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Optimal spacing and penetration of cracks in a shrinking slab

D. R. Jenkin%
CSIRO Mathematical and Information Sciences, Locked Bag 17, North Ryde, NSW 1670, Australia
(Received 13 October 2004; published 23 May 2005

A method based on energy minimization is used to determine the spacing and penetration of a regular array
of cracks in a slab that is shrinking due to a changing temperature field. The results show a range of different
crack propagation behavior dependent on a single dimensionless parameter, being the ratio of the slab thickness
and a characteristic length for the material. At low parameter values the minimum energy state can be achieved
by continually adding more cracks until a steady state is achieved. At higher values, a minimum crack spacing
is reached at finite time, beyond which the cracks are constrained to propagate with the minimum spacing. In
the latter case, the uniform propagation is potentially unstable to a spatial period doubling, leading to increas-
ingly complex crack penetration patterns. The energy minimization combined with the period doubling insta-
bility provides a means of determining the minimum energy state of cracks for all time. The problem consid-
ered here can be seen as a paradigm for cracking phenomena that occur on a large range of scales, from
planetary to microscopic.
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I. INTRODUCTION There are several studies of the propagation of crack ar-

There is a range of phenomena associated with the shrink@y$ under various conditions. Nemat-Nasseal. [17,18,
age of materials which lead to arrays of more-or-less reguBazantet al. [19], and Bahret al. [20,21 considered the
larly spaced cracks. Common examples of regular crack aRropagation of a regular array of cracks with a specified
rays in thin layers of material are paints, glazing and othespacing, including their stability. They showed that a regular
coatings that have been deposited on substfated, while array of cracks having uniform penetration into a sample will
deeper crack arrays are observed in situations such as roagopagate uniformly until a critical state is reached, at which
paving[4,5], concretd 6], drying of mud[7,8], soil [9] food  every second crack stops growing. Using slightly different
[10] and timber[11] or the formation of basalt columns approaches, each of the above determined and evaluated the
[12,13 and other geological features both terrestrial andstability criterion for this critical state, which is based on the
extra-terrestrial 14,15. There is often remarkable unifor- change of sign of the second derivative of the strain energy
mity in both the spacing and penetration of cracks. In someyith respect to the crack penetration. In each of these studies
cases the existence of cracks may be desirable, such astife spacing between the cracks was assumed, rather than
soil, since they assist the infiltration of water, or undesirablepeing determined from the model system.
such as in many of the thin coating applications referred to  This paper presents a method, based on energy minimiza-
above. Thus it may be useful to know, first, whether a layetion of an array of cracks, for determining the optimal spac-
of material that is undergoing shrinkage will crack at all, oring and penetration of the cracks as they form under the
whether its mechanical properties are such that it can accongffects of shrinkage. The aim is to determine the most likely
modate the stress associated with the shrinkage. SeCOI’]dbOnfiguration of cracks and their progression with time.
should such a material crack in a regular array, it may be
valuable to know the separation between the cracks and the 1. MODEL FORMULATION AND SOLUTION
extent of their penetration.

A particular example where the spacing between cracks Consider the situation depicted in Fig. 1, where a slab
has economic significance is the process of formation ohaving constant material and thermal properties and initially
coke from crushed coal. Coke is used in the iron-makingat uniform temperatur@,, is subject to a sudden change of
blast furnace as part of the conventional steelmaking procestemperatureAT at the surfacez=1. Then, assuming heat
It is a lump material that is formed by the fusion of crushedtransfer by conduction alone, the temperature at any time
coal particles in a coke oven. The coke shrinks and a regulafter the sudden temperature change is giveh2ay

array of cracks propagates in the direction of the temperature w .
gradient in the coke oven. The coke breaks into lumps whose T(x1) = To+ ATz+ 2ATS) cosnm SINNTZ 2.2 (1)
mean size depends on the mean spacing of the cracks. Both ' 0 =1 nr ’

the mean and distribution of lump sizes is important in the . ) .
performance of coke in the blast furnace, so the ability tovhere the distancehas been scaled with the slab thickness,

T= —
K
*Electronic address: David.R.Jenkins@csiro.au and « is the thermal diffusivity of the slab.
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2/L In the case when the slab contains a regular array of mode
| (opening cracks of spacingl2and penetratiom, the total
energy of the slab per unit length is

S
E=> 47, (6)
where the second term is due to the energy required to open
up the cracks, which is assumed to be proportiongd.tBy
appropriate nondimensionalization, Ef) becomes
E {(aAT)ZYL}g’ P

Elp=—= e ()
7

To + AT

p/L

To

FIG. 1. Geometry of a slab with an array of regularly spaced
cracks, propagating from the top bounding surface. Dashed lines ) . .
denote the representative geometry used in the finite element 1Ne basic approach here is that the spacing and penetra-
calculations. tion of the cracks in the regular array are such that, at any

given time, they minimize’ [17,18,23. The minimization
thés achieved by first determining the dependencd=bbn |
and p, which requires solving Eqgs(2) with appropriate
boundary conditions and determinig(l,p) from Eq. (5).
Note thatE’ depends upon the single dimensionless quan-

Assuming that the material behaves thermoelastically,
equations of mechanical equilibrium are

(90"'

gl R 0 2 .

o%; ) 2 tity,

2
where L _(adDYL
Le 7
= - - -+ L — - }
oij = Me=3a(T =T + 2u(ej ~ AT =To)3j)  (3) whereL. is a characteristic length of the material,
are the components of stredsand u are the Lamé coeffi- 1y
cients, Le= ( nAT)Z'
(834

Y 2 . . . .
=———, A= e , which depends on its relative brittleness/Y, and (the
2(1+v) 1-2 square of its total shrinkagexAT for a given temperature

Y is Young's modulusy is the Poisson ratiay is the coef- difference. L. is the Griffith crack length for a shrinking

M

i ; solid, and its significance is that cracking will occur when
ficient of thermal expansion, diffusion of heat has penetrated the slab to a depth of roughly
_1fdu  dy; L. [24]. _ -

€jj ol ox + I Assuming that the temperature field is not affected by the
! ! location of cracks, then the one-dimensional equatiDnis
are the strain components, are displacements and valid for all time. This is substituted into Eq&), which are
solved for each time, in order to evaluate the strain energy
€= €. integral, Eq.(5).

Note that temperature is used here as the driver of the
rinkage, but it could equally well be any other diffusive
henomenon, such as drying or volatile transport.

The model equations assume quasistatic equilibrium, impIiciIsh
in which is that the crack propagation occurs at a faster rat
than the diffusion process. A corollary is that the dynamics o
crack propagation are not as significant as their energetics.
Also, the model assumes that the time for nucleation of
cracks is smaller than the diffusion time scale.

From these equations it can be shown that the local strain Since the slab thickness is finite, it is convenient to use
energy density is given by the finite element method for solution of equatiq@$ and
appropriate boundary conditions. A representative portion of
the geometry, taking into account the symmetry, is denoted
by the dashed lines in Fig. 1 and this is used for the calcu-
lations. Figure 2 shows the specific boundary conditions used
+ {9_>‘ +3M][G(T‘To)]2 (4) in the calculations. They are that the slab is fixed at the

2 bottom surface, but free at the top and along the crack sur-
face. There are symmetry conditions along the remainder of
the boundary. The particular conditions used relate to, for

example, a shrinking slab of material that is fixed to a very
S= f udyv. (5) stiff substrate maintained at constant temperature, and being
v cooled at its free surface.

Numerical solution
1
U= E)\ez + MEij €j — (2,LL + 3)\)&(1- - To)e

and the total strain energy of the slab is given by
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FIG. 2. Boundary condition specification. The solid lines are

actual surfaces of the slab and the dashed lines are symmetry FIG. 3. Contour plots of'(l,p) for various times(marked on
planes. each graphwhenL/L.=6. The square dot in 3 of the graphs indi-

cates the locationy/L,py/L which minimizesE’. Note that the
contour spacing is small near the minimum compared to the remain-

The general purpose finite element packdggstflo is der of the graph

used for the numerical solution. The in-built unstructured
mesh generator has the ability to concentrate the mesh at
specific points. The mesh concentration is used to accurately
resolve the stress singularity at the crack tip. A. Spacing and penetration
The methodology used to determi€(l,p) is, for a
given timet, to solve the displacement equations and evalu-

Ill. RESULTS AND DISCUSSION

Figure 3 shows contour maps Bf(l,p) at various times,

=0, i.e. without any cracks at all, so that the material is able
S..=S(np), M=1..M, n=0..N 8) to shrink without cracking. However, &t0.0045 the mini-
n msM¥n/s ] y

mum shifts to an array of cracks with finite penetration and
at later times the minimum point moves in the direction of

where ; : . . )
increased penetration. An alternative display (bf,po) is
Al Ap shown in Fig. 4, where their variation with time is plotted
[n=m—, =n— explicitly.
m L Pn L phicitly
and 20

—=—and—=—. 1.5+
N

Typically M=N=40 was used, meaning that 1640 evaluation
of S were obtained. For each evaluation, the number of
finite element nodes was proportional to the area of the ge-
ometry, so that approximately equivalent accuracy was main-
tained over all the evaluations &. Notice that the maxi-
mum value ofl /L used is 2i.e., 4 times the slab thickness
which from experience is sufficient to obtain the minimum

scaled distance

energy state. The calculations allow a regular grid of values 0.0 ‘ ‘ ‘ ‘

of E’ over| andp to be determined for any value &f'L,, 0o 01 02 ; 03 04 05

and biquadratic interpolation was used to determine the glo-

bal minimum of E'(l,p), which occurs at(ly,po). All the FIG. 4. Graphs ofy/L (solid line) andp,/L (dashed ling ver-
results shown here are for=0.3. sust for L/L.=6.
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2.0 lo/L=0.27 at which stag@,/L~=0.1 att=0.0022. In other
words, the minimum crack spacing is about half the slab
thickness, but the penetration of the cracks is small. For later
1.5 times, |y increases significantly to plateau at a value consid-
erably more than twice the minimum crack spacing.

The results show two different regimes of crack behavior,
depending onL/L.. For low L/L; no cracks appear for a
relatively long time, but when they do appear they penetrate
T a long way through the slab. Becaugelecreases monotoni-
cally with time, additional cracks are likely to appear in or-

scaled distance
~
o)
1

0.5 . o . .
der to achieve a situation as close as possible to the mini-
mum energy configuration. This process should continue

00 until a steady state is reached. This then completely describes

- T T T T

the crack propagation behavior for law'L..
00 01 02 ¢ 03 04 05 For L/L. above about 2.5, the curves lgfagainstt have
a minimum value, which is denotdg,, occurring att,. At
FIG. 5. Graphs ofo/L (solid line) andpo/L (dashed ling ver-  that time, there is a correspondipg,, Fort>t., the mini-
sust for L/L.=2. mum energy configuration can only be achieved by some
. . mechanism of crack coarsening, since the slab will already
This graph shows that, unii=0.004 the material does cqniain cracks that are more closely spaced than the mini-
not crack, but thereafter it will crack. Immediately after this ., m energy configuration. In order to achieve this, some
time, the minimum energy configuration is for large crack oracks must either stop, recede or even disappear completely
spacing, but this reduces with time untit=0.013, when \ypile others continue to propagate. While the latter two pos-
lo/L~0.66 andp,/L~0.23. For later times the minimum gjpijities cannot be completely ruled out, it has been shown
energy state is a spacing which is greater than that at ,y several authors, including Nemat-Nasseal.[17], that a
=0.013, but with ever increasing penetration. So the Miniveqular crack array, once formed, will propagate stably, with

mum crack spacing is about 1.33 times the slab thicknesgach of the cracks maintaining the same length, provided that
with the cracks penetrating almost 1/4 of the slab thickness.

For large time, the spacing and penetration approach an as- #S(1,p)
ymptote with [4/L~0.92 andpy/L~0.83, so the cracks — >0 9
never penetrate all the way through the slab. P

L /II_: 'glgelg tsr?ics)viz;gengoracegcﬂfg/\%v,iIﬁ)oéti)gs:sﬁr?tiflrgreozzr q for a fixed value ofl, and that it will lose stability to a state
c 4 i i
=0.06 but when they do appear, they penetrate almost hal vhere every second crack stops propagating while every

h h the slab. Thereafter the mini ther one continues, whe#S'/9p? changes sign. As a re-
way through the siab. Therearter, the minimum energy Spacg, ;i yhe most likely scenario is that cracks with minimum

ing_continues to decrease, without having a minimum Valu%pacing,IOm, achieved at,, will continue to propagate for
as II:r'] theLéLCr:G catshe. h 6, /L.po/L) time f t>t,, in order to relieve the stress built up as the material
L/nglir: : shc_)ws € grapk_ oL+ Po versusl ime ord continues to shrink, subject to the above instability. Thus the
00006, n; 'i case cracking occurs very eacrjy, arotind inimum in thel, vs t curve defines a unique optimal value
=Y and the minimum energy spacing decreases (g e crack spacing, which islg, It is this crack spacing

20 that would ultimately be observed on the surface of the slab,
0.6 regardless of the further propagation history of the cracks.
The remainder of the paper is concerned with the propa-
154 04 gation and stability of cracks for>t,, in cases wherg,,
' 02 exists, i.e., forL/L. larger than about 2.5.
0.0 B. Propagation of optimally spaced cracks

For values ofL/L.>2.5 the energy minimization ap-
proach can be used to determine the propagation of optimally
spaced cracks, starting frottym, por) att=t,. In such cases,
E’(Igm,P) is minimized with respect tp to find the optimal
, (minimum energy penetrationp,, for cracks of spacinglg,,

0.0 , , . , for t>t,,. Figure 7 shows a graph of the calculagggversus
00 01 02 03 04 05 t for L/L,=16 with a continual increase in penetrationtas
¢ increases. The energy for the stdtg,,p.(t)] is clearly

FIG. 6. Graphs ofy/L (solid line) andpy/L (dashed ling ver-  higher than that for the staféy(t),po(t)] for t>t, in this
sust for L/L,=16. The inset shows an expanded view of the be-case, so is potentially unstable, as described earlier. A nu-
havior at small time. merical estimate 0f°S'/9p? is obtained from the difference

scaled distance
-
o
1

I
a
1
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FIG. 7. Graph ofpy, vst for cracks with spacing I3, when
L/L.=16. The solid line is for the case when all cracks propagate FIG. 9. Schematics of the final crack states for differefi.,
together, while the dashed line is when every second crack hashose value is shown next to each configuration.

stopped, aftet,,;. The dotted line is a graph versust. .
PP m graph @ account that every second crack stopped propagatimg; at

The propagation occurs at a higher rate, at least initially, for
S (lom Pm(t) = S' (om, P(t) ; 6) (10 the new configuration.
b2 ' The process can be repeated, with the array gf gpaced
propagating cracks having every other crack stationary with
whereS' (lom, P(t); ) is the strain energy of a state in which penetratiorp,(t,;) potentially becoming unstable to a situa-
the penetration of every second crackpjs+ 6 and of every  tion where every fourth crack stops and only those separated
other crack isp,— 4 [23]. Figure 8 shows a graph of this by 8, continue to propagate. However, the calculated sec-
difference for t>t,, when L/L;=16, calculated usingS ond derivative of the strain energy for this state does not
=0.1py(t). It is difficult to obtain an accurate numerical change sign, indicating that there will not be another period
value of #?S'/9p? due to the stress singularity at the crack doubling for this case. This is not surprising, since Fig. 6
tip. A value of § proportional top,(t) was used as it was shows that the asymptotic value lgfis less than Ky,
found that too small a value leads to poor resolution of the The same procedure was followed fofL.=32, in which
effect of the two stress singularities, while too large a valuecase a period doubling occurstgt =0.0035 and a second at
leads to a poor approximation to the second derivative. Thi,,=~0.0195. Accurate resolution of the strain energy and the
results show that?S'/9p? changes sign at=t,; ~0.0144, stability criterion becomes more difficult d5L increases
indicating that the regular array of cracks with spacigg using the present approach, but it seems most likely that
loses stability in the form of the spatial “period doubling” further doublings are possible at higher values. The results
described above. Foe>t,,, every second crack continues to show that the effect of the period doubling cascade is to
propagate and the penetration satisfying the energy minimibring the already cracked material closer to the minimum
zation criterion for this case is also shown in Fig. 7. This wasenergy state associated with uniformly penetrating cracks.
calculated by minimisingz’ with respect top, taking into After having carried out the energy minimisation and
evaluated the stability criterion as time progresses, it is pos-
sible to determine the crack configuration at large time, when
the temperature field has reached a steady state and the
cracks are no longer propagating. Figure 9 shows schematics
of the final crack configurations for 4 different values of
0.02 L/L.. Each configuration is achieved by a different cracking
= \ route.
= 0,014 ForL/L.=2, the set of uniformly spaced cracks with uni-
% form penetration is achieved by addition of extra cracks as
S time proceeded.

""""" ForL/L.=6 a similar state is achieved via a similar route
until a minimum spacing is reached, after which cracks at the
_0.01- minimum spacing propagate together. Note that the crack
spacing is smaller in this case, as is the final crack penetra-
tion, compared td_/L.=2.

FIG. 8. Graph of#?S' /9p® vs t for L/L.=16. The solid line is For L/L.=16, the state of equally spaced cracks having
for equal length cracks and the dotted line for every second cracklternating penetration is achieved by a similar route to the
stopped}>t.;. L/L.=6 case until the uniform spaced cracks become un-
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FIG. 10. Graphs of/L, andp/L, vs (L/L.)2 for varyingL/L.. 16
The values ofL/L. are shown beside each curve. A logarithmic
scale has been used to clearly illustrate the small time behavior.
stable, after which every second crack propagates. 6 | | | | ! | | ! |

For L/L.=32, the state of equally spaced cracks having 3
different penetration depths is achieved by a second instabil-
ity, so that ultimately only every fourth crack propagates.

The schematics in Fig. 9 could be interpreted as a set of
Iz_iye_rs of dn_’ferenfc material, with the brIttIeness of the mate'representing different slab thickness, whose value is shown next to
rial increasing withL/L.. In that case it seems that as the g5cp configuration.
brittleness increases there is a set of “principal” cracks

whose spacing does not change with brittleness, but th

other, less penetrating cracks become closer together. ngally, the SP?C'”Q.W'” be sufficiently large that the cracks
will be essentially independent.

L/L.=32 example gives the impression of crazing on the . .

surface of a brittle material with occasional deep cracksWitﬁ‘ltSk?é rslgtr'::: :)Z?]t;tr;gtg?ci}f;i%gﬁ;;ﬁa;?;gi]e 5\/?:;?] time,
. _ ) ) . ) , o

while thel/L.=2 example gives the impression of cracking is to be expected since this is the scaled time at which the

of a more ductile material. Alternatively, they could be inter- lenath scale associated with diffusion of heat is comparable
preted as a set of layers of the same material, but with in- g P

ceasing amourts ofShinkage WL As the shnkage (10 18 ST rack gl fu e tme e e sl
increases, the crack spacing observed on the surface redu:%.\ 9 gy

and the complexity of the pattern of penetration increases. etween the uncracked and qracked state. This barrier is evi-
dent in the contour plots of Fig. 3.

_ The experiments of both Groisman and KapJ&2s] and
C. Effect of slab thickness Shorlinet al.[26] show increasing crack spacing with depth.

The scalings used above are covenient for computatiorlthough it is not stated by the authors, the results of Shorlin
but it is useful to rescale the results to consider the effect ot al. (their Fig. 9 may indicate that the crack spacing is
different slab thickness on the crack spacing and penetratio@pproaching a limiting value.
The scaled crack spacint/L, and penetrationp/L, when
multiplied by L/L. are dependent only on the material prop- D. Limiting behavior
erties and similarly for the scaled timg when multiplied by
(L/Ly)?. Figure 10 shows graphs ofL. and p/L. against
(L/Ly%, for different values oL/L., showing the effect of
varying the slab thickness for a given material. For a thin

::gg,stnnirernlisni?r?umlgmirgrén thelL; curve, but for thicker ing analysis, along the lines of that given by Breme¢ral.
bp ’ [27]. For (L/Ly)>1 (at values larger than shown in the

Notice that the minimum crack spacing approaches a lim=

iting value asL/L increases, as does the time at which thegraphs herk the crack penetration greatly exceeds the crack

minimum crack spacing occurs. Thus the crack spacing opsPacing. In that case, the regions between each crack can be

served on the surface of a slab becomes independent of tﬁgnsmered as th'n plates, with thg exception of the region
slab thickness, but the spacing further into the slab may pecar the crack tip. Then the ben_dlng of those plates is de-
different, due to the effect of the period doubling phenom-ScrllonI by the fourth order equation

enon, as shown by the schematics in Fig. 11. The results 8YR
indicate that there is a minimum crack spacing for cracks —12(1_ 2
propagating into a semi-infinite slab, represented by the limit
L/L.—oe. In such a case, there will be surface cracks at thavhere A is the two-dimensional Laplacian. The term on the
minimum spacing, but further into the sample the crack spacright-hand side is a measure of the stress in the plates due to
ing will continue to increase via the period doublings. Even-the shrinkage. This then leads to an order relatiorufoof

FIG. 11. Schematics of the final crack states for diffedefit,

At steady state the numerical results show that the crack
spacingl /L.~ (L/Ly)%*andp/L,~L/L. as(L/L,)—. The
latter can be understood because the cracks follow the heat
diffusion and the former can be derived from a simple scal-

AU, = YaAT, (12)
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aATp? for the configuration discussed hgréhe minimum spacing
Ux ~ 13 (12 occurs at a finite timet,,,. There after, cracks will propagate
uniformly with that minimum spacing, subject to a potential
and the change in volume due to the opening of the crack ispatial period doubling instability.
then

The combination of the minimum energy approach with the
aATp® identification of a minimum crack spacing and its resultant
B (13 constraint on further propagation, along with the stability
criterion for uniformly propagating cracks, allows determi-
which results in a release of elastic energy per plate of  nation of the minimum energy crack configuration for all of
2 5 the shrinkage time. Hence the final state of the cracked ma-
Y(aAT)“p i .
— . terial can b_e detgrmlned. _ o
| No consideration has been given here to the initial crack
This, when combined with the energy asociated with cracformation, or indeed the mechanism of adding extra cracks at
opening and scaled byl, gives early times, before thg mlnlmum_crack spacing is reachgd.
Presumably, a mechanism of halving crack spacing, as a kind
1 _ AP p of symmetrical analogy to the period doubling that occurs at
AE ‘A|_ - Bm later time, is possible. This is mostly of interest at lovl .
where the process occurs gradually, compared to higher val-
for some unknown constanfsandB. For local equilibrium,  yes where the minimum spacing occurs in a short time rela-
minimization of E’ with respect td is required, giving tive to the time required for diffusion of heat.
3L, ~ p* (15) Although only a simple geometry has been considered
¢ here, with specific boundary conditions, it is likely that simi-
which, whenl and p are scaled with_. gives the observed lar behaviour will occur in other configurations. Moreover, it
limiting behavior when taking into account that- L. is expected that the same behaviour will be found for the 3
In fact, the numerical results show that the limiting be-dimensional situation, and this has been obsefireduding
havior holds over a large range bfL, for the steady state the spatial period doublingin experiments on starch col-
solutions, only deviating at small/L.. Nevertheless|/L,  umns[28-30 and coke formatior31]. The computations
decreases monotonically down to low valuesldl ., and associated with 3D, along with the topological issues of the
this helps to explain why there is a minimum in the crackcrack pattern, are more formidable, but progress on simple
spacing for large. /L but not for smallL/L., since the crack geometries should be possible. While there is experimental
spacing is always decreasing at early times, but must theavidence that the kind of crack patterns predicted here exist,
rise again as—o for L/L. above some particular value it is difficult to make quantitative comparisons of crack spac-
(about 2.5 from the numerical resylia order to achieve the ings and penetration in a particular example. In order to do

\Y

W, ~ = YaATV ~ -

5
(14)

limiting behavior. this, more realistic boundary conditions, along with good
estimates of the material properties are necessary. The moti-
IV. CONCLUDING REMARKS vation for this work arose out of a study of coke formation,

. ) and such data is not currently readily available. Moreover,
_T_he apprqach taken here provides a mech_arjlsm for detegpke formation has the added complication that the coke slab
mining a unique value for the most likely minimum crack is growing in thickness. Nevertheless, the aim is to develop a

spacing in regql_a_r cr_ack arrays associated with Sh“”kag‘%}uantitative crack spacing predictive capability.
The two possibilities identified are as follows.

(1) For lowL/L.the minimum spacing only occurs at the
) . ) " ACKNOWLEDGMENTS
end of shrinkage(t— ), with a succession of additional
cracks being added until this time. Useful discussions with Dr. Frank de Hoog of CSIRO are

(2) For L/L. greater than some critical valdabout 2.5 gratefully acknowledged.
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