
Empirical mode decomposition and correlation properties of long daily ozone records

Imre M. Jánosi*
Department of Physics of Complex Systems, Eötvös University, P.O.Box 32, H-1518 Budapest, Hungary

Rolf Müller†

ICG-I, Research Centre Jülich, 52425 Jülich, Germany
sReceived 16 November 2004; revised manuscript received 17 March 2005; published 27 May 2005d

Correlations for daily data of total ozone column are investigated by detrended fluctuation analysissDFAd.
The removal of annual periodicity does not result in a background-free signal for the tropical station Mauna
Loa. In order to identify the remaining quasiperiodic constituent, the relatively new method of empirical mode
decompositionsEMDd is tested. We found that the so-called intrinsic mode functions do not represent real
signal components of the ozone time series, their amplitude modulation is very sensitive to local changes such
as random data removal or smoothing. Tests on synthetic data further corroborate the limitations of decom-
posing quasiperiodic signals from noise with EMD. Nevertheless the EMD algorithm helps to identify domi-
nating frequencies in the time series, which allows to separate fluctuations from the remaining background. We
demonstrate that DFA analysis for the cleaned Mauna Loa record yields scaling comparable to a mid-latitude
station.
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I. INTRODUCTION

Empirical mode decompositionsEMDd is a new and
promising method to analyze nonlinear and nonstationary
signalsf1g. It has been already proven remarkably effective
for engineering designf2g, chaotic systemsf3g, geophysical
signal processingf4g, meteorological data setsf5g, or medi-
cal researchf6g. The technique is essentially defined by an
algorithm for adaptively representing signals as sums of
zero-mean amplitude- and frequency-modulated components
called intrinsic mode functionssIMFd. Adding all the IMFs
smore than 8–10 are rarely neededd together with the residual
slow trend reconstructs the original signal without informa-
tion loss or distortion. In this respect, the method is much
more “economic” than the traditional Fourier or wavelet de-
compositions. However, as we demonstrate here, the inter-
pretation of IMFs is not similarly transparent.

In this work, the EMD procedure is pieced together with
detrended fluctuation analysissDFAd, which is another
emerging tool to handle nonstationary time seriesf7g. Sev-
eral theoretical studies mostly on synthetic dataf8–13g re-
vealed that DFA results for signals with different correlation
properties and slowly changing backgrounds can be fully
explained by the variance superposition principlef10,12g. An
important issue in the method is the removal of apparent
short range regularities from the data, such as dominant sea-
sonal periodicities in atmospheric variables. This can be es-
pecially problematic when this component is not strictly pe-
riodic, like in the case of North-Atlantic Oscillations, El
Nino Southern Oscillations, or the Quasi-Biennial Oscilla-
tions f14g.

Here we analyze the correlation properties of daily total
ozone data for two measuring stations: ArosasSwitzerland,

46.8 °N, 9.7 °Ed and Mauna Loa sHawaii, 19.5 °N,
155.6 °Wd. The removal of annual periodicity does not even-
tuate a background-free signal for the Mauna Loa record,
therefore we attempt to deploy the EMD method. We show
that the resulting IMFs are not existing seasonal components,
the most useful information is in their dominant frequencies.
Nevertheless this information yields to a successful detrend-
ing and to a detection of possible long-range correlations in
the fluctuations.

The Dobson spectrophotometer has been developed as the
first instrument to determine the total amount of ozone in a
column from the surface to the edge of the atmosphere, re-
ferred to as “total ozone.” 1 Dobson unitsDUd is defined to
be a 0.01 mm layer of pure ozone at standard temperature
and pressure, typical atmospheric values are 200–400 DU.
Regular measurements begun in the mid-1920sf15g; here we
analyze daily total ozone measurements recorded from 1926
in Arosa, and from 1963 in Mauna Loa.

An essential point is that the total ozone records are not
continuous, there is no data for approximately 36% of the
days. This is inevitable at the given spectroscopic method
sdirect sun observations in UV ranged, because clouds hinder
precise measurements.

II. DFA ANALYSIS

Correlations are important in the dynamics and chemistry
of the atmosphere, and serve as testbed for numerical mod-
els. As a first step of DFA analysis for atmospheric records,
the annual cycle is removed from the raw dataOi by com-
puting the ozone anomaly seriesxi =Oi −kOild, where i
=1, . . . ,N, and k·ld denotes the long-time average for the
given calendar day. Next, the anomaly series is integrated to
obtain the so-called profileyj =oi=1

j xi. The profile is divided
into time segments of equal lengthn, and the local trend is
fitted by a polynomial of orderp in each segment. The fluc-
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tuation strength for a given segment is determined as the root
mean squared deviation from the local trend, and an average
Fpsnd is formed over the different segments. A power-law
relationship betweenFpsnd and n indicates scaling with an
exponentd sDFA p exponentd:

Fpsnd , nd. s1d

The numerical value ford is established when the asymptotic
slope of the DFA curvessin log-log scalesd does not change
by increasingp. Long-memory spersistentd processes are
characterized by DFA exponentsd.0.5, uncorrelated time
seriesse.g., white noised obey d=0.5, antipersistent signals
haved,0.5.

Note that missing intervals do not distort DFA results
when the data are positively correlatedsd.0.5d, as was
pointed out by Chenet al. f12g. They randomly cut out up to
50% of synthetic data of known scaling exponents and
stitched together the remaining parts. We used the same pro-
cedure for the discontinuous ozone records.

Figures 1sad and 1sbd show part of the raw data together
with the empirical annual cycles obtained by averaging for
each calendar day. The overall course for one year is very
similar for both stations, apart from the different magnitudes
sthe ozone level and its variance are systematically higher in
Arosa by 25%–30%d. DFA curves for both records after re-
moving the annual periodicities are plotted in Figs. 1scd and

1sdd. Scaling can be established for Arosa with an exponent
valued<0.75, however the apparent kinks impede fitting for
the Mauna Loa data. Similarly breaking slopes indicate the
presence of an oscillating backgroundf10,16g. However, nei-
ther visual inspection nor standard Fourier analysis did re-
veal a pure monofrequency component. In order to unfold
further details and attempt to separate clean fluctuations,
EMD analysis was performed for the records.

III. EMD ANALYSIS

The EMD algorithmsalso called “sifting”d breaks down a
signal into its component IMFs obeying two properties,sid
an IMF has only one extrema between zero crossingssthat is
the number of local minima and maxima differs at most by
1d, and sii d an IMF has a mean value of zero. For a given
time seriesOstd, let m1std be the mean of its upper and lower
envelopes as determined from a cubic-spline interpolation of
local maxima and minima. In the second sifting round, the
first residualr1std=Ostd−m1std is treated as the data, and
m11std will be the mean of the two envelopes forr1, then
r11std=r1std−m11std. This procedure is repeatedj times until
the meanm1jstd is sufficiently close to zero. At this stepr1jstd
is designated as the first IMFsIMF1d containing the shortest
period component of the signal. The same sifting procedure
is continued with the differenceOstd−IMF1, until the re-
maining signal is almost zero everywhere.sFor the details of
algorithmic implementation see the reviewf1g.d

The result for Mauna Loa is shown in Fig. 2sthe last
component has a vanishing amplituded. Note that the IMF of
the largest magnitudesIMF6, third from the bottom in Fig. 2d
has a characteristic period of approximately 1 year. It is ap-
parent, however, that the variability of its envelope is much
stronger than that of the original signalsFig. 2, topd. This
observation suggests that IMF6 does not represent a real,
existing component function.

Since the EMD algorithm provides a fully local decom-
position, holes in a time series is expected to influence high
frequency IMFs. It is not obvious that missing segments will
affect the low frequency IMFs as well. Figure 3 illustrates
that an additional random removal of 1%–2% data indeed
results in drastic changes in IMFs. Other manipulations al-
tering locally the data, such as smoothing by three-point or
five-point running averages, result in similarly strong effect
on the amplitude modulation.

This sensitivity to local details can be exploited to iden-
tify periodic or quasiperiodic background signals. Figure
4sdd shows the ozone anomaly time series for Mauna Loa,
where the empirical annual periodicityfFig. 3sadg is already
subtracted from the raw datasFig. 2, top framed. A straight
DFA analysis of the very time series gave the curves in Fig.
1sdd indicating residual background oscillations. The sifting
procedure of this signalsnot shown here in detaild results in
11 significant IMFs, where the variance of the annual com-
ponentsIMF7 in this cased is strongly reduced, as expected.
Figure 4sad shows the Fourier amplitudes of IMF8, the re-
maining dominant component. After randomly removing an
additional 1% or 2% of data from the series, the component
IMF8 suffers from strong changes reflected also in the Fou-

FIG. 1. Part of the daily total ozone data forsad Arosa andsbd
Mauna Loa, solid lines indicate the long-time daily averages.scd
andsdd: DFA1–DFA4 curves for Arosa and Mauna Loa in the same
scales. An apparent vertical shift is the consequence of lower fluc-
tuation amplitudes for Mauna Loa. The dashed line has a slope of
0.75.
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rier amplitudes shown in Figs. 4sbd and 4scd. Nevertheless
the period of the two main peaks are not changing, they are
627 and 879 days, respectively.

This observation suggests that a quasiperiodic background
signal with two dominating frequencies is present in the data.
We have found that the Ansatz

xstd = a0 + a1t + a2 cosS 2p

1.7166
t + a3D

+ a4 cosS 2p

2.4065
t + a5D s2d

gives a satisfying estimate with the fitted parametersa0
=5.28, a1=−0.26, a2=−4.09, a3=1.11, a4=4.52, and a5
=1.19snote that the time is measured here in units of yearsd.
A detailed analysis of the slow quasiperiodic component is

beyond the scope of the present report, yet we note that the
smeared oscillation of,30 months period is recognized in
many tropical signalssmostly in the stratosphered, and it is
known as quasibiennial oscillationssee Ref.f17g and refer-
ences thereind.

The results of DFA analysis for the Mauna Loa ozone
anomaly data cleaned by subtracting the background Eq.s2d

FIG. 2. From top to bottom, daily ozone column in Dobson units
measured at the Mauna Loa station, and the first eight IMFs resulted
in the EMD sifting process.

FIG. 3. sad Empirical annual cycles of the Mauna Loa record
ssee Fig. 2 top framed. sbd IMF6 for the full recordscharacteristic
frequency is 1 yeard. IMF6 for the record after a random removal of
scd 1% andsdd 2% of the datas147 and 302 from the original 9310
points covering about 40 yearsd.

FIG. 4. sad Fourier amplitudes as a function of periodssnote the
logarithmic scaled for the IMF8 of the anomaly time series shown
below sblack lined; sbd the same assad but 1% of data randomly
removed before EMD analysis;scd the same assbd but 2% random
removal. sdd Ozone anomaly time series for Mauna Loasblack
lined, and the best quasiperiodic fit obtained by Eq.s2d sthick white
lined.
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is shown in Fig. 5. An improvement is apparent, although the
DFA curves are not entirely straight on the log-log plot.

IV. DISCUSSION

In order to investigate why the EMD algorithm cannot
separate directly a quasiperiodic background component
from a time series, we performed several tests on synthetic
data sets. The basic signal is given by Eq.s2d without the
slow linear shift, that isa0=0, a1=0, the other coefficients
retain the fitted values. Noisy synthetic data sets were con-
structed by amplitude matching, the empirical standard de-
viation is s<12.0 DU for Mauna Loa.sThe histogram is
almost perfect Gaussian.d Different autocorrelations obeying
power-law were modeled with the algorithm developed by
Pang, Yu, and Halpin-Healyf18g, see also Ref.f16g.

The EMD algorithm has been studied in detail for pure
noise with and without long-range correlationsf19,20g. It
was shown that the procedure works as a dyadic filter bank,
that is the mean period of a given IMF is approximately 2
times of the previous one. This behavior was reproduced for
signals with slow background oscillations and missing seg-
ments as well, at least for the first eight mode functions. The
aspect here is an apparent breaking at mode number 9.
Simple visual inspection is enough to recognize that the re-
maining mode functions belong to the slow background
component.

The effect of noise and missing segments is exactly what
we expect by considering the fully local nature of EMD sift-
ing. The quasiperiodic signal is “smeared” from four to five
IMFs, and the amplitude modulation is very different for
various realizations, determined by particular details. The su-
perposition of the slow modes cannot reproduce the original
component without errorsfsee Fig. 6sdd, top curvesg. Conse-

quently, the missing features “contaminate” other IMFs, de-
pending on local details, again.

The good news is that the presence of fundamental in-
commensurate frequencies is very robust in the decomposi-
tion of all synthetic data with different amount of missing
segmentss0–42%d and level of noise correlations0.5ød
ø0.85d we tested. This finding supports our original obser-
vation that the Fourier spectra of intrinsic mode functions
can provide very useful information about possible physical
decomposition of complex measured signals.
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