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We consider binary liquid mixtures near their critical consolute points and exposed to geometrically flat but
chemically structured substrates. The chemical contrast between the various substrate structures amounts to
opposite local preferences for the two species of the binary liquid mixtures. Order parameter profiles are
calculated for a chemical step, for a single chemical stripe, and for a periodic stripe pattern. The order
parameter distributions exhibit frustration across the chemical steps which heals upon approaching the bulk.
The corresponding spatial variation of the order parameter and its dependence on temperature are governed by
universal scaling functions which we calculate within mean field theory. These scaling functions also determine
the universal behavior of the excess adsorption relative to suitably chosen reference systems.
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|. INTRODUCTION render molecular details irrelevant in favor of universal scal-

Chemically structured substrates have gained significarif!d functions by involving spatial variations on the scale of
importance within the last few years. Since it is possible ton€ diverging correlation length. Near the critical point the
produce networks of chemical lanes at the micrometer scalgurface patterning acts like a laterally varying surface field of
and even below, these chemically structured substrates ha@ernating sign. This generates an order parameter profile
applications in microreactors, for the “laboratory on a chip,”characterizing critical adsorption of opposite sign such that
and in chemical sensof4,2]. They can operate with small the system is frustrated across the chemical steps. Upon ap-
amounts of reactants, which is important when investigatingproaching the bulk of the fluid this frustration is healed and
expensive substances and substances that are available otitg healing is expected to be governed by universal scaling
in small amounts, like biological material, or when dealingfunctions. In addition, the substrate patterning results in a
with toxic or explosive materials. At these small scales thechange of the excess amount of adsorbed fluid with respect
interaction of the fluids with the substrate becomes importanto the case of critical adsorption on a homogeneous sub-
and there is the challenge of controlling the distribution andstrate. The excess adsorption is expected to be governed by
the flow of the fluids on these structures. universal scaling functions, too.

In the following we investigate three different types of Itis the purpose of this contribution to describe this scal-
chemically structured substrates, as shown in Fig. 1. First wing in terms of general renormalization group arguments and
analyze fluid structures at a chemical s{eee Fig. 1a)]  to calculate the corresponding universal scaling functions to
which is important for understanding the local properties oflowest order, i.e., within mean field theory. If, as is actually
fluids at the border of stripes. Next we consider a singlghe case, the size of the lateral structures is comparable with
chemical stripgsee Fig. 1b)] as the simplest chemical sur- the range of the correlation length, which can reach up to
face pattern, and finally we study a periodic stripe patternl0O0 nm close to the critical point, one can expect a rich
[see Fig. 1c)] as the paradigmatic case for the investigationinterplay between the externally imprinted patterns and the
of adsorption at heterogeneous surfaces. critical phenomena characterized by the correlation length.

The chemical contrast on the substrates acts on the adja-
cent liquid[3,4]. In order to impress the chemical pattern of
the substrate on a one-component liquid, the chemical struc-
ture has to be chosen as a pattern of lyophobic and lyophilic In order to describe critical phenomef6] one distin-
regions. For binary liquid mixtures one chooses a pattern ofuishes properties to classify them. Starting with unconfined
two different substrate types, such that one component isystems one introduces the so-called bulk universality
preferred by one substrate type and the second component Blasses which are characterized by critical exponents and am-
the other substrate type. This lateral structuring of the subplitudes that describe the dependence of various quantities,
strate causes a rich fluid-substrate interface structure whict.g., the order parameter and the correlation length, on the
typically depends on the molecular details of the local forcereduced temperaturé=(T—-T,)/T, upon approaching the
fields. However, in this study we focus on the particular caseritical temperaturel.. These critical exponents are univer-
of the fluid being close to a second-order phase transitiorsal, i.e., the same for all members of a universality class. The
This is either the liquid-vapor critical point of a one- amplitudes usually are nonuniversal, whereas the number of
component liquid or the critical demixing transition of a bi- independent nonuniversal amplitudes is limited; any nonuni-
nary liquid mixture. In these cases the ensuing critical pheversal amplitude can be expressed in terms of these indepen-
nomena are to a large extent universal in character, i.e., thegent nonuniversal amplitudes and universal amplitude ratios.

A. Critical phenomena
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FIG. 1. The different chemical substrate structures studied in this art@lehemical stegCS), (b) single stripeS9), (c) periodic stripes
(PS. All systems are translationally invariant in tledirection. The shading indicates different local preferences for, e.g., the two compo-
nents of a binary liquid mixture exposed to the geometrically flat surface of macroscopically large lateral exBension

One-component fluids near their liquid-vapor critical pointcovered substrates which chemisorbs there and forms a
and binary liquids near their demixing critical point belong SAM. The empty spaces between the patterns of the stamped
to the Ising universality class, for instance uniaxial ferromag-structure can be filled with a second thiol with a different
nets. These systems have two independent nonuniversal afiwnctional end group such that a topologically flat but chemi-
plitudes. In this sense our subsequent analysis holds for aflally structured substrate is built up. As a last method we
systems encompassed by the Ising universality class. mention the exposure of oxidated titanium surfaces to uv
The order parametep indicates the degree of order in the light [12-14].
system and has to vanish above the critical temperature in In order to investigate the structural properties of fluid
the absence of an ordering field while below the critical tem-systems near surfaces, various experimental methods have
perature it takes a finite value. It is described by the universdbeen developed: Ellipsometry and especially phase modu-
critical exponent 8 and a nonuniversal amplitude: lated ellipsometry were established in Reff$5,16 more
o(t)=alt|’. For a one-component fluie is the difference than 20 years ago and are still powerful topl¥,18. An
between the density and its value at the critical point. In th@ncident light beam is reflected by the surface of interest and
case of a binary liquid mixture it is chosen as the differenceghe ratio of the complex reflection amplitudes for polariza-
between the concentration of one fluid component and itéions parallel and perpendicular to the plane of incidence
concentration at the critical demixing point. (“coefficient of ellipsometry” or “ellipticity”) is measured.
The correlation length is defined by the exponential decayrhe order parameter is modeled and related to the ellipticity
of the bulk two-point correlation functio@(r) for large dis-  Via the spatially varying dielectric constant and can then be
tanceqr — =) at temperatures off criticalityT # T,) and it is compared with the measured value. In neutron or x-ray re-
denoted ag* above and ag™ below the critical temperature. flectometry one measures the reflectivity as a function of the
It diverges according to the power lagi=&[t|™” with the momentum transfer normal to the surface of the sample. This
universal critical exponent and the nonuniversal amplitudes reflectivity spectrum is related to the refractive index profile,
&. Their ratio &/&, is, however, universal. If the critical which itself is associated with the profile of the order param-

medium is brought near a substrate, surface universalitpter[18—22. Amore direct measurement of the adsorption of
classes come into play, which we shall discuss in Sec. [Il. @ component to a substrate can be carried out with a differ-

ential refractomet€ei23,24]. Here a laser beam passes a mea-
surement cell consisting of two compartments filled with the
fluid of interest and a reference liquid, respectively. The in-
Different techniques to produce chemical structures in theensity of the deflected beam is proportional to their differ-
range of micro- and nanometers have been establ{sfjeth  ence in refractive index. By comparing this measured inten-
order to obtain topologically flat but chemically structured sity with the one of a beam deflected by a measurement cell
substrates one can take advantage of the self-orderinfgled with a liquid with known interfacial properties and the
mechanism of self-assembled monolay€8#&Ms) in using  reference liquid, one is able to infer the properties of the fluid
block copolymers or mixtures of polymers which form struc- of interest.
tures while demixing3,8,9. The morphology and domain With these methods critical adsorption on homogeneous
size of these structures depend on different characteristics slibstrates has been experimentally investigdte® Refs.
the materials and of the formation process. Another possibilf25,26 and references therginOn chemically structured
ity to produce structured substrates is to change the functiorsubstrates mostly wetting experiments have been performed
ality of the SAMs partially by irradiating a homogeneous [27-29. The present paper extends theoretical work on criti-
SAM that is covered with a mask that carries the desirectal adsorption on chemically homogene$86—-33 and to-
structure[10]. A third method is the so-called microcontact pologically [34] structured surfaces and work on wetting
printing [11] where samples, e.g., produced with lithography,phenomena at chemically structured substrg86s39 to the
are used as a mold for an elastomer stamp. The structure ofse of critical adsorption on geometrically flat, but chemi-
the original is copied by stamping a “thiol ink” on gold cally structured surfaces.

B. Experimental methods
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The remainder of this paper is organized as follows. Inshall focus on the normal and extraordinary surface univer-
Sec. Il we introduce our model and in order to set the stagsality classes, respectively.
we recall previous results on critical adsorption at homoge- A homogeneous substrate confining a binary liquid mix-
neous substrates. In Sec. lll we present our results for theire inevitably has a preference for one of the two compo-
critical adsorption at chemically structured substrates. Weents. This preference becomes pronounced at the critical
summarize our findings in Sec. IV. point and leads to an enrichment of the preferred component
at the substrate. At the critical temperature the local order
parameter profile decays algebraically toward its bulk value.
Il. CRITICAL ADSORPTION AT HOMOGENEOUS This phenomenon has been called critical adsorgt&sh.
SUBSTRATES In the case of planar homogeneous substrates in addition
to the correlation lengtkf* the distance from the substrate
Boundaries, which come into play when investigatingis the other relevant length scale. If this length is scaled with
confined systems, induce deviations from the bulk behaviotthe bulk correlation length#, the order parameter profile
Near a critical point the Ising bulk universality class splits ¢(z,t) takes the following scaling form at the fixed points
into three possible surface universality classgsnoted as (|hy| —o,c=0) and(h;=0,c——=), respectively:
normal, special, and ordinary surface universality classes, re-
spectively characterized by surface critical exponents and 7
amplitudes[30,31. The boundary conditions applied to the P(z,t) :a|t|BPi<W: —_) fort=0, (1)
system determine the surface universality class, to which the &

system belongs. The behavior of the bulk is not affected b
tﬁle boundariegs. )\/Nith the scaling variablev=z/ &, which describes the dis-

It has turned out that in the sense of renormalizationf@"ce from the substrate in units of the correlation lerigth
group theory it is sufficient to describe the presence of the 1N€ scaling function®*(w) are universal after fixing the
substrate by a surface field and the so-called surface en- Nonuniversal amplitude and the nonuniversal amplitudg
hancement [31]. [These names originate from the corre- Of the correlation lengtie. (Recall that the raticgy/ & is
sponding description of surface magnetic phenomenniversal and therefore the amplitudgis fixed along with
[30,31); see also Eq(7).] The surface enhancement is relatedthe amplitudeg;.) The amplitudea is chosen in such a way
to the couplings between the ordering degrees of freedom dpat the scaling functioR™(w) below the critical temperature
the surface. tends to 1 for large distances from the substrate, i.e., the

The so-called ordinary surface universality class is charamplitudea corresponds to the amplitude of the bulk order
acterized by a vanishing surface field and a positive surfacBarameterg(z—o,t<0)=alt|’. With this choice one finds
enhancementh,=0,c>0) which suppresses the order pa- the following behavior of the scaling functions:
rameter at the surface below its bulk value. For magnetic
systems this effect of missing bonds is the generic case. PEH(w — 0) ~w A", (2

The special surface universality class, describing a multi-
critical point, requires in addition to a vanishing surface field
a surface enhancement which within mean field theory van-
ishes(h;=0,c=0) and causes a flat order parameter profile in
the vicinity of the substrate;.fluctuations induce a divergence P (W—x)—1~e™, (4)
of the order parameter profile at the surface.

The normal surface universality class is characterized by a Away from the renormalization group fixed point the sur-
nonvanishing surface field and the absence of the surfadéce fieldh, and the surface enhancemenhave finite val-
enhancemer(ih,| >0, c=0), which leads to an order param- ues. They appear as additional parameters in the scaling
eter value at the surface larger than in the bulk, even aboviéinctions with powers of the reduced temperature as prefac-
the critical temperature where the bulk value of the ordeftor due to scaling with the correlation length:
parameter is 0. For fluid systems the normal surface univer-
sality class is the generic case. In contrast, in the context of  ¢(zt) = alt|/PP*(t|"(&) z |t
magnetism an order parameter which is larger at the surface
than its value in the bulk can be obtained in the absenc@here A, and ® are surface critical exponenf81] and d
of surface fields but for a negative surface enhancemerjenotes the spatial dimension of the system.

(h,=0,c<0). Since this is rather uncommon for magnetic  The explicit calculation of the order parameter profiles
systems, the normal surface universality class is also referreg(z, ) starts from the following fixed point Hamiltonian
to as the so-called extraordinary surface universality classy[4]=7,[¢]+HJ{#], which separates into the bulk part

The fact that the normal and the extraordinary cases arg,[ ] in the volumeV and the surface paftJ¢] on the
equivalent and identical at their fixed point§hi|—=, g rfaces [30,31]:

¢=0) for fluid systems angh;=0,c— —) for magnetic sys-

tems, and thus identical with respect to their asymptotic be- 1 1 u

havior, was predicted by Bray and Moofd0] and later Hb[¢]:f dd—lrdz<—(v¢,)2+—7¢2+—¢4>, (6)
proven by Burkhardt and DieHl1]. In the following we v 2 2 4l

PH(w— ) ~e™, ()

(&) ¥y,

t""&e), (9
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1 am
HY p]= f dy |(—c¢2 - h1¢> . 7) —| =cmz=0)-h; (14
S 2 dz z=0
Here r is proportional to the reduced temperatufeu>0  @nd
stabilizes the Hamiltoniaf{[ ¢] for temperatures below the om
critical point(T<T,), and(V ¢)? penalizes spatial variations; . =0. (15
Z—0

r, is a vector parallel to the substrate. The order paramgter
is fluctuating around a mean val(é). Each configuratiorp
contributes to the partition functiod with the statistical o )
Boltzmann WeighE‘H[¢]: A. Infinite surface fields
For systems that belong to the extraordinary surface uni-
Z:f D¢(e‘(Hb[¢’]+Hs[¢])), ®) versality class(h;=0,c<0) the boundary condition at the
surface(14) simplifies and the differential equatidt3) has
an analytical solutiom31]. Together with the scaling behav-
1 ior of the order parametéll) and the nonuniversal amplitude
<¢>:—f D (pe™ Mol 217 8Dy (9)  a which within the present model and within mean field
z (MF) approximation equala=(6/u)*2(&)™* this leads to
In the present work we shall provide general scaling propscaling functionsPy,-(w) of the following form:
erties with the quantitative results for the scaling functions 5
determined within mean field approximation, i.e., only the + _ v _
order parameter profilen(z) with the maximum statistical Pur(wW) = sinh(w +wp)’ cothiwo) =, (18)
weight will be considered and all others will be neglected:

oH
ﬁ =0. (10
8¢ | gom
This mean field approximation is valid above the upper criti-

cal dimensiond.=4. Within this approximation the afore-
mentioned critical exponents take the following values:

W+WO), Sinr(Wo):%,

whereT=&t| % is the scaled and dimensionless surface

enhancement. The parametsg vanishes at the extraordi-

nary fixed point(h;=0,c— -o)—with the scaled and di-
~ 2

mensionless surface field =(u/6)¥2&; |t|*h,—so that Egs.

Pur(w) = cotk( a7

1 . .
B(d=4)= 5 and v(d=4)= > (11) (16) and(17) reduce to the scaling functions
\2
whereas the critical exponents at physical dimensier8 PL(w) = sinh(w) (19
are[42]
and
B(d=3)=0.3265 and »(d=3)=0.6305. (12
_ w

The mean field approximation is important because it is the P..(w) = CO“’(;), (19

zeroth-order approximation in a systematic Feynman graph

expansion on which thée=d-4) expansion and hence the which in the following are referred to as “half-space profiles”
renormalization group approach are bagé¢31,43. The above and below the critical temperature, respectively. As
higher orders in the Feynman graph expansion require intealready mentioned at the beginning of Sec. Il the extraordi-
grations over the mean field order parameter profile and theary fixed point is equivalent to the normal fixed point
two-point correlation functioficompare Eq(3.209 in Ref. (|F11|_>oo,~czo) and thus Eqgs(18) and (19) represent the
[31]] which can be carried out reasonably if they are avail{atter fixed point as well.

able in an analytical form. However, the mean field approxi-

mation is expected to yield the qualitatively correct behavior

of the scaling functions if for the variables forming the scal- B. Finite surface fields
ing varlables_ the_correct critical exponents are used, which  gjnce in experimental systems the surface fields are finite,
are known with high accurady?] [see Eq/(12)]. we also discuss the case of a homogeneous substrate with a

Taking the functional derivative of the Hamiltonian with gy rface field 8<h, <. This provides the starting point for
respect to the order paramefsee Eqs(6), (7), and(10)]  giscussing the case of a chemical step with finite—albeit
yields a differential equation for the mean field profitz)  strong—surface fields that we shall consider in Sec. Il A 2.

of the order parametéB80,31], Off criticality (i.e., t+0) and for a finite surface fielt, the
~ 2
P u scaled surface fielt; =(u/6)2& |t|"th, is also finite. At the
- EWH m+ §m3 =0, (13 substrate, for finite surface fields the order parameter profiles

Pﬁl(w) above and below the critical temperature have finite

with boundary conditions values Py, (w=0)=Pg,, and P, (w=0)=Pg,, respectively.
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T T mogeneous substrates, i.e., substrates with a laterally varying
Py — surface fieldh,; for which further length scales come into
) play, which also scale with the correlation length

Ill. CRITICAL ADSORPTION AT INHOMOGENEOUS
7] SUBSTRATES

_ A. Chemical step

First we consider an infinite substrate which is divided
into two halves with opposing surface fields so that there
is a chemical step at the straight contact lirez=0) of the
two halves[see Fig. 1a)]. We introduce the scaled coordi-
T T natesv =x/ ¢ andw=z/ ¢ describing the distance from the
Fo — contact line and from the substrate, respectively, in units of
L the correlation lengtlf. The system is translationally invari-
ant in the direction perpendicular to tkez plane.
For laterally inhomogeneous systems one has to recon-
sider whether the surface Hamiltonidt [Eq. (7)] should
7 contain terms likepd ¢ and ¢pd | ¢. However, the termpe, ¢
would favor order parameter profiles which are nonsymmet-
ric with respect to(x=0,y) even without surface fields.
I T Therefore such a term is ruled out. The tethi, ¢ leads
2 25 3 only to a redefinition of the surface enhancemigi] and
w therefore can be neglected for homogeneous as well as for
the inhomogeneous substrates. Thus the surface Hamiltonian
FIG. 2. (&) The half-space profile](w=z/¢") for an infinite 7, for inhomogeneous surface fields has the same form as
surface fieldh; and Pgl(w:zlf*) for a finite scaled surface field the one for homogeneous surface figles|. (7)].

512100 above the critical temperatufe) The same below; with
w=z/§. 1. Infinite surface fields

) _ _ First we analyze the case of a homogeneous infinite sur-
These values are determined by the following equationsgace field on both halves of the substrate but with opposite
which are obtained by performing the first integral of thesjgn and a vanishing surface enhancement, i.e., we consider a
differential equations forPye and Py, corresponding o steplike lateral variation of the surface fieig: h,= o for
Eq. (13) [30]: x=0. The actual smooth variation &f, on a microscopic

4 o\ o2 ~ scale turns effectively into a steplike variation if considered
Psubt 2(1-¢ )Psub+ 4Ehlpsub_ 2h1=0 (20) on the scale®.
and a. Order parameter profilesThe order parameter profile
for a system with a chemical sté@S) exhibits the following

PLl - 2(1 + TP+ &h P - 2n2+1=0. (21) scaling property:

For the normal surface universality cldge.,€=0) Egs.(20) X

z
= Bpt = — = —
and (21 simplify and we find for the order parametBt, ¢xz.1) =alt PCS(U W ) fort=0, (24

&g
and P, at the substrate above and below the critical tem- ) ) ] )
perature, respectively, which generalizes Eq.1). This scaling function shows the

following limiting behavior. For large distances from the

Pl + N /1+2~1§_1, lezo, 22) chemigal step(jv| — ) the pro_file approaches t_he corre-

sponding order parameter profile of a system with a homo-

and geneous substrate, whose asymptotic behavior is given by
Egs. (2—(4), Peglv|—,w)=P%(w). For large distances
Pop= % V 2F1§+ 1, Elz 0. (23) from the substratéw— ) and above the critical tempera-

] ) ) ture the order parameter profile vanishes for all values, of
Using these equations together with the boundary conje  pf(y w—)=0 while below the critical temperature
dition (14) and the differential equatiofiL3) th~e half-space  ihe order parameter profile tends to the profig,(v) of a
profile for finite surface fieIdsPﬁl(W)=Pi(w,h1<oc,"c‘:0) free liquid-vapor interfac®(v,w— )=P[,,(v) [44]. The
can be calculated numericallgee the Appendjx In Fig. 2  mean field approximation to this profile is given by
the half-space profiles for infinite and finite surface fields are
shown for temperatures above as well as below the critical P (v) = tan)’<2>. (25)
temperature. In the following section we shall consider inho- v
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P (v,w) function Pgq(v,w) does not separate into @dependent

‘ and a w-dependent part. It shows that the slope
st (w)=[dP:v,w)/ v ]|,=o Of the scaling function at the step
decreases with increasing distance from the substrate which
visualizes the healing of the frustration upon approaching the
bulk. Note that the slopes in Fig. 4 must be multiplied by

PZ(w) in order to obtairs*(w). From Eq.(24) it follows that

IP(x,z,t) —am IPeow) | _a

= Z|tFrst(w).
FIG. 3. Scaling functionPgqv=x/&",w=z/¢") for the order IX x=0 ¢ dv v=0 &
parameter profile of a system above the critical temperature and (26)
confined by a substrate with a chemical step located-at0. Due
to symmetryP¢q(v=0,w)=0. Since there is a nonvanishing order parameter profile even at

the critical point[ ¢(x,z,t=0) # 0] the overall temperature

Figure 3 provides a three-dimensional plot of the numeri-dependence of the slopgb/dx in Eq. (26) has to vanish.
cally determinedsee the Appendixorder parameter profile Therefore one finds fow=(z/ &)t*— 0:
for T>T,. In Fig. 4 we show cuts through the order param- . + gl
eter pro?ile par%llel to the substrate ag it changes F\)Nith in- sw—0)=Aw . (27
creasing distance from the substrate. In order to provide gor T> T, the slopes’(w) vanishes exponentially upon ap-
clearer comparison the cross sections are normalized to 1 gtoaching the bulk:
the lateral boundaries via dividing by the exponentially de-
caying half-space profil®%(w). From the fact that the cross s (w— ») = Aze™. (28)
sections do not fall onto one curve follows that the scalinggg|o T, the slope s (w—o) approaches the slope

s.v =[dP[y, (v)/ v]|,=o of the scaling function for the liquid-

1 .
(a) ' vapor profile[Eq. (25)] at most~e™" or slower:
5 05 S(w—®)-sy =A™ 0<C<1. (29)
‘E‘ As the half-space profile®igv— +oo,w)=+P_(w) [Eq.
§ oF T>T (3)] and Pqv — %, w)= %P5 (w) [Eq. (4)] decay exponen-
Z tially ~e™ for large distances from the substrate, the slope
& o5l s*(w) cannot decay faster because this would require that the
slopest(w) be smaller than the slog@Pgs/ &v)|u0 for a cer-
1 - tain vo# 0. On the other hand a decay of the slagéw)
-10 -5 slower thane™ would lead to an unphysical increasing slope
of the normalized cross sectionswat 0 with increasing dis-
1 . tance from the substrate. However, for the slapév) a
® ' decay towards,, slower than~e™" cannot be ruled out.
E Within mean field theory Egs(25 and (27) yield
3 T by T sf(w—0)~w2 [see also Eq(11)] and s"(w— )=s., =3,
g ; respectively, which is in agreement with the numerical re-
3 0 T<L 1 sults shown in Fig. 5. These results for the sleffgv) of the
= i w=01 - scaled order parameter profiR.q(v,w) transform into the
& 05 At v following findings for the slope of the unscaled order param-
T eter profile¢(x,2):
-1 A | ] »
-10 5 0 5 10 [ AL T=T. (30)
v X x=0
FIG. 4. Cuts through the order parameter proffg(v,w), as
shown in Fig. 3, andP4v,w) for w=z/=const with the normal- ‘9_(1’ - tﬁ+ve—ﬂ§+ T>T 7> f
ization Pzo(v,w)/P5(w) (a) above andb) below the critical tem- X | v=0 ' @ '
perature. Upon increasing the distance from the substrate the slope -
of the curves ab =0 decreases. The solid lines represent the limit- ~ (&) J (31

ing curves forw—o. (@) Above the critical temperature the and
limiting slope atv=0 of the normalized curves is given by

S (W—)/PL(W—o0)=A}/(2y2)=0.200  with the  slope d adn, By Calt

st (w)=[dPgv, W)/ dv]|,=¢ Of the unnormalized scaling function ax —o_ ax [t7e , T<T, z>¢,

and its amplitudeA; =0.566[see, Eq(28) and Fig. 3. (b) Below . B

T, the limiting curve corresponds to taft2). ~ | g leCEE (32
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10 one cross section, the slogéwv), and the half-space profile
P (w), but requires the full numerical analysis. Nonetheless
Fig. 6 demonstrates that to a large extent the rescaling used
53 W there reduces the full scaling functi®{.q(v,w) to a single
% function ofv only.
5 b. Excess adsorptiorit is a challenge to determine ex-
4 107! perimentally the full order parameter profif&x,z). There-
fore in the following we analyze the adsorption
I'=/dV ¢(r) at the substrate which as an integral quantity is
10-3 more easily accessible to experiments. To this end for any
0. system with an order parameter profi€x,z) and a corre-
w . . . + . .
sponding scaling functio®*(v,w) we introduce a suitable
108 T T . ] reference system with an order parameter profilg(x,z)
:;0 - and the corresponding scaling functi®(v,w). This al-
E 10° B - lows us to introduce an excess adsorptiQpwith respect to
I this reference system,
E o0 s
N el 2 ~
= 10-% |- “a. 1—‘IeX: H f f dx di(ﬁ(X,Z) - ¢ref(xvz)] = a|t|3§'¢ HF:X
3 7
+ el
10~° |- (b) o (33
L 1 1 1 with its universal parf;, defined agsee Eqs(1) and(24)]

sz:f f dv dwWP*(v,w) — Prodv,W)]. (34)
FIG. 5. Slopess®(w) at the chemical step of the scaling func-

tions Pés(v:xlgt,wzzlf) for the order parameter profile of a
system with a chemical step at0. (a) For small distances from
the substrate the slopes diverge &§w2 with amplitudes
A7=2.367+0.006 andA;=3.366+0.005[see Eq.(27)]. (b) For
large distances the slopes decay exponentially, abdye

H denotes the extension of the system perpendicular to the
x-z plane.[In the three-dimensional cas¢ corresponds to
the one-dimensional extension of the system inttdirec-

tion. Within mean field theory, which is valid for dimensions
s"(w— ) =A™ with A5=0.566+0.001[see Eq.(28)]; below d=4,H Cor_responds to théd.— 2)-_dimensiona}l extension of
T., s"(W— o) approaches its limiting valug, =1/2 moreslowly, ~ the system in the,, ..., y4_, directions] Equation(33) leads

i.e., asA,e"CW with A;=2.338+0.001 an€=0.858+0.001see Eq. (0 the following temperature dependence of the excess
(29)]. adsorption:

As an example we investigate more closely the healing Tex=Tgags HIt1F2, (35)
effect above the critical temperature. To this end we rescale
the normalized cross sections of Fig. 4 such that their slop®ith the universal amplitud&?, and three nonuniversal am-
atv=0 becomes 1; see Fig. 6. It shows that these rescaldefitudesa, 50, andH Within mean field approximation this
normalized cross sections for different distances from theyields'g,= Fexago H|t| 12 For our choices of reference sys-
substrate differ basically only in the region where the curvatems as given below, (v, w) leads even within mean field
ture of these curves is largest. From the fact that these croskeory to a cancellation of the divergence of the correspond-
sections do not fall onto one curve it follows that the scalinging integrals over the scaling functio®*(v,w) caused by
function P*(v,w) is not simply given by the knowledge of small distances from the substrate. This way the numerical
mean field data fod=4 allow one to make meaningful ap-
proximate contact with potential experimental datader3.

Specifically, for the chemical step we introduce a refer-
ence systen¢s v, w) which can be interpreted as a system
with a chemical step for which no healing at the chemical
step occurs:

1 T T

0.5 |-

14 16 18 27
Pt ) - P(w), v <0, 36
-0.5 fo W) = n
csdv + Po(w), v>0.

P (v st (w)/ P& (w), w)/ P& (w)
(=1

Since this choice of the reference systems leads to a vanish-
ing excess adsorption for any antisymmetrgth respect to
v=0) scaling functionPZ(v,w) upon integration over the

FIG. 6. Rescaled normalized cross sections with slope 1 awhole half spacev>0, we restrict the integration to a quar-
v=0 forw=0.1, 1.5, 2.9, 4.3, 8.6. ter of the spacésee Fig. T.
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hy(x) = h,, x<0, (42)
wve hp, x> 0.

The absence of antisymmetry for these systems is reflected
by the “zero line”vy(w), where the order parameter van-

ishes: P(vo,w)=0. For ratios H,/h,# 1 of the scaled sur-
face fields(see Sec. Il Bthe zero line is shifted toward the
region of the surface field with the smaller absolute value.
Furthermore the zero line is not straight, but tends to increas-
ing values|vg| for increasing distance from the substrate.
However, the deviation of the zero line from the line
(v=0,w) decreases for h/ h,—1. For constant ratios
FIG. 7. The shaded area indicates the contribution to the excess~

—h, /h the deviation of the zero line from the line
adsorptiorl ¢, csas defined in Eq('?’l) for_W'W =6.0forasystem  — 2o W) decreases with increasing absolute values of the
aboveT; and with a chemical stefi’;, -sis obtained by summing

these shaded areas ower scaled surface fieldhlép and Fn. These result§ demo_nstr_ate
how the order parameter structure for the fixed point fields
Ihy|,|h,| =% emerges smoothly from the general case of fi-

: Cs_f va dwW PEg(v,w) - Pcs do.w)]. (37 nit_e fi_el_ds. In this sense ir_1 the following we fc_qus on the case
of infinite surface fields, i.e., strong adsorption.

0.004

0.002

Pt (v, w*)

-0.002

-0.004

-10 -5 0 5 10

For a binary liquid mixture confined by a substrate with a

chemical stepl’g, cs can be interpreted as the amount of B. Single stripe
particles of one type removed across the chemical step from The second system we focus on consists of a laterally
the substrate that prefers them. extended substrate with a negative surface figle> - in

Below T. the scaling functionPy, (v)=Pcgv,W=>)  which a stripe of widthS with a positive surface field
[Eq. (25)] of the liquid-vapor profile gives rise to a nonvan- h, —« is embeddedsee Fig. 1b)]. The surface fieldh, is

ishing universal excess adsorptiBpwith respect to the cho- assumed to vary in a steplike way:
sen reference systeRyg g vo xe[0S],
hy(x) = (43

— oo, x & [0,9].

f‘: dv[P; - P- W=o0)]= dul P~ -1
b fo o[PLy(v) = Pes dv )] 0 v[Pry () ~1] We introduce the coordinatesandw scaled in units of the

correlation length, where denotes the scaled distance from

=-2In2. (38) the left border of the stripe at=0 andw the scaled distance
~ ) from the substrate. The influence of the stripe wiStind of
ThusT’, cscan be written as the reduced temperatuteare captured by the scaled stripe
_ o width S=S/&. The order parameter profile for the system
Iexcs= LIp+ Ty (39 with a single stripgSS exhibits the scaling property
whereszlg’Hoo denotes the extension of the system per- d(x,2,1,S) = alt|PPsq v = 1 w= i,éz §) (44)
pendicular to the substrate and the system-size-independent & &

contributionl:;ny characterizes the influence of the chemicalwith the limiting behavior
step. From our numerical analysis we find the following uni-

versal excess adsorption amplitudes: PEdv,w,5=0) = - PX(w), (45)
T cs= - 1.457+0.001, (40) PE(v,W,S— ») = Pidu,W). (46)
Figures &) and 8b) show cross sectionfarallel to the
Fexf_ 1.299+0.001. (41) substratg through the order parameter scaling function

Pgs(u,w,g) for systems with different scaled stripe widgh
) o _ at two different scaled distancasfrom the substrate in com-
2. Nonantisymmetric finite surface fields parison with a cross section through the order parameter pro-

Next we study an infinite substrate consisting of twofile Pcdv,w) at a single chemical step at=0 (see Sec.
halves with surface fields of opposite sign but different ab-ll A). With increasing scaled widtB— o of the stripe the
solute finite values, and h,, respectively, and a vanishing left part of the cross section of the stripe system merges with
surface enhancement. As before we consider a steplike varithe cross section of the system with a single step. Further
tion of the surface fieldh;: away from the substrate the mutual influence of the two step
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Vv 8= 81--- 0 Vs
v §=120

3 y, §=16.0 -- 4 0o i
= i "i T oo — 0.2
= . 2
'6—)\ ] I - +§: -04 -1
: | :
= Bl 0.6 3 .

Q_:” | I"‘ -

1

\ w=27 -0.8 |- T

L ; ] ] ] ]
20 30 0 5 10 15
v 5
1 T T 5 T FIG. 9. Universal excess adsorptihﬁ‘gxyss[Eq. (48)] for a single
(b) R 13.'3 ....... stripe with respect to a system with no healing as a function of the
3 05 R ,‘~\ , §=160 -~ stripe widthS. For S=0 the system corresponds to a system with a
1 Ny = -_— . . .

133 Y SN S= o homogeneous substrate whose corresponding excess adsorption is
> ) [V LT . .

& ol T | - 0. In the limit S— « the stripe system corresponds to two indepen-
8 ] Bl dent chemical steps whose excess adsorption also vanishes due to
&) 1 1Ty . . ~
It | ! A | antisymmetry of the profiles around=0 andv=S— . The non-

Ay -0.5 . \ ~

N vanishing excess adsorption for intermediate stripe wi&lsdi-
. . RN 1?;'5 cates the effect of the stripe with a surface field opposite to the one
-10 0 10 20 30 of the embedding substratﬁex ssattains its minimum aB=0.3.

FIG. 8. Comparison between the normalized cross sections of P T (B+ + =

the order parameter scaling function near a substrate with negative eX~55(S) _Jlm f . Ou] dwPsdv,w,S)]
S ; ; : " ) B—oo (B-9)/2 0

surface field in which a stripe with positive surface field of scaled
width Sis embedded and the normalized cross sections of the order
parameter profile near a single chemical stefnich emerges as
limiting case forS— ), (a) at a scaled normal distanee=2.7, and
(b) at w=13.5. Here we consider the ca3e-Tc. The chemical \whereB=B¢>Sis the overall lateral extension of the sub-
steps are located at=0 andx=S corresponding t&# =0 andv=S strate surface in thex direction [see Fig. 1b)] and

(see vertical lines Tt=[2dw P (w) is a universal number characterizing the
amplitude of the excess adsorption ahamogenoussub-

strate: [3dz ¢(z, t)-f*af*tﬁ‘ The value ofl* is discussed

For systems with a single chemical stripe on the substratIn Ref. [33] and in Ref.[25] where it is denoted as

a reference system with the scaling functiBgs dv,w, 9 »=0./ (v '8) [see Eq.(29) and Fig. 5 in Ref.[25]; i
can be introduced, similar to the one for a single chemlcafj 3 one had %=2.27]. Equation(49) describes how in an
step, which can be interpreted as a system with a singleperational sense the universal functlbj; <49 (see Fig. 9
chemical stripe on the substrate where no healing occurs: can be obtained from the measurements of the excess adsorp-
tion (relative to the bulk order paramelext a striped surface
and from those of the excess adsorption at the corresponding
. - + PI(w), v e [03], homogeneous surface.
Pssdv,w,S) = p* ~ (47 Figure 9 shows the dependence of the excess adsorption
AW. v &[0S]. IN“;fX’SSon the scaled stripe widtB. For S— = the structures
associated with the two chemical steps forming the stripe

This reference system allows us to define the excess adsordecouple SO thatl“eX Sg5—> «)=0. Upon construction
tion Fex ssfor the striped systems: | Iy S;{S—O) 0. The decrease of the excess adsorption at

S~1 arises due to the fact that for sufficiently small stripes
- " the spatial region where the order parameter profile is posi-
T <dS :f dvf dWPidv,W,9) - Pis dv,w,9)]. tive no longer resembles a rectangular but a tonguelike shape
’ —e 0 ’ (see Fig. 1D Since for the reference system the region with
(49) a positive order parameter still resembles a rectangle this
leads to a negative excess adsorption.

For different stripe WidtfS the tonguelike regions defined
Equation(48) can be rewritten as by the zero linesy(w) where the order parameter vanishes,

+(B-29T% ¢, (49)

structures onto each other is more pronouriseg Fig. &)]
and stronger for smaller stripes.
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o -
Sp =45 —

I
§=30—
g=21-"" | §,=30--—-
§=15 5 =15
S5_06 —— - S."p = (.5 weeeee

FIG. 10. Zero linewg(w) where the order parameter vanishes,
P(vg,w) =0, for different stripe widthsS. Outside the tongue the
order parameter is negative, corresponding to the preference for the
substrate outside the stripe. Inside the tongue the order parameter is
positive and thus demarcates the range of influence of the stripe
with opposite preference.

P(vg,w)=0, are shown in Fig. 10. The width of the tongue at
the substrate is given by the stripe widshdue to the infi-
nitely strong surface fields. With increasing stripe widh 0 1 2 3 4
the tongue becomes longer. Figure 11 shows the dependence 8
of the lengthwy o Of the tongue on the stripe Widi It

shows that for small stripesy ., increases linearly Wit -, FIG. 12. (g) Universal scaling function for the exc.ess adsF)rptlon
' I'ex psher unit cell[Egs.(50) and(51)] for a system with a periodic

stripe pattern of negative and positive surface fields with scaled
. ) . widths §,=S,/¢ andS,=S,/ ¢, respectively. The cas8,/S,=0 cor-

As a natural extension we now consider a substrate with gsponds to a homogeneous substrate with a positive surface field.
p?r'Od'C array of strlpe_s with alterr_watlng s_L_Jrface fle[_dee The excess adsorption vanishesﬁ;n:ép due to symmetry reasons.
Fig. 1(c)]: stripes of Wldthg’(sn) with positive (negativg For large ratioénlNSp with ~Sp fixed the excess adsorptidN?ixyps{N

surface fieldh; —oo(h; ——=). In the lateralx direction we tends 1o th dsorption of a sinale strive of vitthat |
employ periodic boundary conditions. The corresponding®" > ' M €XCEsS adsorption of & Sing’e Stripe Wijtthat is
by Fig. 9.(b) Loci of the maxima ofl", p4S;, S/ Sp)/N.

scaling functionPpgfor the order parameter distribution near 9'Ven

the substrate with periodic stripg®S depends on two

scaled coordinates=x/&" andw=z/¢" and on two scaled duces the number of scaling variables to two:

stripe widthsS,=S,/&" and §,=S,/¢" or, equivalently,S, c¥e -

and S,/ $,=S,/S,. Thus in the serie®.,, Pcs, Psg andPpg ngyps(sp,sh/sp) = NJ dvf dV\,{P;S(v,W,Sp,Sh/Sp)
each scaling function acquires one additional scaling vari- 0 0

able. Considering the excess adsorpﬁ“tjplpgpép,éq/ép) re- - Pl &v,W,'ép,g/’ép)], (50)

C. Periodic stripes

T T T T where Pjg~PL(W) on the positive stripe and
Pps=—P.(W) on the negative stripeN is the number of
10 7 periodic cells on the substrate. In analogy to &) one has

Wo,mazx

T2 05, 8/8) =N fosp+s” do fo AW Prd,w. 5, 5/5)]

~ (S-S5 . (51)

As compared with the case of a single stripe the periodic
arrangement enhances the excess adsorption byptien-
FIG. 11. Dependence of the lengify mayxf the tongues shown tially large) number of lateral repeat units. Figure (a2

+

in Fig. 10 on the stripe widti$. For small stripe widths the length Shows that_FgXYPSEO for §=8S,. F(::-x,I_DS_ vanishes at5,=0
of the tongue increases linearly; with increasing stripe widtise ~ P€cause this corresponds to the limiting case of a homoge-

lengthwg max Of the tongues diverges. neous substratigxypsalso vanishes fog,=S, for symmetry
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14 T T T T adsorptions are introduced relative to order parameter pro-
& : files at homogeneous substrat€gc. Il and Fig. 2taken to

vary in a steplike way in the lateral direction according to the
actual chemical pattern under consideration.

(2) The specific shapes of the scaling functions are deter-
mined within mean field theory. For thehemical stepthe
full scaling function of the order parameter profiles is shown
in Fig. 3 in terms of the scaling variables=x/¢ and
w=z/ £ given by the lateralx) and the normalz) coordi-
nates in units of the bulk correlation lengéh Lateral cuts
through the normalized scaling function with an emphasis on
its asymptotic behavior far from the substrate are shown in

FIG. 13. Dependence of the rescaled lengih o Of the  Fig- 4. For the case of strong adsorption considered here the
tongues within which the order parameter adjacent to a stripe mairslopes of the scaling function across the chemical step in-
tains the sign preference of the stripgompare Fig. 10on the crease~w 2 upon approaching the surface and decay "

stripe widthS, for different ratiosS,/S,. The limit S,/S,— cor- toward the bulk withC=1 aboveT, and C<1 below T,
(Fig. 5. To a large extent the variation of the full scaling

function normal to the surface can be absorbed by rescaling
the lateral variation suitablyFig. 6). The excess adsorption

at the chemical stefEq. (37) and Fig. 7 leads to universal
-~ - numbers abovgEq. (40)] and belowT. [Egs.(39) and(41)].
reasons. The limi§,/S,— < with S, fixed leads to the case  (3) The lateral variation of the order parameter adjacent
of a single stripe of widtt8,; this corresponds to Fig. 9 up to to asingle chemical stripés shown in Fig. 8 in terms of its

the factorN. In Fig. 12b) the loci of the maxima of the = suitably normalized scaling function. Figure 8 visualizes the
excess adsorptioh;, 4N for different stripe widthsS, and ~ dependence of these structures on the scaled stripe width.
éﬁ are given. Figure 10 illustrates the influence of a chemical stripe of

The positive values of the excess adsorotish .. are width S on the adjacent order parameter. The range of this
P Pty ps influence, defined as the spatial region of maintaining the

again caused by the tonguelike regions within which the Or'preferred sign of the order parameter, generates tonguelike

der parameter profile has a definite sign. BprS, there is  structures which grow with increasing stripe widgig. 11).

a finite tonguelike region adjacent to each positive striperhe excess adsorptidieq. (49)] is described by a universal

within which the order peirameter is positive, and it is nega-Scaling function in terms o%zS/g, which is minimal for

tive outside of it. ForNSpHSn the tongue length diverges and 3~03 (Fig. 9
the tongue boundaries degenerate into two parallel lines or- (4)' For épériodic stripe patterrof N unit cells the scal-

thogonal to the substrate. F& > S, there are tongues of ing function for the order parameter depends on four scaling

negative values of the order parameter adjacent to the nega: i . = =

. . ) ariablesw, w, §=S,/¢, and§,=S,/§ whereS, and§, are

tive strlpgs. F'Q““E 13 Sh_OWS the Ie'ngzh'nlaxof t.he'tongues the widths of the stripes with positive and negative surface
on the stripe widtr§, for different ratiosS,/S,. With increas-  fields, respectively. The range of influen¢see point 3

ing ratio S,/S§,— the limit of a substrate with a single above of the narrower stripes is again confined to tonguelike
positive stripe of widthS, in a negative matrix is reached. ~ Structures which grow with increasing stripe widffig. 13.

The corresponding excess adsorptiBig. 12a)] is given by

a universal scaling function in terms &, and S,, which
describes the interpolation between the homogeneous

Based on mean field theory combined with renormaliza-substrate (~Sh/~Sp:O) and a single stripe of widthhé,J

tion group arguments we have studied critical adsorption Oféhfspzoo, Nsp fixed). The relation betwee,g;p and 'S, that
fluids at chemically structured substrates. The fluids are eigie|ds the maximum excess adsorption is shown in Fig.
ther one- or two-component liquids near their gas-liquidypp).
critical point or binary liquid mixtures near their critical de-
mixing point. In the first case the order parameter is given by
the local total density, in the second case by the local con-
centration. We have determined the order parameter profiles In the following, we provide some details of the numeri-
and suitably defined excess adsorptions for three substratal methods we have applied. The order parameter profiles
types: a single chemical step, a single chemical stripe, and are be calculated numerically from Eq43)—(15) by intro-
periodic stripe patterrisee Fig. 1L We have obtained the ducing a discrete lattice with finite spatial extensions. The
following main results. extension of the system perpendicular to the substratk-

(1) The order parameter profiles and the excess adsorpection is L; the extension in the direction of the inhomoge-
tion can be described in terms of universal scaling functionsieity of the substratéx direction is B. The corresponding
[Egs.(24), (35), (39—(41), (44), (49), and(51)]. The excess lattice spacings are denoteddmanddx. Since the system is

wWo,maz

responds to the case of a single stripe of wiéghThe full curve
corresponds to the latter cagsee also Fig. Dland is denoted
as»:1.

IV. SUMMARY

APPENDIX: NUMERICAL METHODS
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translationally invariant in thel-2 directions perpendicular 3 minimum widthB so thatL andB span a region in which
to thex-z plane(whered denotes the spatial dimension of the e order parameter profile is calculated correctly under the

z%srt]glm’ the numerical problem is effectively two dimen- chosen boundary conditions. It turns out that a width

For the calculation of the scaling functions these quantiB=16 is sufficient for the studied range of lengths: 20.
ties are scaled with the correlation lengthleading to the  For the substrates with a single stripe the wiBthS of the
scaled lengtfL in the w direction, the scaled widtB in the  npegative matrix is chosen B-S=16 and is kept constant
v direction, and the corresponding lattice spacidgsand  for gifferent widths of the stripe. We use the steepest descent
dv, respectively. In order to mimic the characteristics of anmatho in order to calculate the order parameter profiles. The
infinitely extended system we choose an exponentially de-

caying continuation of the order parameter profiles as thé/alues of the scaling functioR(v,w) of the order parameter

boundary condition at the distantefrom the substratgFor &t €ach lattice point are split into an initial p&h(v,w) [see
the nonantisymmetric profiles we resort to a constant conthe profiles for systems where no healing occurs given by
tinuation) In the case of the substrate with a single chemicaEgs.(36) and (47)], which is a known solution for a system
step or a single stripe we choose the widfsuch that the Similar to the one under consideration, and a correction term
system is sufficiently broad that the influence of the chemicaPcor{v, W), which is varied in accordance with the steepest
steps at the lateral boundaries is negligible and the ordefescent method. This procedure is described in detail in Ref.
parameter attains the value of the corresponding half-spadé5]. The excess adsorption depends on the value of the lat-
profile PZ(w) for infinite surface fieldsh; — or pﬁ (W) tice spacingslv anddw, respectively, used for its numerical
for finite surface fieldsh, <oo: Piy(+B/2,w)=+P* (1w) calculation. Therefore we have calculated the excess adsorp-
. o LeeseE e — =T tion for different lattice constants and extrapolated it to
Psd*B/2,w)=-P. , (w). For the substrate with periodic q,-gw=0. It also depends on the length of the system.
stripes one can focus on a single unit cell so that the scaleence we calculated the order parameter profiles for a fixed

Wi(_jth B is the sum Of the ftrip~e widths, i‘nd§n with peri-  idth B and different lengthd.. For lengths larger thah
odic boundary condition®?s(+B/2,w)=Pp{~B/2,w). The =10 the results are indistinguishable, i.e., for these lengths
choices for the widtiB and the length_ of the system are corrections with respect to an infinitely long system are

not completely independent, i.e., for a given lengttnere is ~ Negligible.
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