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In this paper, we offer a competing dynamic analysis of the one-dimensional Ising model built on the
small-world networksSWNd. Adding-type SWNs are investigated in detail using a simplified Hamiltonian of
mean-field nature, and the result of rewiring-type is given because of the similarities of these two typical
networks. We study the dynamical processes with competing Glauber mechanism and Kawasaki mechanism.
The Glauber-type single-spin transition mechanism with probabilityp simulates the contact of the system with
a heat bath and the Kawasaki-type dynamics with probability 1−p simulates an external energy flux. By
studying the phase diagram obtained in the present work, we can realize some dynamical properties influenced
by the small-world effect.
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Since Watts and Strogatz proposed the small-world net-
works sSWNd f1g, which are believed to catch the essence of
many network systems in nature and society, a large number
of further works have appearedsseef2–5g for reviewd. Re-
searchers are interested in investigating the properties of
various models and processes on SWNs. Recently, Zhu and
Zhu successfully introduced the SWN effect to the critical
dynamics of the spin systemf7g, and thus extended the in-
vestigation to the dynamic properties of spin models. In the
1960s, the dynamic behavior of the Ising model was success-
fully described with the Glauberf8g and Kawasakif9g
mechanisms. From then on, great progress has been achieved
based on these two mechanisms. Besides, an interesting
problem has been attracting much attention, i.e., the compet-
ing Glauber-type and Kawasaki-type dynamicsf10–12g. In
the competing mechanism, the Glauber-type dynamics is
given probabilityp, while the Kawasaki-type one has prob-
ability 1−p. Zhu et al.’s recent workf13g has studied small-
world network effect in the competing dynamics on the
Gaussian model. Some meaningful results has been obtained,
but due to the requirement of the convergence of the integra-
tion, they were not able to get the full phase diagram. In this
paper, we investigate the competing dynamics of the Ising
model considering the small-world network effect, and we
obtain the full phase diagram and the competing dynamic
behavior. By this work, we can further understand the influ-
ence of the SWN effect and highlight the disparities between
the dynamic mechanisms.

In the construction of SWN with a certain probability of
introducing long-range links, we will end up having a whole
set of possible realizations. Thus the theoretically correct
way of treating dynamic systems built on SWN should in-
volve three steps: First we have to make a full list of all the
possible realizations and point out the probability of each
one of them. Second, we treat the problem independently on
each network. Finally, we give the expected value with all

these results. Although being conceptually straightforward, it
is very cumbersome even for the simplest one-dimensional
Ising model. It has been suggested that the spin system on
the SWN as a whole has mean-field-like effect on individual
spins due to the long-range linksf6,7g. Naturally, a simplified
method of mean-field nature was presented by Zhuet al. f7g
to describe the kinetic spin system built on SWN. According
to this simplified method, all possible networks are deemed
as a single one. Then, the effective Hamiltonian of a spin-
lattice model built on such a network is defined as the ex-
pected value over all possible realizations.

In the present work we study two specific networks: In a
one-dimensional loop, for example,s1d each randomly se-
lected pair of vertices are additionally connected with prob-
ability pA; and s2d the vertices are visited one after another,
and its link in the clockwise sense is left in place with prob-
ability 1−pR and is reconnected to a randomly selected other
node with probabilitypR. Networks of higher dimensions can
be built similarly. We shall refer to the first model as adding-
type small-world networksA-SWNd and the second one as
rewiring-type networksR-SWNd.

We discuss the problem using the simplified method, and
give the effective Hamiltonian first. For the one-dimensional
s1Dd Ising model built on A-SWNs and R-SWNs, the effec-
tive Hamiltonian can be written as, respectively,

− bHAshsjd = Ko
k

skFsk+1 +
1

2
pAo

jÞk

s jG , s1d

− bHRshsjd = Ko
k

skFs1 − pRdsk+1 +
1

N − 1
pRo

jÞk

s jG ,

s2d

whereb=1/kBT andK=bJ. The case ofK.0, sJ.0d, cor-
responds to the ferromagnetic system.

Various dynamic processes in critical phenomena are be-
lieved to be governed by two basic mechanisms, i.e., the
Glauber-type with order parameter nonconserved and the*Corresponding author. Electronic address: zhujy@bnu.edu.cn
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Kawasaki-type with order parameter conserved. Their com-
bination, namely the competing dynamics, gives

d

dt
Pshsj,td = pGme+ s1 − pdKme, s3d

d

dt
qkstd = pQk

G + s1 − pdQk
K, qkstd = o

hsj
skPshsj,td. s4d

This dynamic competition has also been receiving attention
f12,13g. Here, pGme sor pQk

Gd denotes the Glauber-type
mechanism with probabilityp and s1−pdKme for s1−pdQk

Kg
denotes the Kawasaki-type mechanism with probability 1
−p; they are determined, respectively, by the Glauber-type
single-spin transition probabilityWissi → ŝid f14g and by the
Kawasaki-type pair-spin redistribution probabilityWjlss jsl

→ ŝ jŝld f15g.
In their original form, the Glauber-type dynamics and the

Kawasaki-type dynamics both favor a lower energy state.
However, the competing dynamics is usually used to de-
scribe a system in contact with a heat bath while exposed to
an external energy flux. Naturally one requires a competition
between one process favoring lower system energy and the
other one favoring higher system energy. Usually, the
Glauber-type mechanism is used to simulate the contact of
the system with a heat bath and it favors a lower energy
state. On the other hand the Kawasaki-type mechanism can
be modified to simulate an external energy flux that drives
the system towards a higher energy state. This can be
achieved by switchingb to −b, or K=bJ=J/KBT to −K, and
modifying the redistribution probability accordingly. This
means that the competition between the Glauber-type mecha-
nism and the Kawasaki-type mechanism is actually a com-
petition between ferromagnetism and antiferromagnetism.
Probing the competing behavior of the 1D Ising on A-SWNs
and R-SWNs is certainly a problem of interest. The equation
of evolution of the local magnetization is given by

d

dt
qkstd = pQk

GA,R
+ s1 − pdQk

KA,R
. s5d

The first and the second term correspond, respectively, to the
part of the Glauber’s dynamics with probabilityp, and the
part of the modified Kawasaki’s dynamicssonly switching
K=bJ to −Kd with probability 1−p. Our calculation will
focus on A-SWN, while the result of R-SWN will be given
straightforwardly.

For the Glauber-type dynamics

Qi
GA

; − qistd + o
hsj

Fo
ŝi

ŝiWi
Assi → ŝidGPshsj,td, s6d

and for the Kawasaki-type dynamics

Qk
KA

; − 2qkstd− pAsN − 1dqkstd

+ o
hsj
H o

v=±1
F o

ŝk,ŝk+v

ŝkWk,k+v
A ssksk+v → ŝkŝk+vdG

+ pAFo
lÞk

o
ŝk,ŝl

ŝkWkl
Assksl → ŝkŝldGJPshsj,td, s7d

where the expressions ofWissi → ŝid and Wjlss jsl → ŝ jŝld
can be found in Ref.f7g sbut differently from that paper, we
should switchb to −b for Wjld. Three important combined
terms in Eqs.s6d and s7d are calculated, for the 1D Ising
model, to be

o
ŝk

ŝkWk
Assk → ŝkd = tanhfKssk−1 + sk+1d + KsN − 1dpAs̄g,

o
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=
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2
+

1

4
ssk71 − sk±2 − sk71sksk±1

+ sksk±1sk±2dtanhs2Kd,
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sN − 1dssk + Md + o
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1

2
ssk − sldtanhhKfskssk−1

+ sk+1 − sl−1 − sl+1dgj.

Now we turn to determine the system behavior by study-
ing the tendency of evolution of the following order param-
eters:

Mstd ;
1

N
o
k

qkstd,M8std ;
1

N
o
k

s− 1dkqkstd. s8d

Obviously, a state with both vanishingMstd and M8std cor-
responds to the disordered paramagnetic phase; a state with
nonvanishingMstd and vanishingM8std corresponds to the
ferromagnetic phase; and, in an antiferromagnetic phase we
will find vanishing Mstd and nonvanishingM8std. If both
order parameters are nonvanishing, this phase cannot be sim-
ply identified as a ferromagnetic or paramagnetic phase, but
can be tentatively named as a heterophase.

The cases of A-SWN will be discussed in detail in the
following, and we will determine the tendency of system
evolution under a small perturbationMstd→0. We then give
the results of the case of R-SWN.

For the 1D Ising model built on A-SWNs, the effective
Hamiltonian of the system is given by Eq.s1d. From Eqs.
s6d–s8d we can obtain

Mstd = M0 expH− pFs1 − tanh 2Kd

− KsN − 1dpAS1 −
1

2
tanh2 2KDGtJ , s9d

M8std = M08 expF− Hps1 + tanh 2Kd + s1 − pdF2 − tanh 2K

+
1

2
sN − 1dpAS1 −

1

2
tanh 2K −

1

4
tanh 4KDGJtG .

s10d

The tendency of evolution of the order parametersMstd and
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M8std can be demonstrated by Eqs.s9d and s10d when the
system undergoes a small perturbation.

s1d When pA=0, it means that no long-range link exists,
and

Mstd = M0 expF− pS1 −
tanh 2K

tanh 2Kc
0DtG , s11d

M8std = M08 expH− FpS1 +
tanh 2K

tanh 2Kc
0D

+ s1 − pdS2 −
tanh 2K

tanh2Kc
0DGtJ , s12d

where tanh 2Kc
0=1 corresponds to the critical point of the

one-dimensionals1Dd Ising model without the SWN effect
sKc

0→`, Tc
0=0d. When K,Kc

0, sT.Tc
0=0d, Eqs. s11d and

s12d show thatMstd and M8std are both approaching zero
exponentially due to the fact that tanh 2K,1, and thus we
can reach the conclusion that, by whatever amount one in-
creases the energy flux, the system will stay in the paramag-
netic phase at arbitrary finite temperature. WhenK→Kc

0,
M8std→0, and

Mstd = M0 expF− p
t

t
G, t =

1

1 − tanhs2Kd/tanhs2Kc
0d

→ `,

the critical slowing down of the order parameterMstd will
appear at the critical pointKc

0.
s2d Now a small portion of adding-type long links are

introduced to the system, the system behavior in this case
can be described by Eqs.s9d and s10d. Obviously,M8std is
approaching zero exponentially at any temperature and any
pA. From Eqs.s10d ands12d, we can see clearly that the rate
of M8std approaching zero is faster than that in the regular
network. Different fromM8std, the evolution tendency of the
order parameterMstd depends on bothK and pA. We can
obtained the critical point by the following equation:

tanh 2Kc
A + sN − 1dpAKc

AS1 −
1

2
tanh2 2Kc

AD = 1.

To give an example, if we supposepA=1/N, we can get
utanh 2Kc

AupA,1/N=0.6809, or uKc
AupA,1/N=0.154. Relative to

Kc
A, when t→`, Mstd→0 for K,Kc

A, MstdÞ0 for K.Kc
A,

andMstd experiences critical slowing down forK→Kc
A. So,

combiningMstd andM8std we can conclude thats2.ad for the
case ofK,Kc

A, the system stays in the paramagnetic phase;
s2.bd for the case ofK→Kc

A, the system shows the critical
slowing down;s2.cd for the case ofK.Kc

A, the system stays
in the ferromagnetic phase.

However, whenp=0, we cannot identify the system sim-
ply as ferromagnetic or paramagnetic. Because in this case, it
depends on the initial state. IfM0Þ0, the system will stay in
ferromagnetic, otherwise the system will be paramagnetic.

The phase diagram is shown in Fig. 1sad.
For the 1D Ising model built on R-SWNs, the effective

Hamiltonian of the system is given by Eq.s2d. With analo-
gous calculation, one can get the equation of the critical
point Kc

R

tanhf2Kc
Rs1 − pRdg + 2Kc

RpRH1 −
1

2
tanh2f2Kc

Rs1 − pRdgJ = 1,

s13d

and the time-evolution of the orders parametersMstd and
M8std

Mstd = M0 expH− pS1 − tanhf2Ks1 − pRdg

− 2KpRH1 −
1

2
tanh2f2Ks1 − pRdgJDtJ , s14d

M8std = M08 expF− Hp„1 + tanhf2Ks1 − pRdg…

+ s1 − pdFs1 − pRdh2 − tanhf2Ks1 − pRdgj

+
1

2
pRH1 −

1

2
tanhf2Ks1 − pRdg

−
1

4
tanhf4Ks1 − pRdgJGJtG . s15d

s1d When no rewiring long link exists, i.e.,pR=0, the
evolution is the same as the case ofpA=0.

s2d When a small portion of rewiring-type long links is
introduced to the system,M8std is approaching zero expo-
nentially at any temperature and anypR. The decay rate of
M8std is also faster then before. Different fromM8std, the
evolution tendency of the order parameterMstd depends on
bothK andpR. The calculation of the critical point is similar
to the A-SWN one. WhenpR=0.1, we can get the critical
point, utanhf2Kc

Rs1−pRdgupR=0.1=0.90222, or uKc
RupR=0.1

=0.82446. Relative toKc
R, whent→`, Mstd→0 for K,Kc

R,
MstdÞ0 for K.Kc

R, andMstd shows critical slowing down
for K→Kc

R. CombiningMstd andM8std we can conclude that

FIG. 1. The phase diagrams of 1D Ising model built on SWN
with competing dynamics, Glauber-type with probabilityp, and
Kawasaki-type with probabilitys1−pd. sad On the A-SWN struc-
ture: pA,1/N; sbd On the R-SWN structure:pR=0.1. In which,
tanh 2Kc

0=1 corresponds to the critical point of the 1D Ising model
without the SWN effectsKc

0→` ,Tc
0=0d.
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s2.ad for the case ofK,Kc
R, the system stays in the paramag-

netic phase;s2.bd for the case ofK→Kc
R, the system shows

the critical slowing down; ands2.cd for the case ofK.Kc
R,

the system stays in the ferromagnetic phase. The phase dia-
gram is shown in Fig. 1sbd.

In this paper, we analytically study the dynamic properties
of the 1D Ising model built on small-world networks. Two
typical SWNs are investigated, the adding type and rewiring
type. As is generally known, the 1D Ising model on the regu-
lar lattice does not show continuous phase transition at any
nonzero temperature. However, if the SWN effect is intro-
duced, critical phenomena appear in the 1D Ising model.
With competing dynamics, as long aspÞ0, the phase dia-
grams are separated into two regions. Below the critical tem-
perature, the system will get into the ferromagnetic phase,
while above the temperature, the system will get into the
paramagnetic phase. The critical temperature is independent
of the competing probabilityp. Different from the 2D Ising
modelf10g and the Gaussian modelf13g, the 1D Ising model
built on SWNs does not show antiferromagnetic phase at any
temperature and any competing probabilityp.

As we have seen above, the Ising model shows critical
phenomena on both A-SWNs and R-SWNs. This is because
random links introduce long-range interactions. It is reason-
able that the system will exhibit long-range order at finite
temperature. Furthermore, the more extra links, the higher
the critical temperature. Thus on R-SWNs the Ising model
has a maximum critical temperature for there is a maximum
number of the random linkssit is also expected that the sim-
plified method with an effective Hamiltonian will fail when
most regular links are rewiredd. However, long-range inter-
actions do not lead to antiferromagnetic order at any compe-
tition probability, but instead, the-long range links make any
antiferromagnetic order decay faster. This is because the
long-range interaction here is random, while antiferromagnet
needs ordered long interactions.
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