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Continuous majority-vote model
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We introduce a kinetic irreversibl¥Y model and investigate its dynamic critical behavior through short-
time Monte Carlo simulations on square lattices with periodic boundary conditions, starting from an ordered
state. We find evidence that this system exhibits a Kosterlitz-Thouless-like phase for low values of the noise
parameter. We present results for the correlation function expoptemtseveral noise values. We also find that
the dynamic critical exponerttis in agreement with the value expected for local update Monte Carlo rules.
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I. INTRODUCTION In this work, we introduce a generalization of the

An important aspect in the study of statistical model SyS_majorlty-vote model in which the dynamical variables can

tems is the role of symmetry. It is well known that equilib- have continuous symmetry—i.e., afinite number of states.

rium statistical models are in the same universality clas We investigate whether the system exhibits a phase tran-
. ; . y ition at a finite value of the noise parameter and, if it is the
when they share identical symmetries.

o case, whether the conjecture mentioned above could include
For far-from-equilibrium systems, results of a number of

numerical simulations support the conjecture that model:gnOOIeIS with continuous symmetries.
PP ) Here we consider the case where the dynamic variables

with the same symmetries and defined on the same lattice are N o )
also in the same universality clagk2]. Most of these stud- are plane rotator§ =(S;,S,,) residing on the sites of square
ies have been done on models of discrete symmetries—vizattices andS|=1. Under a reversible dynamics this system
on kinetic Ising[3-7] and Potts modelg8—12] evolving un-  corresponds to a bidimension&lY model in which an or-

der stochastic reversible dynamics. Models with an infinitedered phase is not possible. Nevertheless, this model under-
number of states were analyzed as Vj&B]. goes a nonusual phase transition, due to unbinding of de-

An interesting class of nonequilibrium models consists offects, known as the Kosterlitz-Thoulesé&KT) phase
systems which evolve in time according to a dynamics suchransition[16]. In the low-temperature phase thé2Dsym-
that in the stationary state the condition of detailed balance imetry is preserved and the system remains critical in the
not satisfied—that is, microscopic irreversible modéi). sense that the spatial correlation length is infinity.

The simplest example of an irreversible system that pre- The equilibriumXY model has important physical appli-
sents a nontrivial behavior is provided by the two-statecations, apart from the obvious oneX& magnets. For ex-
majority-vote model[15]. In this model, each dynamical ample, it describes the critical properties of the superfluid
variableo on a lattice site takes the state of the majority ofhelium and it is also related to some models of the roughen-
their neighbors with probability 1e¢ and the opposite state ing transition of crystalline surfaces.
with probability . Therefore, the time evolution is governed  In the context of reversible dynamics this model has at-
by the flip rate tracted much attention and its equilibriyii7—2Q as well as

, out-of-equilibrium[13,21-24 properties have been investi-
1 gated by a number of techniques.
Wi =5 1-Q1- 2q)ai8<26 Ui+5) ' @) In this paper we are going to investigate, through short-
time Monte Carlo simulations, what features of the behavior
whereo;=+1, S(x)=sgn(x) for x# 0, S(0)=0, and the sum- of the XY model are preserved when it evolves according to
mation runs over the neighbors of the sité a microscopic irreversiblelynamics. In Sec. Il we introduce

Numerical simulations of this model showed that it pre-the kineticXY model and our simulational procedure. In Sec.
sents a dynamical phase transition from an ordered stational} we present the results of the simulations along with a
state to a disordered one at a critical value of noise parametdpite-size scaling analysis of the temporal behavior of the
g, which is in the same universality class as the equilibriunyelevant observables. We conclude in Sec. IV with our final
Ising model[15]. Therefore, microscopic reversible and irre- remarks.
versible models seem to be in the same universality ¢&ss

at least when their dynamic variables have a finite number of
states. II. KINETIC MODEL AND SIMULATION

In order to introduce a microscopic irreversible dynamics

for continuous degrees of freedom closely related to that of

*Also at Departamento de Fisica, Universidade Federal de PeEq. (1) we first need a generalization of the spin-flip opera-

nambuco, 50607-901 Recife PE, Brazil. Electronic addresstion o;— —a; as in the Ising model. That has been done by
adauto@df.ufpe.br Wolf in the context of a cluster Monte Carlo dynam[&§)].
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It consists in the reflection of the spin with respect to the 1 )

plane orthogonal to an arbitrary direction. Xt = FE SiiSi+r explikr), (5)
For an @2) symmetry the system evolves according to b

the following rules. Each time step, a random directiois with k=27/L.

selected and we scan the whole lattice. For each site we The last two equations allow us to introduce a time-

projectS and its neighbor rotators onfo The component of ~dependent correlation length through

S in thef direction is flipped with probability 1 Yo
5(0:@/(——1). (6)
Xk

w=3 1—(1—2q)8(§-f)$<2§+5-f> e
2

The equilibriumXY model has an exponential singularity;
) o ] ) ) ) that is, the correlation length diverges exponentially. This
We might visit the lattice sites sequentially or pick them uppehavior contrasts with that of a second-order transition,
at random. As in our test runs we did not observe any differyynere the correlation length diverges with a power law. Also
ence between both procedure, we opt to walk sequentiallyhe spatial correlation function decays algebraically to zero.

through the lattice. As usual, a Monte Carlo time StACS)  Therefore, assuming that the correlation function decays as
corresponds to a sweep of the whole lattice. According to Eq.

(2) one sees that fay=1/2 every spin rotates with probabil-
ity 1/2, whereas fog=0 the probability of the component of
a spin ending up pointing contrary to its neighborhood van- , , , ,
ish. So we might expect some kind of cooperative behaviolVhereés is the spatial correlation length, we obtain
for sufficiently low values of the noise parameter 27 (8)
It has been observed in a number of Monte Carlo simula- Xk 55
tions that the time evolution of several observables show#nd the short-time dependence of the quantities of interest
scaling behavior even for short time. This was analyticallycomes from the relation~ &, wherez is the so-called dy-
predicted only for dynamic evolution starting from a disor- namical critical exponent. For instance, E§) implies
dered stat¢26]. Nevertheless, short-time dynamical scaling @z
can also be found starting from an ordered state. This has xdt) ~ t ' ©
provided an efficient method to determine the conventionaln addition,
critical exponents. In the next section we are going to ex-
plore this to investigate the behavior of the kinetic model my(t) ~ 7% (10
introduced here. an
Therefore, let us introduce some useful quantities for our
posterior analysis. In this paper we only consider the dy- Et) ~ 712, (11
namic relaxation of the two-dimensional kinet¢y model
from an ordered state. For this purpose we take the initi

state to be§,:(1,0) for all spins. This means that the
component of the magnetization,

I'(r)~ r%” exp(-r/é&), (7)

a‘n the next section we are going to show these scaling laws
are satisfied by the kinetiY model introduced here.

[lI. RESULTS AND DISCUSSION

1
mx(t)zpz S ) We perform Monte Carlo simulation in a kinetic two-
: dimensionalXY model introduced in the previous section,

att=0 is 1, whereL denotes the lattice size. Then the systemfestricting ourselves only to the relaxation from an ordered
evolves according to the above dynamics for some valo initial state. We consider full periodic square lattices of linear
the noise. Due to the absence of conventional long-rang&izesL=16, 32, 64, and 256. Most of our results will be
order for two-dimensional systems with continuous symmeJresented for a 64 64 lattice. The system is prepared in an
try, we expecim,(t) to go to zero for large enoughfor any  initial state and then released to the dynamic evolution for
value of q. Nevertheless, if there exists a KT-like phase atSome value of the noisg All calculated quantities are aver-
low noises, the magnetization should show a short-timéged over several realizations—that is, over different time

power-law behavior for noises near and below some criticaffajectories. _ _
e First we consider the relaxation of tkecomponent of the

Other observables also provide useful information abouff@gnetization for rather high noises. Figure 1 shows the

the critical behavior of the system. In particular, we measurdnagnetization as a function of time for two values of the
the second moment of the magnetization, noiseq andL=16, 32, and 64. We performed 1000 samples;

i.e., we averaged over 1000 time trajectories, @or0.08
1 2 (open symbolsandq=0.14(solid symbol$ and each lattice
Xo(®) = E(E S’“) ' ) size. From those data shown in Fig. 1 we see that the mag-
' netization measured for both values g@fdecays exponen-
and the Fourier transform of the equal-time two-point corre-ially with a characteristic timer depending strongly oq.
lation function, Notice also the weak dependence with the lattice size for
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FIG. 1. Thex component of the magnetization for high noises
starting from the ordered state in a lin-log scale. The lines are linear 0-92 L
fitting to the data from which we estimate the relaxation time, F
Different symbols correspond to distinct lattice sizesncreases =
from about 16 times when the noise is lowered frgm0.14 toq s
=0.08, which might indicate the system is approaching criticality. 4 g- |

these high values of the noise parameter. Assuming tha—~, [~
m(t) ~exp(-t/7), we estimater(q=0.14=151) MCS and £ [.__
7(g=0.089=2461) MCS from a linear fitting to the data of — [

Fig. 1. Whereas the exponential decaying is a signal that the 0.72
system is not critical at all, the extraordinary increasing of

the relaxation time when the noise is lowered frgm0.14 =
to g=0.08 might indicate we are approaching criticality.

n

In Fig. 2 we plot the magnetization as a function of time (b) ) L ) ! ) L ) ! )
for a 64X 64 lattice in a double-logarithmic scale and for 33 4 4.5 5 5.5 6
noises 0.025, 0.03, 0.035, 0.04, 0.045, and 0.048. For eac In(t)
noise we performed 8 blocks 0f>510° samples 400 MCS o
long. Each block yields an estimate fiog(t) at a given time FIG. 2. Thex component of the magnetization for a %464

. : . . ; ttice in a double-logarithmic scale. The starting state is the or-
t, and from this we obtain our final estimate and estimate O?ered one. Ia t belongs to1.400] and in(b) only the long-time

its statistical error following standard procedures. We pro- egime is shown. From above the noises are 0.025, 0.03, 0.035,

F:eed in the SaT“e way FO CaICl_JIa}te all other quantities o .04, 0.045, and 0.048. The slope of each curve yiell#z at each
interest and their respective statistical errors. The largest sta-

tistical errors turned out to be less than 0.5%. Therefore, the

error bars are too small and they are left out in the figures forespectively. We selected the cutoffs guided by yhequare
clarity. From Fig. 2a) we see clearly that at early times the per degree of freedom as the best fitting criterion. The use of
curves do not display power-law behavior. However, for different time intervals yields an estimate for the systematic
greater than anicroscopictime scale, which depends weakly errors involved in our analysis. Moreover, we perform the
on g, all curves exhibit power-law behavior as shown in Fig.fitting of the data directly to a power law according to Eqg.
2(b). In fact, visual inspection of these data shows that the10—i.e., giving equal weight to the data in both the short-
magnetization decays as a power law for values of the noisand long-time regimes. Both procedures yield consistent re-
g=<0.048 at least for intermediary times. This behaviorsults, and we take the mean as our final estimates for the
strongly suggests that the system remains critical all the wagxponents. Atg=0.048 the best fitting was achieved in the
down tog=0 and it is similar to that of the equilibriutdY  time interval[100,30Q and we estimate;/2z=0.059 392).
model with the noise being analogous to the temperaturelhe quoted error is the sum of statistical and systematic er-
From Eg.(10) one sees that the slope of each curve distor. We proceed in the same way to calculgte?z for the
played in Fig. 2Zb) yields the critical exponeny/2z at that  other noises, and we summarize the results in Table | along
particular noise. However, finite-size effects take place atvith the value of others relevant exponents as calculated be-
long times and the behavior cross over to an exponentidbw. Results from simulations carried out on a 25856
relaxation towards a steady state. Therefore, strictly speakinigttice agree with those reported in Table I. Therefore, finite-
the power law is only obeyed in some subinterval of the timesize effects can be ignored within the statistical errors.
evolution. In order to estimate the exponeyi2z we fit the We turn now to the calculation of the other exponents. In
data according to a straight line with in the interval Fig. 3 we plot the Fourier transform of the equal-time two-
[tinf, tsupl, Whereti andtg,, are inferior and superior cutoffs, point correlation functiony, as a function oft in a double-
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TABLE I. The slope of the curves afi(t), xi(t), the dynamic critical exponerf and the correlation function exponentThe exponent
zwas obtained through the reciprocal of the slope of the cun&tpfind agrees with that calculated using the measured valug&afand
(2-m)/z. The exponent; comes fromz/2z andz.

q nl2z 2-n)lz z 7
0.025 0.0250) 0.923) 2.1(1) 0.1065)
0.030 0.031®) 0.872) 2.1418) 0.1333)
0.035 0.038R3) 0.854) 2.1620) 0.1682)
0.040 0.04441) 0.832) 2.1709) 0.1942)
0.045 0.053%) 0.83073) 2.1337) 0.2293)
0.048 0.0593@) 0.8144) 2.14Q9) 0.2542)

logarithmic scale for the same noises and lattice size as in Finally, we complete Table | listing in the last column the
Fig. 2. Again, visualization of the curves in this figure showscorrelation function exponenj calculated fronz and 7/2z.
that Eq. (9) is satisfied. Therefore, by fitting the data to  In Table I, we summarize all the values of the critical
straight lines we estimate the exponé®t7)/z for eachq. exponents discussed above. First, we notice that the correla-
Also we double checked the results by fitting the data dition function exponent shows a strong dependence with the
rectly to a power-law according to E(P). It is worth notic-  noise g, with a rather linear trend towards 0.25 when
ing that different quantities display power-law behavior in —q. from below. This behavior is qualitatively similar to
distinct time intervals, so we carried out a careful analysis tdhat observed in the equilibriutXY model. A quantitative
estimate the systematic error which comes from using differcomparison is not possible for we did not calculate the exact
ent time intervals to fit the data. The calculated values for thevalue of g.. The critical dynamic exponert is estimated
(2-mn)/z exponent are displayed in the third column of Tablethrough a weighted average of the data shown in the fourth
l. column of Table | and turns out to k®=2.1366), in agree-
Having independent estimates fgf 2z and (2-7%)/zwe  ment with z=2.162) obtained for theXY model evolving
can calculate the dynamical critical exponemnd the asso- under reversible dynamid®7]. Our estimate forz is also
ciated critical exponent of the correlation function An-  compatible with those of two-dimensional systems with a
other way of getting estimates faris through Eq(11). For  second-order transition such as the Ising or the three-state
this purpose, we plot the time-dependent correlation lengtiPotts model and with a KT-like transition such as the six-
as a function of time in Fig. 4 for the same simulationalstate clock mode[13]. On the other hand, this estimate is
parameters as in the previous two figures. Again, we see thatightly higher tharz~ 2 recently obtained in the context of
after a certain period of timé displays power-law behavior reversible dynamicg24].
and the slope of each curve yields an estimate far Bboth
procedures yield compatible results. In the fourth column of V. CONCLUSIONS
Table | we present our final estimates for the dynamical criti-
cal exponentz. We observe that within our quoted error bars
z does not depend oq.

In conclusion, we introduced a kinetic irreversibkey
model and investigated its behavior through short-time

In(§)
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FIG. 3. The Fourier transform of the equal-time two-point cor-  FIG. 4. The time-dependent correlation lengtlversust in a
relation functionyy, as a function of time in a double-logarithmic double-logarithmic scale. Noises and line types are the same as in
scale for a 64 64 lattice. Noises and line types are the same as irFig. 2. After a certain period of time the curves are well fitted by
Fig. 2. The slope of each curve yielé@-»)/z at eachq. straight lines whose slopes yieldZ/
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Monte Carlo simulations in square lattices. We focused onlyble dynamics Zheng and co-workers have observed power-
on the relaxation from an ordered state. The nonequilibriuntaw corrections to scaling for the relaxation from an ordered
dynamic process is closely related to that of the majority-state[24]. Therefore, one has to consider with some caution
vote model with a noise in which the dynamic variables havehe systematic errors reported in the present work since they
a finite number of states. The results show that there exists@o not take into account such effects.
low-noise KT-like phase where the measured correlation Finally, we notice that the irreversible dynamic system
function exponenty depends on the noise and the system isnvestigated in this work presents a critical behavior very
critical in the sense that the correlation length is infinity. close to the corresponding equilibrium one; i.e., they seem to
Although in this paper we did not attempt to obtain the criti- be in the same universality class.
cal noise where the KT phase begins, we did fipd
=0.2542) for a noiseq=0.048 which is surprisingly close to
the value 0.25 predicted by the Kosterlitz-Thouless theory at
the onset of the KT phase in the context of the equilibrium We are indebted to M. L. Lyra for his critical reading of
XY model. the manuscript. We also have benefited from the warm atmo-

We obtained rather accurate value of the dynamic criticabphere of the Laboratério de Computacédo Cientifica of the
exponentz which turned out to be very close to 2, in agree- Physics Department at Universidade Federal de Pernambuco.
ment with what should be expected for local Monte CarloL.S.A.C. wishes to acknowledge CNRGonselho Nacional
update rules. de Desenvolvimento Cientifico e Tecnologiand Univer-
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