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Random Boolean networkdRBNs) are used in a number of applications, including cell differentiation,
immune response, evolution, gene regulatory networks, and neural networks. This paper addresses the problem
of computing attractors in RBNs. An RBN withvertices has up to"states. Therefore, for large computing
attractors by full enumeration of states is not feasible. The state space can be reduced by removing irrelevant
vertices, which have no influence on the network’s dynamics. In this paper, we show that attractors of an RBN
can be computed compositionally from the attractors of the independent components of the subgraph induced
by the relevant vertices of the network. The presented approach reduces the complexity of the problem from
O(2M to O(2"), wherel is the number of relevant vertices in the largest component.
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I. INTRODUCTION 1
This paper studies compositional propertiesrafidom o= 2p(1-p)’

Boolean network$RBNs). An RBN is a synchronous Bool-

ean automaton witm vertices. Each vertex hdsincoming " )

edges, selected at random, and an associated Boolean fulfi@’ €xample, fop=0.5, the critical number of inputs ig,
tion. Functions are selected so that they evaluate to the vaF2-

ues 0 and 1 with given probabilitigsand 1-p, respectively. Since the number of possible states of an RBN is finite,
The set of function’s values of vertices at a given time char2ny sequence of consecutive states of a network eventually
acterizes the current state of a network. converges to either a single state, or a cycle of states, called

RBNs were introduced by Kaufmarjd] in 1969 in the attractor. For large RBNs, computing attractors by full enu-
context of gene expression and fitness landscapes. Later, theyeration of states is an infeasible task. It is possible to re-
were applied to the problems of cell differentiation, immuneduce the state space of an RBN by removing vertices belong-
response, evolution, and neural netwofRs3]. They have ing to itsstable core The stable core is defined by Flyvbjerg
attracted the interest of physicigs—6] due to their analogy [12] as the set of vertices whose output value develops in
with the disordered systems studied in statistical mechanicéime to a constant value that is independent of the initial state
such as the mean field spin glass. of the RBN. Bastola and Parifi3] have observed that the

The parameter& and p determine the dynamics of an state space can be further reduced by removing, e.g., vertices
RBN. If a vertex controls many other vertices, and the numwhich have no outputs. They introduced a notiorrelevant
ber of controlled vertices grows in time, the RBN is said tovertex which is a vertex which has an influence on an RBN'’s
be in achaotic phaseTypically such a behavior occurs for dynamics. Exact and approximate bounds on the size of the
large values ok~ n. The next states of the RBN are random set of relevant vertices for different values loind p have
with respect to the previous ones. The dynamics of the netheen giver[12-14. In the infinite size limith— o, in the
work is very sensitive to changes in the state of a particulafrozen phase, the number of relevant vertices remains finite.
vertex, associated Boolean function, or network connectiondn the chaotic phase, the number of relevant vertices is pro-

If a vertex controls only a small number of other verticesportional ton. On the critical line, the number of relevant
and their number remains constant in time, the RBN is saivertices scales as”3 [17]. Bastola and Parigil8] have also
to be in afrozen phaseUsually, independently on the initial studied the structural properties the independent components
state, after a few steps, the network reaches a stable statd.the subgraph induced by the relevant vertices on an RBN.
This behavior usually occurs for small valueskpfsuch as In the infinite size limit, in the frozen phase, the components
k=0 or 1. are loops of effective connectivity 1. In the chaotic phase, the

There is a critical line between the frozen and the chaoticiumber of components tends to 1. On the critical line, the
phases, when the number of vertices controlled by a verteaverage number of components is of order of hlo@errida
grows in time, but only up to a certain limit. Statistical fea- and Stauffer[11] have considered the lattice version of
tures of RBNs on the critical line are shown to match theRBNSs.
characteristics of real cells and organisfis7-10. The In this paper, we show that attractors of an RBN can be
minimal disturbances create typically only slight variationscomputedcompositionallyfrom the attractors of the indepen-
in the network’s dynamics. Only some rare perturbationgdent components of the subgraph induced by the relevant
evoke radical changes. vertices. For an RBN witlm vertices, the presented approach

For a given probabilityp, there is a critical number of reduces the complexity of the problem fra@(2") to O(2"),
inputsk, below which the network is in the frozen phase andwherel is the number of relevant vertices in the largest com-
above which the network is in the chaotic ph§4¢l1]: ponent.
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FIG. 2. Reduced networty for the RBN in Fig. 1.

vertexv and if after the substitution of the constant value of
f, in f, the functionf, reduces to a constant, theris irrel-
FIG. 1. Example of an RBN. The state of a verigxat timet evant, too.

+1 is given bya,,i(t+1)=fvi(ovj(t),avk(t)), wherev; anduvy are the Second, all vertices which have no successors are irrel-
predecessors af,, andf, is the Boolean function associateddp  evant. Ifuis a predecessor of an irrelevant verteand if all
(shown by the Boolean expression insigg successors afi are irrelevant, them is irrelevant, too.

Third, a vertex can be irrelevant because its associated

The paper is organized as follows. Section I describeéU”CtiO” f, has a constant value due to the correlation of its

basic notation and definitions. Section Iil gives the main reJNPUt variables. For example, if a vertexwith an associated

sult of the paper. Section IV concludes the paper and dis(-.JR (ANE)) function _ha/s predecessoug and Uz with func-
cusses open problems. tions fq =0y and_fuz—aw, then _the value of, is alvx_/ays _1
(0). This kind of irrelevant vertices are hardest to identify.
Let Z be the set of all irrelevant vertices of an REN
Il. RANDOM BOOLEAN NETWORKS Definition 2 The reduced networlG|g=(V|g,Elg) is a
subgraph ofG defined byV|g=V-Z, and E|g=E—{(u,v)
A random Boolean network is a directed cyclic graph ¢ ElueZorveZz.
=(V,E), whereV is the set of vertices anBC VXV is the In Ref. [18], an algorithm for computing the set of all
set of edges connecting the vertices. irrelevant vertices has been presented. This algorithm is
The setV hasn vertices. Each vertex e V hask incom-  computationally expensive and therefore is feasible for
ing edges, selected at random. The sgireflecessorsf v is ~ RBNs with up to a thousand vertices only. THecimation
defined by procedurepresented in Ref.19] computes only a subset of
irrelevant vertices, but it is applicable to large networks. In
P,={u e V|(uv) € E}. time linear in the size of an RBN, it finds irrelevant vertices
evident from the structure of the netwo(krst and second

The set ofsuccessorsf v is defined by type). The decimation procedure will not identify the irrel-

S,={u e V|(v,u) € E}. evant vertices whose associated functions have constant val-
) ) ues due to the correlation of their input variablgsrd type.
Each vertex e V has an associated Boolean functiop, The independent components 6 are defined as fol-
of type {0,1}*—{0,1}. The stateo, of a vertexv at timet  |ows.
+1 is determined by the states of its predecesspesP,, i Definition 3 Two relevant vertices are in the same com-
e{l,...,k}, as ponent if and only if there is an undirected path between
them.
o,(t+1) =1, (oy (1), 0,1, ..., 0y, (1). A path is calledundirectedif it ignores the direction of

_ edges. For example, the network in Fig. 2 has two compo-
The vectorE—(crvl(t),crvz(t),... ,a'vn(t)) represents the state nents:{v,,ve,vgr and vy, o).

of the network at timel. An example of an RBN with ten Definition 3 is equivalent to the definition from R¢1.8],

vertices is shown in Fig. 1. _ _which says that “two relevant elements belong to the same
An infinite sequence of consecutive states of a network i$odule if one of them controls the other one.”

called atrajectory. A trajectory is uniquely defined by the Independent components can foundQ|V|+|E|) time,
initial state. Since the number of possible states is finite, alyhere|V| is the number of vertices arj| is the number of
trajectories eventually converges to either a single state, Or édges ofGg, using the algorithnj20]. To find a component
cycle of states, calledttractor. The basin of attractionof A numberi, the function @ MPONENTSEARCH(v) is called for a
is the set of all trajectories leading to the attracforThe  vertexv which has not been assigned to a component yet.
attractor lengthis the number of states in the attractor's CompoONENTSEARCH does nothing iy has been assigned to a
cycle. component already. Otherwisep@PONENTSEARCH assigns

Next, we define irrelevant vertices. v to the component and calls itself recursively for all pre-

Definition 1 A vertexv e V is irrelevant for an RBNG if decessors and successorwoflhe process repeats with the
the network obtained fron® by removingv has the same counteri incremented until all vertices dbg are assigned.
number and length of attractors.

There are several types of irrelevant vertices. First, all lll. COMPUTING ATTRACTORS BY COMPOSITION
verticesv whose associated functidp is constant O or con- In this section, we show that it is possible to compute
stant 1 are irrelevant. Iti is a successor of an irrelevant attractors of a networks compositionally from the attractors
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of the connected components of the reduced netv@yk
Let G5 be a connected component G and A, be an
attractor ofG,. An attractorA, of lengthL is represented by
a sequence of stat€s,2,,...,2 1), whereX j.1moa_is the
next state of the statg;, i €{0,1,...,L-1}.
The support setof an attractorA,, sSUgAa), is the set of

vertices of G,. For example, the left-hand side connected

component in Fig. 2 has the support §&f,vs,vq}.
Definition 4 Given two attractorsA,=(35,37, ... 2A>
and Ag=(3§,27, ..., X7 ), such that suf,) NsupAg)=
the composition oA, andAB is a set of attractors defmed by
d-1
AneAg= U{AY,
k=0

whered is the greatest common divisor bf, andLg, each
attractorA is of lengthm, mis the least common multiple of
L, and Lg, and theith state ofA, is a concatenation of
(i modL,)th state ofA, and[(i +k)mod Lg]th state ofAg:

2 2| mod L 2(|+k mod Lg

forke{0,1,...,d-1},ie{0,1,...
operation division modulo.

As an example, consider two attractdkg=(34,>1) and
Ag=(3E 3B 35 We haved=1 andm=6, soAxcAg={Ag},
where the state®?, i {0,1,...,5} are defined by

So=34%8, S3=3158,

,m-1} and “mod” is the

32=3458 30=338,

S0=3ASE  30=3ASE

The composition of attractors is extended to the composi-

tion of sets of attractors as follows.

Definition 5 Given two sets attractors
{A11. A1, A b and {Agy Agy, .. Ay}, such  that
SUpAy) NsudAy) =@, for all ie{l,2,...,Ly}, ]

of

e{1,2,...,L,}, the composition of sets is defined by
{A11. AL - vAlLl} *{A21. Az ... 1A2L2}
= U Agi1° A,
O(igip) ef{l,...,Lypx{1,...,.Lo}

where “X” is the Cartesian product.

Lemma 1The compositiorA,°Ag consists of all possible
cyclic sequences of states which can be obtained ffgm
and Ag.

Proof: By Definition 4, the result of the composition Af
and Ag is d attractors{Ag,Aq, ..., Ag-1} of length m each,
whered is the greatest common divisor af, andLg is m
and the least common multiple &f, andLg.

Consider any two states of the attractgy 3 andEk for
somei, je{0,1,...,m=-1}, i#j, and someke{O 1,...d
-1}. By Def|n|t|on 4

k - 5A B
2i - 2i mod LAE(i+k)mod Lg

and
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E EJ mod LA2 (j+k)mod Lg*

We prove that

A B B
(EI mod Ly~ 2j mod LA) U (E(i+k)mod Lg # 2(j+k)mod LB)'

If S8 o LA=EJ- mod Ly then we can expregsas

J=i+XLa, 1)

where X is some constant which satisfi®s,<m.
By substituting j by Eqg. (1) in the expression(]
+k)mod Lg, we get

(j+kymodLg=(i + XLa+k)mod Lg. (2

Clearly, if XL, is not evenly divisible byLg, then the
right-hand side of the expressiof®) is not equal to(i
+k)mod Lg. On the other hand{L, cannot be evenly divis-
ible by Lg, becausd , # Lg andXL,<m. Thus

(i+XLa+kmodLg # (i +kimodLg

and therefore the statég;,mqq L and E(Ei‘+k)mod L, are dif-
ferent. Similarly, we can show that

— 5B A A
(E(Hk mod Lg ™ 2(j+k)m0d LB) U (EI mod L # 2j mod LA)'

Therefore, for a giverke{0,1,...,d-1}, no two states in
the attractorA, are equal.

Similarly to the above, we can show that no two states in
two different attractors can be the same. If the first parts of
two states are the same, than the second parts differ due to

the property
(k+XLay)modLg # 0

foranyke{0,1,...,d-1}.

There arel\Lg different pairs of indexes in the Cartesian
product {1,...,La} X{1,...,Lg}. Thus, sinceL,Lg=md, at
leastd attractors of lengthm are necessary to represent all
possible combinations. Since no two statedgfA,, ..., Ay1
are the same, exacttyattractors of lengtim are sufficient to
represent all possible combinations. O

Let {G;,G,,...,G,} be the set of components @&g.
Throughout the rest of the section, we Udeto denote the
number of attractors d;, A;; to denotejth attractorG;, and
Lij to denote the length ofA;, i={1,2,..,p}, |
={1,2,... ,Ni}.

Let I=1;X1,X... X1, be the Cartesian product of séfs
={i1,iz,...,ix}, wherep is the number of components Gk
The setl; represents indexes of attractors of the component
G;. For example, ifN;=3, then G, has three attractors:
Ai1,A and A The setl; is then I;={1,2,3. The
set| enumerates all possible elements of the detd-or
example, if p=2, N;=2, and N,=3, then I
={(1,1,(1,2,(1,3,(2,1),(2,2,(2,3}.

Theorem 1The set of attractorA of the reduced network
Gg with p components can be computed as

A= [(Aai, © Agi,) o {Agit] o {Api }-

Dlig,e.ipel

Proof (1) The state space of any component is partitioned
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into basins of attraction. There are no common states be- @

tween different basins of attraction. Thus different attractors @ @ @ @

of the same component have no common states. 4 . @ A @
(2) Since in any pair of component$G;,G)), i,]j " God (10

={1,2,...,p}, i#], G; andG; do not have vertices in com- @ e

mon, the support sets of attractors@fandG; do not inter- @

sect. Thus different attractors of different components have (a) {b)

no common states.
(3) The setl enumerates all possible combinators of FIG. 3. (a) State space of the componédf={v,,vs,ve}. There

p-tuple of indexes of attractors of components. By definitionare two attractors, ~ A;;=(011,100 and A
of the Cartesian product, evepytuple of | differ at least in ~ =¢000,001,101,111,110,010(b) State space of the component
one position. G,={v1,v7}. There is one attractoA,;=(00,10,11,0L
(4) From (1), (2), and(3) we can conclude that the set of
attractors obtained by the compositiorli(AliloAZiz) spaces are shown in Fig. 3. The first component has two
O{Agia}]...o{Apip} for a given(iy, ...,ip) |, differs from the  attractors: A;;=(011,100 of length Ly;=2 and A
set of attractors obtained for any othp#tuple (if,...,ip) ~ =(000,001,101,111,110,010f lengthL,,=6. The second
el. component has one attractép,=(00,10,11,01 of length
(5) From Lemma 1, we know that the compositidy, =~ L;=4.
°Ag, represents all possible cyclic sequences of states which The Cartesian product df={1,2} and|,={1} contains
can be obtained fromy; andA; . We can iteratively apply two pairs: 1={(1,1),(2,1)}. For the pair(1,1) we have
Lemma 1 to the result oy °Ay, composed withg, etc.,  L11©Lx=204=2 andLy;xLy=2*4=4. S0,A; and Ay
to show that the ComPOSitiOﬁA1i1°Azi2)°{A3i3}]'“°{Apip} compose into two attractors of length 4:
;egtrteripotrssz:illf)?ziﬁlgit.ttzc}itors which can be obtained from Asyo Ay = {(01100,10010,01111, 10091

(6) From (4) and (5) we can conclude that the union of (01110,10011,01101,10080
compositions over alp-tuples ofl represents the attractors
of Gg. [0  The order of vertices in the statesus,vs,vg,v1,07.

The following results follow directly from the Theorem 1. Similarly, for the pair(2, 1) we havel,,0L;;=604=2
Lemma 2 The total number of attractors in the reducedand L;,xL,;=6%4=12. S0,A;, and Ay; compose into two

network Gg with p components is given by attractors of length 12:
p A;,° A,; ={(00000,00110,10111,11101,11000,01010,
N= - 2 - -Hz{[(l'”l * Lai)) * Lyl x Loy FOLy;, 00011,00101,10100,11110,11011,010@0010,
ig;.nip)el j=
’ 00111,10101,11100,11010,01011,00001,00100,
where %" is the least common multiple operation an¢ " 10110,11111,11001,01000

is the greatest common divisor operation. . )
Lemma 3 The maximum length of attractors in the re- The total number of attractors N=4. The maximum

duced networlGy is given by attractor length id ,=12.
Lmax= o max l((l-lil *Lai)) *Lg) o *Lpi, IV. SUMMARY
i niple

In this paper, we show that attractors of an RBN can be
where "x” is the least common multiple operation. computed compositionally from the attractors of the indepen-
By Definition 1, by removing irrelevant vertices we do dent components of the subgraph induced by relevant verti-
not change the total number and the maximum length otes of the network. Previously, for networks whose state
attractors of an RBN. Therefod and L., given by Lem-  spaces were too large to examine exhaustively, the median
mas 2 and 3 are the same for the original netw@rk instead of the exact values of the number of attractors and
Results similar to Lemma 2 and 3 have been presented byeir length were measured. The presented compositional ap-
Bastola and Parisi in Ref18] without a proof. It was cor- proach allows us to obtain exact results for larger networks.
rectly observed that the maximum attractor length equals to In general, independent components occur in RBNs as a
the least common multiple of the maximum lengths of theresult of network’s finite connectivity and because the Bool-
cycles that compose it. However, the total number of attracean function assigned to a vertex may not depend on all its
tors was said to be equal to the maximum common divisor ofnputs. Due to these two factors, some vertices do not control
the maximum lengths of the cycles that compose it, which isany other vertex in the network. Such vertices serve as “bar-
incorrect. riers” which prevent exchange of information among the
As an example, consider the network in Fig. 2 with two components. It would be interesting to find a relation be-
components:G;={v,,vs,v9} and G,={vq,v;}. Their state tween the components of an RBN and the biological systems
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which RBNs are intended to model, e.g., gene regulatoryertex

PHYSICAL REVIEW E 71, 056116(2005

-to-vertex distance. Another interesting possibility is to

networks. applyredundancy removakechniques used in logic synthesis
Future work includes deriving formulas for the average[21] to speed up the algorithm for finding irrelevant vertices
number and size of the components, as well as the averadgemm Ref.[18].
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