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Extreme times in financial markets
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We apply the theory of continuous time random wal&§ RW9 to study some aspects involving extreme
events in financial time series. We focus our attention on the mean exit(kitBd). We derive a general
equation for this average and compare it with empirical results coming from high-frequency data of the U.S.
dollar and Deutsche mark futures market. The empirical MET follows a quadratic law in the return length
interval which is consistent with the CTRW formalism.
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I. INTRODUCTION MET is the mean time when the random process leaves, for

The study of financial market microstructure has been thdhe first time, a given interval. _ y
object of intense research since the beginning of mathemati- Theé MET is an interesting quantity for the practitioner
cal finance[1]. Thus, one of the first models of market mi- Since it gives an estimation of the time that one should wait
crostructure was set by Bachelier, who proposed the mech0 observe a noticeable modification of the market scenario;
nism of the random walkRW) to represent the dynamics of thus, a trader gets an approximate time horizon to enter, or
speculative price$2]. In fact, Bachelier's RW, with slight leave, the market before a perceptible price change takes
modifications and additions, has been applied to a variety gflace. In this way, the MET provides a time scale to a period
problems in finance ranging from price dynamics to optionof market calm.
pricing [1,3]. Unfortunately, RW models, because of their ~The paper is organized as follows. In Sec. II, we briefly
Gaussian nature, fail to account for the universal charactedescribe the main definitions of the CTRW formalism. Sec-
istic of having fat tails in the empirical distributiofd]. This  tion Il develops the theory of MET for financial time series,
was the main reason for proposing the Lévy distribution agind in Sec. IV we obtain some analytical results and detail
an alternative description of the probability distribution of some relevant properties. In Sec. V we apply the formalism
prices[5]. However, pure Lévy models have a serious draw-0 real data. Closing remarks are left to Sec. VI.
back since any statistical moment beyond the first one does
not exist, which indicates that tails are “too fat.” This fact
has induced some authors to propose truncated Lévy walks Il. OUTLINE OF THE CTRW
as an alternative moddlb]. Other models based on the ) ) , i
Gaussian process plus jumpgl or even continuous jumps In this section we summarize the main fgature; of the
[8] have also been proposed to reproduce the desired fat tats’ RW formalism applied to the analysis of financial time
of the return distribution. series. We refer to the reader to Reff$6,17 for a more

Continuous time random walkéCTRWS are general COMPlete account on the subject.
models which perhaps better capture market microstructure, €t S(t) be an asset price arg its initial value. The log
especially that of high-frequency data. CTRWs were intro-Price or return is defined by(t)=In S(t)/S,. We define the
duced by Montroll and Weiss in 1968] and have a long Z€ro-mean return by
history of successful applications to physics, chemistry, and
geophysics, to name a fej0-13. To our knowledge, the X(t) = Z(t) - (Z(1)), (1)
application of the CTRW to finance is quite recent and its
potential has not been fully developgt4—17. One of the where(Z(1) is the return mean valydd].

applications where CTRWs may represent a valuable . . .
achievement is in the field of risk control, because the Suppose thaX(t) is described by a CTRW. In this repre-

CTRW formalism provides a natural way of treating any par-S€NtationX(t) changes at random timeg, t;,t, ... by, ..,
ticular realization of the price or return processes. and the resulting trajectory consists of a series of step func-

The statistics of extremes is a difficult field in probability ions @s shown in Fig. 1. We assume that these changes are
theory and its thorough description for a given random pro/ndependent and identically distributéd.d.) random vari-
cess can be quite involved, if not impossible, from an ana@Ples. The sojourns or waiting timess,=t,~t,, (n
lytical point of view [18]. In this paper we will use the =1,2,..), are described by a given probability density func-
CTRW formalism to study some aspects of the extreme valufon #(t). At the conclusion of a given sojourn the retuf(t)
problem applied to finance. We will focus our attention onsuffers a random increment described by the random variable
two of the simplest quantities related to extreme statistics&Xn=X(t)) =X(t,-1), whose probability density function
the mean first-passage tinIFPT) and the mean exit time (PDF) is denoted byh(x). We combine these two causes of
(MET). MFPT is the average time at which the random pro-randomness into one single densiifx,t), which represents
cess reaches, for the first time, some preassigned value, whillee joint PDF of waiting times and random jumps, i.e.,
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X A interval[a,b] [18]. Although the interest in knowing the sur-
vival probability is beyond any doubt, its attainment turns
out to be quite involved. In this paper we present a direct and
B R simple derivation of the MET with a similar structure to
b- e . those integral equations previously encountered in the litera-
Xty b ture on extreme timeg.g., Ref[21]). In contrast with pre-
" ; vious approaches to the MET problem, we do not need to
know here the survival probability to get the MET and we
X(t)=x, ! § leave obtaining the survival probability for a later work.

B We decomposd(xy) in two summands

Ly L L ° 4 Etn 4 T(XO) = Tl(XO) + T2(X0), (3)

a-} whereT;(X) is the MET to leave the intervdh,b] in only
= 1,,(x) y one jump andTx(xy) is the MET when more jumps have
' occurred. Note that in terms of the joint densipyx,t),

FIG. 1. A particular trajectory of th&(t) process along with a  T1(Xo) can be written as

particular value of the random variaktg,(Xo). % % % a
Ti(Xg) = f tdtf p(X = Xg,t)dx + f tdtf p(X = Xg,1)dX,
0 b 0 -

We will further assume thai(x,t) is an even function of so @

that there is no net drift in the evolution #{t). Note that if ~where the first summand is the mean time for the random
waiting times and jumps are independent random quantitiegvalker to escape through the upper bounderp, and the
then p(x,t)=h(X)¢(t). In any other situation one has to second summand is the mean time to escape th_rough the
specify a functional form ofp(x,t) that is compatible with lower boundary=a. If the random walker has not exited the
the observed datfl6,17. Moreover, since the jump PDF, mterval in the first jump, _the_ process will have attained at
h(x), and the waiting-time PDFy(t), are the marginal den- t|met some value<§ [g,b] |n5|de the interval, and.from that
sities of the joint density, any proposed formk,t) must ~ Point the mean exit time will be exactl(x). That is

satisfy * b
Ta(%o) = f dt f p(X=Xo, D[t + T(x)Jdx. (5)
0 a

p(x,t)dx dt=prob{x < AX,< x+dx; t< 7, <t+dt}.

W(t) = f p(x,0)dx; h(x) = f p(x,t)dt. 2
e 0 Substituting Egs(4) and (5) into Eq. (3), plus some simple
algebra involving the use of ER) finally yields the follow-
ing integral equation for the MET(x):
b
T(xp) =(7) + f h(x = Xo) T(x)dx, (6)

a

The main objective of the CTRW is obtaining the so-
called propagator, that is, the probability density function of
the zero-mean returk(t)

p(x,t)dx= prob{x < X(t) < x + dx}.

In Refs.[16,17] we have obtained general expressions for thevhere(r) is the mean waiting time between jumps. From a
propagator and other relevant quantities. We have also studrathematical point of view, Eq6) is a Fredholm integral
ied some general results that are independent of the modehuation of the second kind. Depending on the specific na-
chosen forp(x,t). We again refer the interested reader toture of the kerneh(x), there are some analytical approaches
Refs.[16,17] for a complete development of the formalism. which allow one to get an exact solution. In the most general

case, if the kernel norm defined by
lll. EXTREME TIMES

b (b
Suppose that at certain timgthe return has, after a jump, [Ihi2 =f f h?(x - y)dx dy (7

a known valueX(ty) =x,. Fort>t, we ask ourselves the fol- a-a

lowing question: at which time doed(t) leave a given inter- s finite, there is always a series solution that in many situa-

val [a,b] for the first time? In other words, at which time is tijons can be useful to obtain a good approximafi2g]. In

the return greater than certain valbeor smaller thare for  the next section we will see examples of exact and approxi-

the first time? We call this quantity the exit time out of the mate solutions.

interval[a,b] and denote it by, ,(Xo). Obviouslyt, ,(Xo) is a An important point should be emphasized: as shown in

random variable since it depends on the particular trajectorfq. (6), the MET does not depend on the possible coupling

of the X(t) chosen(see Fig. 1 Our main objective here is to between waiting times and jumps. In other wordi§,) is

obtain, based on the CTRW formalism, the mean exit timéndependent of the particular form of the joint dengity, t).

(MET) T,p(X0) =(tap(Xo)) [20]. Another extreme time closely related to the MET is the
The standard approach to MET problems requires thenean first-passage time, MFPT, defined as the mean time at

knowledge of the survival probability of the process in thewhich the process attains a given valgefor the first time.
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Let T,p(Xo) be the MET out of the intervdla,b]; then, if
Xo<X. the MFPT to x. is defined as TXp)
=lim, . _Tax (%), Wwhile if Xo>x. we have Tg(x)
=limy_..Tx_p(Xo). Thus, we see from Ed6) that, if Xo <X,
the MFPT obeys the integral equation

Te(xp) = () + f ‘ h(x = Xo) Te(x)dx, )

—o0

with an analogous equation whegp> x.. Unfortunately, Eq.
(8) is a singular integral equation for which the kernel norm
defined above is infinite. In such a case the solution of Eq.
(8) may not exisf{22]. Again, we will see an example of this

in the next section.

IV. SOME PROPERTIES AND RESULTS

PHYSICAL REVIEW E 71, 056130(2009

which are quite different from those given by Edl). In
order to compare this time with that of the CTRW just ob-
tained in Eq.(12), we will scale both times. We thus define
the following dimensionless METS:

Trw(Xo) = (62122 Tru(Xo),
and

Terrw(X0) = (LD YLD TerrwlXo)-

Then, for a symmetrical intervab=-a=L/2, we get from
Egs.(12) and(14)

. N 1 1
Terrw(Xo) = Trw(Xo) + A2 + ﬁ!

where

Equation(6) constitutes our most general result. In this
section we will summarize some general properties and de-
rive exact and approximate expressions for the MET.

Depending on.the specific nature pf the ke, there  \va gee thatTerry(Xo) — Taw(Xo) When L>v7L, that is,
are some analytical approaches which allow one to get ajynen, the length of the interval is much larger than the jump

1%

T*RW(XO) = 8 2L2 )

exact solution to Eq(6). One example is provided by the giandard deviation which is proportional toi/n this case

Laplace(symmetric exponentialPDF

h(x) = %/e‘VM, (9)

wherey>0 and{AX?=2/+2 is the variance of jumps. One

can show that in this case the integral equation(@h is
equivalent to the following differential equation:

T'(x0) = = ¥X7), (10)
with boundary conditions
T'(@=AT@) -(n], T'()=-ATb) -(n]. (11
The solution to this problem reads

2 2
T(x@z%[h(h%) - vz(x()—%k’) ] (12)

our CTRW approaches the Wiener process with a volatility
given by o=\2/%(7).

Let us now return to Eq6). We observe that, despite this
equation being written for an arbitrary interyal, b], we can
always transform the problem in order to work on a sym-
metrical interval, something that lightens the problem. Thus,
the symmetrized MET defined by

ToynlX) = T(x + %b) , (15)

satisfies the equation

L2

Tsym(XO) = <7'> + f h(X - XO)Tsym(X)dX- (16)

-L/2

When the jump distribution is everh(x)=h(-x), we see

and the MET is a quadratic function of the interval lengthfrom Eq. (16) that Teyr{X) =Tsym(=X). In other wordsTsyq{(x)
L=b-a. This is even more clearly seen by assuming a symis also an even function, which in turn implies tt,.(0)

metrical intervalb=—a=L/2, and that the initial return is

zero,xo=0

2
T(O)=%{1+(1+%L) } (13

Observe that in this case the MFPT is infinite sinde,)
— o0, both asa— —o andb— 0. ConsequentlyT(Xq) =c°.

=0.

Let us now obtain an approximate solution that will be
valid for any sufficiently smooth kernei(x). Suppose we
have an even and zero-mean jump density satisfying the fol-
lowing scaling condition:

h(x) = %H(E) 17)

Itis very illustrative to compare the above expressions for
the MET with those of the ordinary random walk. If the price wherex> 0 is the standard deviation of the jump statistics of
process follows a RW, then in the continuous limit the zero-h(x). In this case Eq(16) can be written as

mean return is the Wiener process, iX{t)=oW(t), whereo

is the volatility. In this case the MET out ¢&,b] readg 18]

TrlX0) = 230-2)(b= 30, (19

L/2k

T(u)= () + J H(v - u)T(v)dv, (18)

-L/2k

where ?(u)ETsym(Ku)_and 4 /2k<u<L/2kx. Once we

which is also a quadratic function of the interval length. have an expression fdi(u), the mean exit time is given, via

However, boundary conditions now afgy/(a)=Trw(b)=0,

Eq. (15), by
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2X0 -a-b 5[ Model independent — e
T(Xo) :ﬁT) (19 P°E"§;|Li"e“mrl“3332l
Empiricallggg
Suppose now thaé=L/2« is small, i.e.,e<1. In this "
case an approximate solution to H48) can be easily ob- 3
tained through an iteration procedyas] 3T
T(U) = (A1 + 2H(0)e + [H'(0") + 4H(0)2]é? "l
'_
+H'(0")u?+O(e3)]. =
Hence r
L H'(0%) |[/L)\?
T(x0) ~ <r>{1 +H(O)(—> + [H(0)2+ (—)]<—) 0 i ' ‘ '
K 4 K 0 5 10 15 20
normalised semi-interval length L /2x
H/(0+) )
+ 442 (2xp-a-b)*|. (20 FIG. 2. Dots represent the empirical MEmeasured in houjs
as a function of the normalized semi-interal2«, from high-
In the symmetrical case witky=0 we have frequency data of the U.S. dollar/Deutsche mark futures market.
Lo 2 There are also the fits explained in the text and in Table | with the
T(0) = <T>{1 + H(O)(E) + {H (0Y) + H(O)Z] (E) } _ values ofx and(7) extracted from data.
K 4 K

(21) from the data without assuming any hypothesis on the form
. . of the jump distribution. This yieldsx=1.70x 1074, (7)
We see from these expressions that, in general, the MET has5 g5 andH(0)=4.45x 10°3. We also need an estimation
for sufficiently small intervals a quadratic growth behaviorfOr H’(0*), although this parameter is quite difficult to evalu-

fas tlnt:]he case pf tTe expone_nual _denigyee E()q.|(313)]. In ate because data binning entails a certain degree of arbitrari-
tﬁg ’e aecflzglrot)'(:)rze}oer ?ﬁgrﬁ?l&zgly enr]l é[b%p Eec&ngﬁs ness. Moreover, the very existence of tick units questions the
ith X_ 5 UH' 0)=1/\2 SH’ 0“Ju——pl - EQ- concept of derivative. A first approach to solve this problem
WIIWK;.V ”7’ ( )_k h\ » an ( zn_ ' ¢ £ would be to evaluatél’(0%) using finite differences, which
0 etk L 5 PSS L SO 10 EX st (010,55 Hawever Ui vlue coss ot provide
process is the continuous-time limit of an ordinary RW whenOptlmal <_e§t|mat|on which is obtained witt'(0%)=1.54 and
the empirical values ok, (7), andH(0) reported above. The

the ratio k%/{7) goes to a constant usually denoted &% _ : ) o
[11]. Hence, when(m)—0 and x—0 but keeping constant optimal adjustment of the MET is represented in Fig. 2 by a

207\ solid line.
K¥I{n)= 0% Eq.(20) reads We observe in Fig. 2 that this optimal estimation almost
H’(0%) L\2 H'(0) exactly reproduces the empirical behavior of the MET even
T(Xp) = 4 T H(0) (—) 02 (2xo—-a-b)%. for large values oL/«. Consequently, the MET presents a

quadratic nature regardless of the length of the interval. This

When we seek boundary conditiofigy(a) =Tgrw(b)=0, we
get that H(O)2:—H’(O+)/2. The resulting expression be- TABLE I. Summary of the models shown in Fig. 2. For all cases
comes exactly Eq(14) if we again takeH(0)=1/y2 and  (n=23.65 s and we add the value of the parameters involved in Eq.

H’(0")=-1. For the sake of completeness, we can also de(21). For the Wiener process’=«%7), wherex and({7) are directly' _
rive the symmetrical case witky=0 extracted from the data. For the Laplace PDF we use the empirical

standard deviation and the rest of the parameters are derived auto-
L2 matically. The power-law estimates the empirical valueg ahd 8

Trw(0) = P (22 from the tails ofh(x), bringing us the corresponding values far

H(0), andH(0%). The last row gives the curve with empirical values

x andH(0) but choose#(0*) to give the best adjustment.

V. EMPIRICAL OBSERVATIONS K (units
h(x) of 104 H(0) H'(0%)

We now apply the above results to actual data. The data =
consist of tick-by-tick prices for the U.S. dollar and DeutscheViener — 170 1z -1
mark future exchange from January 1993 to December 199Faplace yexp—yx))/2 1.70 1K2 -1
(a total of 1 048 590 data points [v*=2/x%]

In Fig. 2 we compare the empirical MET from the USD Power-law  B-1/2n(1+[x// )" 1.25 1.07 -2.81
and DM data with the analytical approximation given by Eq. [2= 2(6-2)(8-3) /2]

(21) taking the values specified in Table I. We can easilyg;
evaluate the values of, (7), andH(0) of Eq. (21) directly

1.70 0.00445 1.54
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seems to indicate that the approximations given by E2{3. VI. CONCLUSIONS AND OPEN ISSUES
and (21) have a more universal character than one might

expect in advance. Using the CTRW framework for market microstructure,

In Fig. 2 we also represent the MET for the Wiener pro-We have developed a somewhat little-known ‘aspect of the
cess, which is given by Eq22) with o?= k(7 (see Table problem: the study of extreme events, especially the mean
' exit time out of an intervalJ(xy), and the mean first-passage

). This is the simplest model describing the observed quag - to some critical valueT,(x,), although the latter turns

dratic law for the MET. Unfortunately, we clearly see in Flg'Put to be infinite in many situations. We have shown that

2 that the diffusion model underestimates the MET. Anothethese extreme times obev an intearal equation which depends
exact expression for the MET is provided by the Laplace y 9 q P

CTRW, Eq.(13). Again, we observe in Fig. 2 that the qua- on the jump distributiorh(x) anq the mean wgiting timer).
dratic curve is below the empirical data points. We can alsq We have exactly SO'V‘?d the |r'1tegral.equ_at|on for the MET
observe in the inset of Fig. 2 that the MET given by EEp) in the case where the jump distribution is governed by a

results in a good approximation for small values of the inter-"_aplace (symmetric_exponentialprobability density func-

val. In this regard the Laplace density can be considered aspn- We have compared this MET with that of the ordinary

first approximation to any more realistic jump distribution, Fandom walk model, and showed that the MET for the

We remark that in this case the MET has been representddtPlace density is bigger thafgy, [the MET whenX(t) is

using the empirical standard deviation of the jumgswith- ~ @ssumed to be the Wiener prockshis seems to indicate

out trying to adjust the empirical curve. that models based on the Wiener process may underestimate
As we have shown elsewhef6,17] the empirical jump the MET. In other words, RW models imply that the return

PDF, for the USD/DM data, is very well fitted by a power PrOCESS escapes faster from a given interval than models
law of the form based on the CTRW. We believe that this can have practical

consequences in risk control because in these fields Gaussian

(B-1) market models are broadly usgt3].
(23 We have also solved the integral equation for the MET

using an approximate scheme which yields a solution valid
where 8=5.52 and7=2.64x 1074, which implies that the for a generah(x) but when the lengtiL of the interval is
rest of parameters are=1.25x10% H(0)=1.07, and gmall (in an appropriate dimensionless sdaM/e have ap-
H,(O+):—2.81. In Flg 2, we see that this model does not fltp“ed the approximate solution for the MET to h|gh-
the empirical data in a satisfactory manner. One reason for ffequency data on U.S. dollar and Deutsche mark futures
could be the fact that the approximation fofx,) given by  market with a very good agreement. The empirical observa-
Eq. (21) basically depends on the values lufk) aroundx  tions show a quadratic behavior of the MET. More complete
=0, while the power-law densit{23) has been obtained to fit measures should be done to check the universal character of
the tails of the jump distribution. this behavior and confirm this property as a new stylized

Another possible reason why the power-law model forfact.

h(x) is inconsistent with the MET observations could be that We finally mention that a more complete description of
the i.i.d. hypothesis for jumps and waiting time is not accu-extreme events, such as the survival probability, may also be
rate. This possibility is supported by a recent publicationinteresting due to its greater impact on risk control. All of
where we have considered clustering phenomena in financiihese questions are presently under investigation and we ex-
data[24]. We found there that the large events are related t@ect that some results will be published soon.
the clustering in data. Our future research will go in this
direction, trying to understand why the market describes this
quadratic growth, which is typical of the Laplace CTRW or
the diffusion process, even though we know that the market This work has been supported in part by Direccion Gen-
possesses a different statistics for the jump distributioa. eral de Investigacion under contract No. BFM2003-04574
Indeed, the stochastic volatility modeling with a subordi-and by Generalitat de Catalunya under Contract No. 2001
nated random walk might also be an interesting approach. SGR-00061.
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