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Entropy and density of states from isoenergetic nonequilibrium processes
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Two identities in statistical mechanics involving entropy differentasratios of densities of stateat
constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the micro-
canonical ensembleC. Jarzynski, Phys. Rev. Let?8, 2690(1997)], which can be seen as a “fast-switching”
version of the adiabatic switching method for computing entrofiésWatanabe and W. P. Reinhardt, Phys.
Rev. Lett. 65, 3301(1990]. The second is a thermodynamic integration formula analogous to a well-known
expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be
conveniently used in conjunction with a scaling relatiberein deriveylthat allows one to extrapolate mea-
surements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the
context of numerical simulations are discussed.
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I. INTRODUCTION defined switching process connecting the statesidB, and

In the ubiquit wudi £ oh tability. oh ¢ W s the net amount of work performed on the system during
__'n the ubiquitous studies of phase stability, phase€ ranSle 50, yealizatiorthroughout this paper, the units will be cho-
tions, and reaction directions, most properties of interest ar

o . - L €en 5o that the Boltzmann constégtequals unity. Unlike
embodied in the free energies and entropies corresponding {Re method of Ref[3], the above equality does not depend

the desired phases or reaction states. Not surprisingly, a greghon the rate at which the dynamical switching process is
amount of intellectual effort has been directed toward findin%erformed’ and hence is free from the Systematic errors as-
ever more efficient computational means of estimating thesgociated with finite switching times. Another welcome com-
quantities[1]. Within the wider domain of equilibrium ther- putational aspect of this identity is that it is trivially
mostatistics, a similar role is played by the so-called densityarallelizable—each realization of the process can be per-
of states, the knowledge of which generates not only fre¢ormed separately. Because of these features, the Jarzynski
energies and entropies, but also heat capacities and the vesguality (JE) is becoming increasingly popular in the simu-
partition function. Here, too, one finds a great variety oflation community, and various reviews are already available
computational techniques specifically designed for its esti{see, e.g.[1,7-9).
mation (see, e.g.[2] and references thergin Although its generalization to free energies other than the
Traditionally, the aforementioned computational methodsHelmholtz one is straightforwai®,10], the analog of the JE
are inherentlynondynamicali.e., the relevant data are ob- for entropiescannot be obtained by such a direct route. In
tained from either a single equilibrium macrostate, or a serieghis case, one is intuitively tempted to adapt the derivation of
of such states. An exception is provided by the adiabatiRef.[5] by simply replacing the Boltzmann factor with the
switching method of Watanabe and Reinhd®lt which al-  microcanonical distribution, but this introduces a fundamen-
lows one to recover entropy differences from a single dy-tal difficulty related to the finitgor infinitesima) support of
namical trajectory connecting the states of interest. In printhe latter*
ciple, this method yields an exact estimate of the entropies The present work aims at providing a solution to the
provided the “switching process” is infinitely slow; in prac- above difficulty by considering an initially microcanonical
tice, one has to cope with the systematic errors that arise dug/stem that evolves in time under a non-Hamiltonian, isoen-
to the unavoidable finite switching tinfé] (see alsd4] for  ergetic dynamicé As we shall see by explicit construction of
further aspects of this methpdn the context of free energy such a dynamics, the problem associated with the microca-
differences, this situation has substantially changed after anonical distribution is overcome, and one is able to derive a
identity connecting free energy differences at constant temaonequilibrium identity for entropy differences at constant
perature andnonequilibrium processes was derived by energy, much like Eq(1) for free energy differences at con-
Jarzynski[5,6], viz., stant temperaturesee, in particular, Eq19)]. In addition, its
AT = (g WITy, 1) quasistatic limit reduces .to. an ide_ntity that generalizes a
' well-known thermodynamic integration formula for free en-
where AF(T) =Fg(T)-FA(T) is the (Helmholtz free energy ergies[Eq. (12)]. Though admittedly difficult to realize in
difference between the states of interasindB, the angular
brackets denote an average over all realizations of a pre-Ine reader familiar with the original derivation of the Jarzynski

equality in Ref[5] is invited to try this replacement by him/herself.

2 This possibility was conjectured by Jarzyn§Rb] during a pre-
*Electronic address: artur@brown.edu sentation of Eq(12) by the author.
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real experiments, the isoenergetic processes that underly ) = on(T ~tA(I)

L , . = e MY, 6
these results are easily implemented numerically, as dis- P = poll'o) ®
cussed shortly. where

The remainder of this paper is organized as follows. In 10
Sec. Il, the _central nqneqwllprlur_n |_d_ent|ty is m_troduced and AT = _f dsA(Ty) (7)
used to derive some interesting limiting cases in Sec. lll. The tJo

importance of these results in the numerical estimation of . . . ,
entropies and densities of states is discussed in Sec. IV, fof® the time average of the “phase space compression factor

lowed by a summary and outlook in Sec. V. A(I')=V -T" along the trajectory that connedtg to I'. The
notation A,(I';) implies that we are looking at the above
Il. DERIVATION functional of the phase space trajectdiy}, s:[0,t] as a

To begin the derivation, assume a purely classical framef-unCtion of the end poinl'y, this being possible due to the
€9 : P purely cle deterministic character of these trajectories. For a system
work is appropriate, and ldt = (x,p) be a point in the sys-

. - evolving under the isoenergetic equations of motion E2js.
tem phase space, whexep represent the canonically conju- and (3), with F given by Eq.(5), one has
gate position and momenta coordinates of all the particles, ' o
respectively. The system of interest has a Hamiltoriin — 1t . X 9H
=H,(x,p) that depends parametrically on a predefined time- ATy =~ ‘f dsav - (X v HX)
dependent functioi(t). This function is an external param- 0
eter that “switches” froma(0)=A to N\(7)=B in a given so the desired density atis completely determined by Egs.
switching timer. In order to represent an isoenergetic pro-(6) and(8) and the initial condition
cess, one needs to model a suitable “thermostat” that ex-
changes heat with the system so as to precisely counterbal- po(T'o) = w’
ance the work done by the external paramexerOne QA(E)
possible way of achieving this is to modify Hamilton’s equa-
tions of motion by introducing an artificial “force” fiel&
=(F,Fp onT as

(8

(9)

which is just the microcanonical distribution. Hedeis the
Dirac delta function, and,(E)= fdI" §(E-H,(I")) is the
density of states at the external parameter

) H Consider now the following average over all realizations
x=—-* Fu(), (2)  of a switching process that takaét) from A to B in 7 units
p .
of time:
. oH - -
p=-—*Fell), ) (er) = f dr,p(I",)e™ Al
and demand the constancy of the system energy through _ f dar S(E—Hu(Ty) (10

dH . oH. T OAE)
—=VH-T'+—\=0, (4) ,
dt I\ In the second line above, Eq&) and (9) have been used.

Since the system Hamiltonian is constant along any trajec-
tory generated by Eq$2) and(3) [cf. Eq. (4)], in particular
Ha(I'g)=Hg(I,), it follows from Eq.(10) that

where V=4/4I'. Using the modified equations of motion,
one immediately sees that the condition expressed by4xg.

is satisfied by any vectdf satisfyingVH-F=-NdH/d\, i.e.,

the desired force field is given in general by eASE) = <efXT>, (12)
F=—\ X ﬁ, (5) where KT is given by Eqg. (8, and ASE)
X - VHN =In[Qg(E)/QA(E)] is the entropy difference between the

- ; : : thermodynamic statef and B. The identity above, along
where X =X(I) is an arbitrary vector field not completely with its quasistatic versiofEq. (12)], are the central results

erpendicular t&/H. Particular examples of satisfying this .
I[c)onF(intion areX=(0,dH/dp) andngH itself Thfg fogrmer of the present papésee als.o Eq(lg)]. Some computational
' ' ) aspects of these results will be discussed shortly.

resembles the “Gaussian” thermostats widely used in the lit-

erature to model and simulate nonequilibrium proce¢ses, IIl. LIMITING CASES

e.g., Refs[11,17 for reviews, and will soon be discussed in

more detail. In general, however, E() provides a more Let us now study the quasistatic limit of EG.1), i.e., the

flexible recipe particularly suited for parameter-dependentimiting case where\(t) changes infinitely slowly fronA to

Hamiltonians. B. In this case, by a slight extension of the “adiabatic ergodic
The time-dependent ensemble density for the above norypothesisT13], one expects that the dynamical state of the

Hamiltonian dynamics will now be derived. By direct inte- system (I'y) spends a sufficiently long time sweeping a

gration of Liouville’s equation in Lagrangian forficf. Eq.  nearly constant-energy, constansurfaceE=H,(I's) so that

(3.3.8 in Ref.[11]], one obtains the general solution one can invoke the approximation
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X

A
X-VH

1(7 1(7 1
—j dsA(Fs):—f dsA)en (quasistatig, o

TJo TJo

where the subscripted angular brackets denote a microcis an inverse “instantaneous_temperature’_’ that coincid_es with
nonical ensemble average at constnand A(s). Accord- the inverse of a recently derived expression for thg microca-
. . — . . nonical temperatur¢l6,17 upon ensemble averaging. As-
|n'gly,.the time avergg@T is independent OT the specific re- sume now that, as expecteljs intensive. Two possibilities
alization of the switching process, and it follows after a

. X . i of interest arise(a) A couples to a selected number of par-
simple change of integration variables that Etl) reduces jjcies andx thermostats all the particles, @) A couples to
to the following thermodynamic integration formula:

all the particles anX thermostats any number of particf%s.

B < X 9H Under these conditions and as the total number of particles is
ASE) = _f d\M Vv - < —) . (12 increased, the second term in the right-hand side of( E4).

A X-VHOIN/[E\ either (a) vanishes orb) becomes negligible in comparison

, , to the first one. For large enough systems, therefore(&q.
Recall that the Jarzynski equality also reduces to a thermqs;p, pe approximated as

dynamic integration formula in the limit of quasistatic pro- .
cesses, Viz.AF(T)=[B8d\(sH/\), [5], a result that can be A= 1f dt)'\ﬁl
T d

- — (large syste
easily derived by standard statistical mechanics. The exis- T NT (large systems

tence of an arbitrarysee abovevector field in Eq.(12) is o . .
analogous to a generalization of the thermodynamic integra@nd the nonequilibrium identity E§11) can be rewritten as
tion formula for AF also derived by Jarzynski4]. B

An independent proof of Eq12) based on ergodic ma- exp(—f dV\//T>> =e*S®  (large systems
nipulations[15] is now provided as a consistency check. A
Starting from AS(E)=/5d\(6S/d\) and S,(E)=In Q,(E),

0

where A\dH/J\ has been identified with the rate of work

one has input due to the external parametef 7] [see also Eq(4)],
J InQ= Lo de S(E-H,(I)) -
I\ T QN T oH
O\ Qan dw= —=dh. (15
T Q4E AE-H\(T) I\ By invoking Jensen’s inequalitye’)=¢e* [18], the above
result can also be recast in a form that resembles the second
= _iﬁ§ da oH (13) law of thermodynamics for isoenergetic procesfes, the
QIEJs [VH| o\’ Clausius inequality wittdQ=-dW), namely,
B
whereZ is the surfacee=H,(I'), andda is an infinitesimal ASE) = - f aw (large systems (16)
area element of this surface. Now Kt=X(I") be a vector A 7
f}ﬂgn not completely perpendicular tda=daVH/|VH|. where, as in the case of the JE, the angular brackets can
presumably be dropped in the thermodynamic lititis not
da X difficult to verify, however, that in the case a@fuasistatic

processes for sufficiently large systems, one obtains from

=da- ,
|V H] X-VH either Eq.(12) or Eq. (16) the thermodynamic statement

so that, by the divergence theorem and a subsequent energy B dw
differentiation, Eq.(13) becomes AS(E) = —f - (large systems, quasistatic
A
] X oH - . . i
—InQ=- <V . < _>> , where 1T=(1/T)g, is the inverse equilibrium temperature
I\ X-VHOIN/[E\ of the system, and hence of the reservoir along the isoener-
getic path.

which coincides with Eq(12) upon integration.
Although Egs(11) and(12) are exact and can in principle IV. UTILITY AND PRACTICAL ASPECTS
be directly utilized in numerical simulatior(Sec. V), it is

interesting to investigate their limit in the case of large sys- It is _natural to inquire a_bout the utility of t_he above_ re-
tems. Consider first the integrand of E&). One has, ex- sults, since they were derived after the admittedly artificial

actly,
3 The relevant caséa) was suggested by Crook26).
_ ( X ﬁ) _1oH . X - V(3H/IN) (14) 4 An additional microscopic connectignot investigated hejée-
X - VHIN T O\ X-VH ' tween7 and the instantaneous reservoir temperalui® necessary
before the inequality16) reduces to a statement of the second law
where of thermodynamics.
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equations of motion described by E¢8) and(3). Though in Nd-2
physical experiments it is very unlikely that one will ever SI(E/N) - S(E) = AS\(E) - 5 InA. (18)
encounter such an isoenergetic setting, this is not the case in
numerical simulations(see, e.g.,[11,12. These results HereS;(E/\) is the entropy of the system of interest at the
should therefore be of greatest interest for the computationanergy valueE/\,S(E) is the (known) ideal gas entropy,
community, but even in this case one might ask why theand the differencé\S, (E)=S,(E)-S(E) is obtained either
computation ofS(E) or Q(E) is at all relevant, since quanti- directly from Eq.(12) with the upper integration limit re-
ties such as free energies at constant temperature or presspiaced by, or by recording the intermediate values of the
have a more direct connection with experiments. average in Eq(11) at the instant corresponding to the de-
Although an immediate answer to the above question cagired A=\(t). Note finally, that the expressions derived
be found in the context of phase transitions of finite orherein for AS(E) can equally well be used for estimating
“small” systemg[19,20, | will briefly describe how one can ratios of densities of stateBg(E)/QA(E), without resorting
recover important thermodynamic quantities in the isotherto the traditional histograms.
mal ensemble given the knowledge 8(E) or Q(E)=e3® It follows from the above scaling identity that, provided
over a range of energy values. How to efficiently obtain enthe entropy or density of states of the reference system is
tropy and density of states at more than a single energy valuenown with great accuracy, the numeric value SE) or
will be discussed shortly. Q(E) can be obtained for a wide range of energies from a
First, notice that the canonical ensemble average at temsingle isoenergetic simulation and, in particular, one is able
peratureT of any energy-dependent observab(g) can be  to yse Eq(17) to estimate various thermodynamic quantities
written as of interest over a range of temperature values. In practice, of
course, one has to choose the rang& gfidiciously so that
the estimates of)(E) are reasonably accurate in the range
where the integrand of E@17) is greatest.

dE'Q(E")e ETH(E)
0

(f(E))r= - ) (17 Several other properties enjoyed by the present results
f dE'Q(E")eET will now be discussed. In contrast to the adiabatic switching
o method for computing entropy differencg3], the exact re-

sult in Eq. (1) does not suffer from the systematic errors

Therefore, knowledge of the density of states over the reIf“SSOCi""t(Ed with a finite switching tinjé]. Moreover, since
' neither Eqg.(11) nor Eq. (12) relies on a single dynamical

H NaE'IT ;
evant range of energies whefb(E")e is concentrated trajectory, these equations are trivially parallelizable. Isoen-

allows one to calcu]gte observables such as average potenggi;etic equations of motion similar to those adopted in this
energy, heat capacities, and free energy dlﬁgrences by simpig have been extensively used in the literature as means of
guadrature. In fact)(E) plays a central role in the so-called simulating nonequilibrium processgL, 24, and the general

flat histogram Mo'nte Carlo methog[Ql,ZZ, and is used recipe provided in Eqg2), (3), and(5) should not pose any
precisely as described above to estimate such observablesgliitional technical difficulty. Nonetheless, a considerable

is worth mentioning that the present nonequilibrium methOdoperationaI simplification is achieved whet=(0,dH/ap)
shares an additional feature with flat histogram methodsz(o p), where it is assumed thét, (x,p)=p2/2+U,(x). In

which have. be<_an Im_troduced with thg goa! of OVErcomiNiyis case, the thermostating mechanism reduces to a simple
energy barriers in finite-temperature simulations. An estimate

based on Eq(11) also has the potential of sampling the Velocity-dependent forc&,=-A(dU/an)p/p?, and Eq.(11)
phase space without becoming trapped in energy basins d¥i€lds exactly

fined by barriers much greater th@r(recall thatkg=1 in the B

present units This follows from the ability to construct a e*SB = exp(—J dV\//T) , (19
switching process that changes the strength of the interaction A

among the particles, as described in the next paragraph, so

that during the course of the simulation the dynamics enjoyVneredw=dt\(éU/d)) is the infinitesimal e;r_nount_of work
much lower energy barriers and hence greater mobility. ~ Performed on the system, and7H (Nd-2)/p“is the inverse

The results derived in this work can be made highly effi-instantaneous temperature defined in Sec(dlis the num-
cient by borrowing a scaling idea originally developed for ber of spatial dimensions arid is the number of particles
the adiabatic switching methd@3]. In the present language, 1he above equation has the advantage of involving less ab-
the scaling idea allows one to obtain entropy differences oftract and more physically sound quantities, while remaining
ratios of densities of states between the system of intereS figorous as the more general case of Ed).
and a reference system over a wide range of energies from
the data obtained atsingle energy valueE. In fact, assum-
ing that the reference system is an ideal gas, i.e., the
parameter-dependent HamiltonianHg(x, p) =p?/2+\U(x) In summary, the present contribution has introduced two
with A=\(t) switching from 0 to 1 in7 units of time, by  fundamental nonequilibrium and equilibrium equalities for
rearranging the expression(,(E)=fdx dp S(E-p?/2  entropy differencesor ratios of densities of state€qs.(11)
—-AU(x)) one can easily derive the following scaling relation: and (12), respectively[see also Eq(19)]. The former is a

V. CONCLUSIONS
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nontrivial extension of the Jarzynski equalfyq. (1)] to the  great interest in the study of phase transitions of finite or
microcanonical ensemble, which was made possible througtsmall” systems[19,20, but can also be used to recover
the construction of a suitable set of non-Hamiltonian equaimportant observables in other ensemhles., isothermaJ
tions of motion. This particular extension circumvents theas evidenced by Eq17).

mathematical difficulties that one encounters by adapting Since Egs(11) and(12) share in common an arbitrariness
straightforward strategies that have been successful in othénrough the vector fielK, a question that deserves further
ensembleqd9,10. The latter is the entropic analog of the investigation is whether one can find an optimal form Xor
well-known thermodynamic integration formula for free en- that maximizes computational efficiency.

ergies.

The utility of these results was discussed in Sec. 1V,
where it was remarked that the artificial character of the
isoenergetic equations of motion described by Egs.and The author is pleased to thank Chris Jarzynski for the
(3) causes such results to be of greatest interest in numericéluminating discussion and suggestions. Discussions and/or
simulations. In this context, the identities derived in thiscorrespondence with Gavin Crooks, Jimmie Doll, Heather
work allow one to comput&E) (entropy at a given energy Partner, and Tom Woolf are also acknowledged. This re-
or Q(E) (density of statesfor a wide range of energies from search was supported by the Department of Energy, under
a singleisoenergetic simulation, as discussed in connectiorContract No. W-7405-ENG-36, as well as under Grant No.
with Eq. (18). Knowledge of these quantitigser seis of = DE-FG02-03ER46074.
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