .;5 fined in a bounded domain with a nontrivial dynamics; fi-
e ! e nally, a long time scale, where the motion is no longer local
- f and, seemingly, all the degrees of freedom are invo|\3&dl
28" - e 285 " The second stage of evolgtion can be supported by _the
’ L : ) L : Nekhoroshev theorem. In this theorem, where the evolution

of the system is considered only for finiteut large times,

FIG. 4. Return map of the Poincaré cycles, thatsis;—7.,1  One obtains estimates which are valid in small neighbor-
versus ;-7 when 8;=-0.0065 at the Poincaré section f@) hoods of phase space for the variations of the action vari-
2700<i <3900, (b) 8580<i <8670, (c) 6600<i<7100, and(d)  ables[31]. Nekhoroshev considers a quasi-integrable Hamil-
5100<i<5380. tonian, where the perturbation to the integrable part of the

Hamiltonian is small enough. Moreover, if this integrable
<7100, and 5108 <5380, respectively. In Fig.(8) we partis convex then the actions are confined in a small neigh-
have shown the time series of,;— 7 versus indexi for borhood during an exponentially long time, which increase
12 000<i <26 000. During this long time interval the mo- exponentially with the smallness of the perturbatida).
tion sticks to the neighborhood of a period-5 resonance torus To apply this theorem to the Hamiltoniad, which is
as indicated by Fig. ®). Indeed, by sampling this time se- given in Eq.(3), we have to show that the integrable part,
ries every five Poincaré sections, we will only see a singlevhich we label asHy(N1,Ny,...,Ny), is convex. Here we
stochastic layer. This period-5 resonance is, however, diffethave to make use dﬁ:Ei'\ilNi, the second constant of mo-
ent from that of Fig. 4a). Therefore, we have seen that the tion. That is, we need to show that the Hessian matrix of
stochastic layers of different resonances are connected amth(N;,N,,...,Ny) is definite in a vicinity of the initial con-
that the trajectory spreads out over this system of intersectinditions. To obtainHy(N1,Ns,...,Ny), we have replaced,
layers. This behavior takes place for time unitsrafs large =N, exp(-i6,,) in Eq. (3) and, moreover, we have consid-
as 16 as suggested by Fig. 5. ered the term with the factaf; as a small perturbation. In

We believe that these long residence times near resaddition, on the basis of our numerical simulations, we as-
nances can be explained as follows. In Hamiltonian systemsume thai#,,— 6,| <1 is valid for the long time scales con-
with three or more degrees of freedom, a dense set of resgidered in this theorem. These angle differences also corre-
nant tori can persist. Generically, the stable and unstablepond to a small perturbation. Upon these considerations, the
manifolds of each preserved torus intersect transversallamiltonianH, takes the form

yielding a homoclinic tangle. Moreover, the homoclinic "

Ho= > [(V\Nm= VNimen)? = N2]. (7)
m=1

4'2%;5

WhenM=7, the Hessian of the Hamiltonidth, depends on
six actions, since the constadthas been taken into account.
- The evaluation of the Hessian, at the stationary solution of

5 (a) Fig. 1(a), gives the spectrum of eigenvalugg after replac-
{2 Y 2.6 ing N; in Hy. These arer;=0.1148.., »,=0.1933.., v;
ix10 =3.8664.., 1,=6.8310.., vs=15.6296.., and
42 o =126.7421... Observe that these eigenvalues have the same
(I Q sign. This suggests that the Hamiltonidg is convex in the
TE . . neighborhood of the aforementioned initial conditions. As a
i \ Q result, the conditions of the Nekhoroshev theorem appear to
) e

b hold in our simulations and what we see in Figc)lis the
2§ Nekhoroshev regime, where the actidwg are bounded in a
8 S 42 small neighborhood allowed by the two conservation laws. A
e similar set of eigenvalues is obtained if we replace any of the
FIG. 5. (a) Plot of the time series ofi,;—7 for 12000<i  actionsN, instead ofN, in Ho,.
<26 000 whend;=-0.0065.(b) 7.~ 741 Versuss,,—7 for the As we decrease the negative parametgiurther, the os-
time series ofa). cillation amplitudes ofN,, expand slightly, leading, for a

056201-5



C. L. PANDO L. AND E. J. DOEDEL PHYSICAL REVIEW E71, 056201(2005

120 0.01 0.08
\ (a) | k)
-
1 E £
s £ o £ o
.
-0.01 -0.08
0 0 1 5 9 13 1 5 9 13
0 : 12000 0 : Index m Index m
2
= (d) < (© <2
3 = A < @
= ) 2 ©
- =] =
&, o e °
g
- b ekl % Time - 10000 % Time 10000
0 250 500 ' '
LWl Lag Ai
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FIG. 6. Plot of7,; - 7; versus the Poincaré section indewhen  §,= (a) —0.0065 andb) —0.007. Plot of logg(A;/A,) versus time
3= (a) —0.0065 and(b) —0.007.(c) Plot of logoP(741—7) for 7, for 83= (c) —0.0065 andd) —0.007.
83=-0.0065(continuous lingand —0.007(dashed ling (d) Plot of
the ACF C(Ai) for 8;=-0.0065 (continuous ling and —0.007  these time series, Wheré:(Ai):2:z§_S(Aﬂ—AT)(Aﬁ+Ai
(dots. -AD)/IZZRS(A7-A7)2 In this equationAri=7,,—7 and
given parametes,, to the onset of a stronger stochastic mo-A7 are the time series and its sample average, respectively.
tion in a larger region as shown in Figgdy, 3(c), and 3d). Ai is the time lagR is the_ number of data p0|r_1tA; <S_ and
Moreover, we see that when SSI takes place, in spite of thB>S[19]. The ACFC(Ai) of 7,;~ 7 for the time series of
small change of;, the largest Lyapunov exponent increasesFig. 6@ has a slow nonexponential decay, wheh
several times. This qualitative change can be understood &~0.0065, as a result of the presence of intervals with some
the overlap of certain resonances which belong to differentegularity. Instead, the ACEE(Ai) has a fast decay which
regions of phase space. The self-trapping chaotic regimémplies a small memory for the time series of Figbl as
when §;=-0.0065, can also be affected if the region containgndicated on the basis of the aforementioned exponential de-
a large amount of KAM tori, which act as effective barriers pendence. The plots of these ACE&AI) are shown in Fig.
for limiting large excursions of chaotic orbif82]. Instead, 6(d). However, there are, besides some fitting arguments, at
for 8;=-0.007, these barriers no longer operate, due to théeast two reasons that make the time series of Kig. $ome-
overlapping of certain resonances and, therefore, the orbwhat different from a Markovian process. First, there is the
can explore both the region of self-trapping and that of SSIpresence of temporal jumps to the self-trapping region,
as observed in Fig.(B). where the motion is highly correlated, as suggested by Fig.

To have a quantitative measure of the stochasticity, we(b). The second is the existence of very long time intervals
consider the time series of,;—7, as well as the spectra of 7,,;—7 that appear as rare events. The latter arise in the tails
the Lyapunov exponents of the system. The time setigs of our PDF and, typically, have power law dependef8%.
-7, when 8;=-0.0065 is narrow, sharply bounded, and hasThese are not shown in the dashed line of of Fig) 8ince
time intervals with some regularity, as shown in Figé)5 its probability is negligible, at least during our time series
and Ga). These intervals are typically generated by the mo-consisting of 10 time units. It should be underlined that, in
tion around a given resonance torus. Instead, wlden spite of this quasi-Markovian behavior, certain pairs of con-
=-0.007 there are no signs of such a regularity. In fact, thelensates can synchronize the symbolic dynamics of their
time series looks quite noisy, as shown in Figb)6 The  population inversions. This is related to phase locking, since
probability distribution function(PDF of the Poincaré lack of the latter inhibits the presence of §3L].
cycles 71— 7 is sharply peaked and bounded whég To verify the stochasticity of the motion, let us consider
=-0.0065, while the core of this PDF, whép=-0.007, has the spectra of the Lyapunov exponents. These are shown for
to a good extent a broad exponential dependence. Thesg=-0.0065 and-0.007 in Figs. 7@ and 1b), respectively.
PDFs are shown in Fig.(6). We stress that the exponential The largest positive Lyapunov exponent;, for &
dependence of this PDF core indicates that these Poincaré-0.0065, is almost six times smaller than that wh&n
cycles have, to a good degree, a Markovian character. Ir—0.007. To understand this, we point out that in the chaotic
other words, in case we have a perfect Markovian procesself-trapping regime there is some regularity, as appreciated
[34], the probability that the trajectory continues with ain Figs. 4 and 5. In contrast, whef=-0.007, the system
given symbol ofw until 7° > 7" is independent of the past behaves almost like a Markovian process. When both the
duration7 - 7,>0, wherer" < 7,,. Here, 7, is the last time  chaotic self-trapping and SSI take place, there is a single
that the trajectory intersected the Poincaré surface of sectiopositive Lyapunov exponent whose magnitude is much larger
The prevalent Markovian character of this time series implieghan that of the other positive Lyapunov exponents. The evo-
small memory. This is precisely what we show below bylution of the ratio between the two largest Lyapunov expo-
calculating the autocorrelation functiofACF) C(Ai) for nents,A1/A,, for 63=-0.0065 and-0.007 is given in Figs.
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0.70
0.65] /7/[ _________________________________________________
4

0.60]

0.55]

Re (y,)

0 S e FIG. 8. Plot of the real part of the stationary

solution ¢ of EqQ. (2) versuséss. Here the period

0.4% of the solution, 2r/\, remains constant. See text.

0.40]

7(c) and 7d) respectively. As indicated above, the two con- 9(c); however, the behavior of SSI has been somehow de-
servation laws of our autonomous Hamiltonian system implygraded as suggested by Figdp In fact, the aforementioned
that we have at least four Lyapunov exponents which arg@opulation inversions aju=0 are only about ten times
equal to zero. smaller than their maximum magnitude and do not change
sign in a synchronous way with the accuracy of the previous
cases wher.’ =-0.032 99 ands;=-0.007.
V. FAMILIES OF STATIONARY SOLUTIONS Figure 1@a) suggests that the positive Lyapunov expo-

: - - nentA, for 65 is larger than that fos},”, where SSI happens
We have carried out a numerical study of stationary solu ith accuracy. Moreover, while the ratia,/A,~ 10 for

tions for the case of a ring with seven condensates. Partid) 5) 53 . .
results are shown in Fig. 8, where the real part of the station®s - Aq/Ay~1for 557 In fac_t, frpm Previous calculat_mn_s
ary solutiond; is shown versus the parame@@y Evidently, we know that lack of SSI implies that the nonvanlshmg.
there are many stationary solutions in the indicated pararzY@Punov exponents have roughly the same order. In addi-
eter range. The solution point with label 2 in Fig. 8 corre-1oN, thes)cores o;) the PDF for t.he If’omcare cycles -
sponds to a branch poirfor pitchfork bifurcation. Solid ~ When &5 and & are shown in Fig. 1®). Both have
curves denotglinearly) stable stationary solutions, while "oughly an exponential dependence which accounts for the
dashed curves denote unstable solutions. The period of t{@Ugh Markovian behavior in these time seriesnh— 7.
stationary solutions, 2/, along the two bifurcation We have carried out a study of the bifurcations of the sta-

branches remains constant. In the neighborhood of the stab{nary solutions as the parameiyis changed fqr different
stationary solutions, just before the bifurcations, the dynamPumber of condensatés. WhenM =6, the behavior of these
ics is quasiperiodic, such as near the stationary solutions 02
with labels 4 and 1. Instead, just after the bifurcation points, s\ (@ (b)
initial conditions in the vicinity of the unstable stationary ’
solution trigger the onset of the chaotic dynamics, such as
near the stationary solutions with labels 3 and 5, whi%?)e
=-0.028 ands;’=-0.032 99, respectively.

The dependence of the amplitudés,, on the the indexn 02— %4 5 6 7 s 0.4
for the unstable stationary solution @ =-0.03299 is Condensate Index m 18
given in Fig. 9a). In this figure, we can see that the ampli- 0.8 '
tude dependence is not symmetric with respect to the on-site 06 (©)
defect position at the index=3, as in the case of Fig(d).
However, as shown by Fig.(§), SSI takes place to a good
degree in the continuous flow. Moreover, at the Poincaré
section, we find thafN,;—Ns|~1073 |[N,—N,/~1073 and o2 08
IN—N7| ~10°%. That is, the population inversions ai=0 b e ST NN, !
are about a hundred times smaller than their maximum mag-
nitude. A qualitatively similar behavior was observed before FIG. 9. (a) Plot of stationary solution amplitud€N,, versus
for 3;=-0.007. Quite a different story is, however, the casecondensate indexm when 8;=4.". (b) Plot of N,~N, versusN,
for wh@ 6(33):—0.028. Here the dependence of the ampli--Ng when 6= 5g5> for continuous time(c) Same aga) but for &3
tudesyN,, on the the indexm is symmetric as shown in Fig. =6, (d) Same agb) but for 5;= 5.

[ [ 0

(N )1/2

(N )1/2
N2
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0.07,

(=]

H, = 2(N = N7 = 2/N;N, = 2VN,N3 = 2VN;N;) — 2N2 - 2N3
- 2N2 - N3 - 8Ns. (9)

N5 can be eliminated using, at the Poincaré section, the iden-
: 5 tity N=2N;+2N,+2N;+N;. Defining now the parameter
-0073 5 9 13 0 40 80 120 a,=(H,—H)/H, we find that |a,|<3X10* when &

Index m fin ™ =-0.0065. In Eq(9), H, is a two-dimensional surface em-
0 . 014 bedded in a three-dimensional spa®g,N,,N;), provided

that H, is constant. Sincél, is preserved to a good extent,

I091 o[P(tm _Ti)]

)
w

$ o @ we can qualitatively explain why the spectrum of the
@ = Lyapunov exponents has approximately a single positive
Lyapunov exponent as suggested by Fig).7Therefore, it
0.4 5 o1 o appears that there is a two-dimensional map on the afore-
8,79, mentioned surface in the spa@é;,N,,N3), which approxi-

. mately emulates the dynamics of our system at the Poincaré
FIG. 10, (a) Plot of the Lyapunov exponentsy, versus indexn - sections. A chaotic orbit of this map would give two
for 8;=6f (solid ling and & (dashed ling (b) Plot of Lyapunov exponents, which can be related to the largest, in
logiP (i1~ 7) for 53=65 (solid ling) and 533), (dashed ling (c)  gpsolute value, Lyapunov exponents of Figa)7 The re-
Plot of ¢3-6, versus 6,—¢, at the Poincaré section whed=  aining nonvanishing Lyapunov exponents are negligible
—(3_)).007.(d) Rlot of the :S’DFP(S) fo.r 6=-0.007(continuous ling, when compared to the largest one, as suggested by (). 7
57 (dotted ling, and & (dashed ling We underline, however, that, by no means, does our system
have the dynamics of a two-dimensional map. We have
stationary solutions is qualitatively similar to that flek=7.  shown evidence of motion along different resonances, which
However, wherM =9 and 11, the related stationary solutionswe believe is, at least, partially due to Arnold diffusion. The
are unstable within an interval of; similar to that of the latter was also supported by the apparent fulfilment of the
case withM=7. Moreover, as expected, these unstable staconditions of the Nekhoroshev theorem whgyx —0.0065.
tionary solutions display a richer bifurcation behavior. One of the manifestations of the wave nature of Bose-
Einstein condensates is the observation of interference when
the condensed and initially separated clouds of atoms are
VI. PHASE LOCKING AND LOCAL INTERFERENCE allowed to overlapg(12]. This is carried out in the experi-
) o . ) ) ments by turning off, after different evolution times, both the
In the tight binding approximation, besides the number ofy4gnetic and optical traps. Therefore, upon expansion the
particles in each sitelNy, the relative phases,—6n.1 Of  condensates overlap and interfere, and if the effects of par-
neighboring condensates are relevant quantities. In faclije interactions in the overlap region can be neglected, the
these determine the robusteness of a constructive 'nFerfef)‘articIe density at any point on the central axis of the ring of
ence pattern23,36. We show below that phase locking aoms, which is perpendicular to the plane of the ring, is
takes place in our model, i.88,— 0.1 < 27 for all m [24]. proportional to
It should be emphasized that lack of a significant degree of
phase locking inhibits the presence of SSI, as discussed else-
where[21]. A good interference pattern arises, however, only S(7) =
when|6,— 61| < 1. It is remarkable that when chaos arises,
in the form of self-trapping or SSI, we find thé#,— 6,
<1, in spite of the fact that nearby trajectories diverge ex
ponentially fast. Indeed, whefy=-0.0065 we have obtained
that |6,—6,]<102 Instead, in Fig. 1@), where &
=-0.007, we show thd®,,— 6, <10

2
(10

M
> U
m=1

If S(7) is measured just after the traps are turned off,at
‘we can have an idea of the dynamics by considering several
evolution timesr of the system. Since the phase differences
satisfy|6,,— 6mi1) <1, we can approximat&(7) as follows:

The value of the HamiltoniaH in Eqg. (3) can be approxi- Mo \2
mated whens;=-0.0065 at any time by Si(7) = (Z \"Nm) . (12)
M m=1
Hi= 2 (VNp= VNps1)? = N7 = 3N (8)  Indeed,S(7) approximatesS;(7) with good accuracy. More-
m=1

over, we further assume that the measurement timesere
Defining the parametewn;=(H;-H)/H, we find that 0 the traps are turned off, are distributed uniformly over a large
<a;<10°. Now, we can make use of the definition of the €nough span of time for many replicas of the same experi-
Poincaré section to find that=2N;+2N,+2N,+N; is con- ~ment having only different.. In this case, the probability
served WhenM:O_ Our simulations suggest tha’[’ at the distribution function OfS, which we label a?(S), will have
Poincaré section, we can repladlg— N,, Ns—N;, andN; @ relatively small width when SSI takes place. This is the
— Ny in the expression for,. As a result, for the value ¢, ~ case wheny;=-0.007 and53:é(35). However, when SSI oc-
we get the following approximate expression: curs to a smaller degree, such as widgn 6?, the PDFP(9)
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will have a broader width with larger tails. In this latter case,regime displaying synchronization of symbolic information,
we find that|6,— e ~ 1. among the populations inversions of different pairs of con-
To assess the possibility of an experiment to detect SSkensates, occurs a& <0 is decreased further. These popu-
let us consider Eq(l) for which the particle’s conservation lations have, however, the same mean. We have shown that
law takes the formNi,==M_,|W ]2 Here Ny, stands for the the change of the parametéy< 0, to reach the chaotic self-
total number of atoms in the experiment. Moreover, sincerapping regime, induces an effective displacement of the
|l =Vp/2K|W |, we get the expressionZ(SM_|¢,|?  initial conditions from the central resonance corresponding
=1/2, where/=K/pN,, From Fig. 1a), we obtain that to a given defecty;<0. Once the chaotic self-trapping re-
s em?=1.5 and, therefore{~1/3. Buonsante, Fran- gime sets in, it is characterized by relatively small fluctua-
zosi, and Pennpl8] suggest that the range<¢ <4 is suit-  tions of the populations of the condensates. Moreover, the
able for a physical experiment consisting of a ring with threedynamics consists mostly of a sequence of motions along the
condensates. Our estimatésé=0.07Es and, roughly, 1000 stochastic layers of different resonances, as suggested by the
atoms in each well, are taken from R¢fl1], where Ex  return maps of successive Poincaré cycles. We attribute this
stands for the recoil energy. Taking into account the populabehaviour mainly to Arnold diffusion. This is also suggested
tion distribution in each well, we ggt~ 10 “Ex. Moreover, by the theorem of Nekhoroshev, whose conditions are satis-
we find that the estimat&,;=5;K ~0.000 4% can generate fied in our simulations. In contrast, the SSI regime, which is
SSI. This value ofA; is realistic in experiments with mi- continuous in time, is characterized by large changes of the
crotraps, where also the regime of weakly coupled condenpopulations of the condensates. This regime displays small
sates can be achieved with suitable interwell barrjédy.  memory effects as suggested by the time series of the
This defect value for\; has the order of magnitude of the Poincaré cycles, which remind us of an almost Markovian
parabolic external potential in experiments with Josephsoiprocess. However, the coherence of the system, related to the
junction arrays realized with atomic Bose-Einstein condengood degree of phase locking, is a necessary condition for
sateq 11]. the onset of SSI. In the self-trapping and SSI regimes, the
system has basically a single positive Lyapunov exponent.
We have also studied the stationary solutions as the on-site
VII. CONCLUSIONS AND DISCUSSION defect undergoes large changes. We find that a pitchfork bi-

We have studied a family of chaotic solutions in a systenfurcation triggers the onset of the SSI dynamics, where the
consisting of a ring of seven weakly coupled BECs with defect is negative. The case of six weakly qoupled conden—
attractive interactions described by the DNLSE. The initialSates behaves similarly to the abovementioned case with
conditions are determined by the stable periodic orbits of £8ven condensates. An increase in the number of conden-
suitable Hamiltonian map. The onset of the chaotic solution§ates, to nine and eleven, gives unstable stationary solutions
has been systematically considered by changing the on-sitith complicated blfurca_ltlor_ls. Finally, we _havg seen that the
defect and, also, by studying a suitable Poincaré map of thBrésence of phase locking in the SSI regime induces a sharp
system. This allowed us to gain further insight into the dy_dlstnbunon of the_partlcle density along a spatial axis of
namics of this system. In particular, the consideration of reSymmetry of the ring of BEC. The present study suggests
turn maps of successive Poincaré cycles has been useful 3@t the interesting and complex dynamics of the SSI regime
describe the dynamics of our system which, to our knowl-can be a good candidate for experimental verification.
edge, represents an original example of th_e usefulness of ACKNOWLEDGMENTS
these return maps to study the evolution of many-
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