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Recurrence time analysis, long-term correlations, and extreme events
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The recurrence times between extreme events have been the central point of statistical analyses in many
different areas of science. Simultaneously, the Poincaré recurrence time has been extensively used to charac-
terize nonlinear dynamical systems. We compare the main properties of these statistical methods pointing out
their consequences for the recurrence analysis performed in time series. In particular, we analyze the depen-
dence of the mean recurrence time and of the recurrence time statistics on the probability density function, on
the interval whereto the recurrences are observed, and on the temporal correlations of time series. In the case
of long-term correlations, we verify the validity of the stretched exponential distribution, which is uniquely
defined by the exponeng, at the same time showing that it is restricted to the class of linear long-term
correlated processes. Simple transformations are able to modify the correlations of time series leading to
stretched exponentials recurrence time statistics with diffepemthich shows a lack of invariance under the
change of observables.
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I. INTRODUCTION recurrence interval as a subset of the data range, then the

. o ith recurrence tim4; is the time intervalAn between théth
Recurrence time analysis is a powerful tool to character-

ize temporal properties of well defined eveftsZ]. It has and thel + 1st visit of a time series point in The recurrence
P propert X ) " time statistics(RTS) is obtained as the distributioR(T) of
been recently extensively performed in a rich variety of ex-

perimental time series: records of the climpes), seismic theE?/?(;]:ﬁt?cethfsrgcﬂgﬁggiftlgﬁjrrence times generated this
activities [6], solar flareq7], spikes in neuron$8], turbu- Y, q 9

lence in magnetic confined plasif@l, and stock market in- way depends sensitively on the choicd oifvhich in fact will

dices [10]. Calculated essentially in the same way, thesebe one prominent issue of this paper. While for the recur-

analyses receive different names: waiting time distribution! SN¢€ pf extreme events the recurrence interval is defined by
) . - o : oo the points above a threshd|i],

interocurrence time statistics, distribution of interspike inter-

vals, distribution of laminar phases, etc. Through a unified lexd(@) =[0,%9[, (1)
perspective, we discuss the main properties of these statisti- ) _

cal methods, which allows us to reinterpret and specify many? & more general way it may be defined around a poskion
previous results. By a careful discussion of the relevance ofith a semiwidths [9,11]

the probabiIiFy density functio(PDl_:) of the ti.me series data_ 1(Xe, 8) = [X— 8, X, + &]. (2)

we can easily understand and, in a particular case, reject

results on earthquake statisti@ec. 1). In the case of long- Both kinds of intervals are illustrated in Fig. 1.

term correlated linear time series we obtain a closed expres-

sion for the stretched exponential distribution of recurrence 2. Poincaré recurrences

times which is valid for different recurrence intervals. We
show also the lack of invariance of the long-term correlations
of the time series under transformations that simulate th

choice of different observables of the systégec. Ill). Be- . P
. . - ... _energy shell, the famous Poincaré recurrence theorem asserts
fore reporting these results we start with a proper dem't'orlhat g?/most all trajectorie@xcept for a set of zero measire

of time series recurrence times, we compare it to the e ;
Poincaré recurrences, and we discuss briefly some importal [a_rt_ed_lrjsme some .SUbgébf the p_ha_lse spadé W'II return
recent applications of the recurrence time analysis. ot |_nf|n|tely many times. In the limit of V"”."Sh'”g volume .
of this subset, the time between consecutive recurrences is
_ the Poincaré recurrence time. Despite the well known de-
A. Recurrence times bates about the foundations of statistical mechaftes-
1. Time series recurrences mello paradox these ideas motivated throughout the years
. , ) ) ) ) , also mathematical studi¢42] and, more recently, applica-
Assuming a time series point of view, in this paper Weyjong of recurrence analysis to many different dynamical sys-
stydy the_ statlstl_cal properties of thecurre_nce tlme T tems(see Ref[13] and references thergin
Given a time seriegx,},n=1,... N, and having defined a g prisingly, as far as we know, no connection between
the two recurrence approaches described above were made
until now. The most evident way to establish this relationship
*Electronic address: edugalt@pks.mpg.de is to define an observable=x(y), when y(t) eI is the tra-

In dynamical systems’ theory, another concept of recur-
ence, known as Poincaré recurrences, plays a central role.
iven a closed Hamiltonian system with ergodicity on the
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jectory in phase space of the Hamiltonian system. The recumore sophisticated SOC modéls6,17], which keeps open
rence volume) is mapped to an interval, on the real axis the debate over the use of SOC in these fields, with the RTS
by the observation functior(y). However, the sequence of as one of its central ingredients.

recurrence times of the serigs=x[ y(t=n At)] with respect

to Iy, is generallynot identical to the sequence of Poincaré

recurrences ofy(t) with respect of), since there is usually a C. Long-term correlations and recurrence times

large set) which also maps td,, due to the noninvertibility
of x(y). Moreover, generally,, will be of the kind ofl (X;, 9) correlated, the RTS is well known to be Poissonian, i.e.,
rather tharle,(q). exponential for allT, independent of the choice offin the

However, as we will show in this paper, the analogy with|imit of small interval u(1) — 0] [11]. The same result applies

Poincaré recurrences motivates issues related to the recyg poincaré recurrencémcluding independence af) if the
rence times of extreme events which will reveal fundamentabndenying dynamics is hyperbolic, i.e., in well defined

insight into their properties. Two main results will be the lack ,,athematical way fully chaotif18]. Also in this case, cor-
of invariance of the RTS under change of the observable angations decay fast. Hence, for systems with an exponential
the fact that Iong—te.rm correl_atlons aret fully characterized decay of correlations, details of defining recurrence times
by the autocorrelation function. and further details of the system are irrelevant; instead there
exists a unique RTS.
B. Earthquakes and SOC models Many time series data have been found to.be Ior)g—term
. correlated, i.e., their mean autocorrelation time diverges
The recurrence time between extreme events was recentf,4,19. Typically, this situation is characterized in the time
used in the analysis of different experimental time seriesseries{x,} (assuming(x,)=0) by the exponent & y,<1 of

[3-8]. One of the most important examples of this analysisthe power-law decay of the autocorrelation function as a
which is going to be discussed later in this paper, is the studfnction of the times,

of the waiting time between earthquakes or avalanches in

models exhibiting self-organized criticalitgO0. The idea

of studying recurrences in SOC started with the first connec- 1 NS

tions between SOC and earthquake4]. More recently, the Cx(s) = (XiXise) = N_—SE XiXiss~ S 7°. 4

investigation of seismic catalogs of different regions of the =1

globe indicate the existence of a universal distribution of |n a recent papelrl], Bundeet al. analyzed the effect of

recurrence times between big earthqugkdswhich may be  |ong-term correlations on the return periods of extreme

roughly described as a power-law distribution, events, i.e., of recurrence times obtained using recurrence
P(T) o T 3) intervals of type(_l). The main results of Ref_§1,2] for long-

' term correlated time series can be summarized by the follow-
followed by a faster decay. Simple SOC models have a Poisng three points. While the first was obtained considering
son(exponential distribution of recurrence times, which was statistical arguments, the two others were based on numerical
used as an argument against the use of SOC to model netmulations.
only earthquake$15] but also(and originally solar flares (i) The mean recurrence time is equal to the inverse of the
[7]. However, non-Poissonian distributions are obtained irfraction of extreme points in the series

If time series data{x,} are exponentially(short rangg
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Niotal recurrence times. In the time series analysis this measure is
(M= N estimated as the fraction of valid ever{fints inside the
extreme recurrence intervalu(l)=Ngenid N. Intuitively, relation (6)
(i) The statistics off follows a stretched exponential, states simply that the total observation titnis given by
In P(T) o« = (TKT))?, (5) t=N At =NgyendT)-
where y=1, is identical to the correlation exponent in Eq.  Besides the RT®(T) the PDFp(x) of the series of points
(4)-_“ _ _ _ itself is typically used to characterize the time series. Con-
. (iii ) The series of recurrence times is long-term correlatedrary to other time series analyséss the detrended fluctua-
with an exponenty; close tovy.. tion analysis discussed belpvwthe RTS is independent of the

Statementi) is the time series analogous of Kac’s LemmappF. In particular, it is irrelevant whether the second mo-
(Sec. 1), statementii) will be verified carefully(Sec. Il1B)  ment of the PDF is finite. A time series with a well behaved
once we have established the full functional form of the(Gaussian PDF can have either exponential or power-law
stretched exponenti&b), and statemertiii ) seems not to be RTS[22]. Conversely, a time series with fat tails in the PDF
generally valid(Sec. Il D). can lead to a RTS that might be Poisson or power{l2g].

Even if one might argue that based on Réf.the validity ~ The reason for this is simple: the RTS depends on the se-
of Eq. (5) is established only for the class of the model dataquence of the time series points and changes under their
chosen there, the reproduction of these findings for empiricakemporal rearrangement, which does not change the PDF of
data[3,4] suggests some generality of the stretched exponenhe data. While the RTS is independent of the PDF of the
tial distribution. Here, the link to Poincare recurrences showseries, the opposite happens to the mean recurrencéime
the opposite: Hamiltonian systems with mixed phase spacgnce the recurrence interval is defined, whether by relation
are long-term correlated and show power-law tails in the(l), (2) or by any other possible definition, the PD#x)
statistics of Poincaré recurrence tinfdg]. In this case, the rovides(T) through relation(6).
long-term correlations are originated by the stickiness oP These two apparently trivial observations, i.e., indepen-

chaotic trajectories near the border of integrable islandsy.ce of the RTS and dependence(Bf on the PDF, shed

They cause a kind of intermittent dynamics and manifest . . .
. . : hew light on previous results. In what follows, we exemplify
themselves in complicated higher-order temporal correla;

tions. In fact, the temporal properties of typical data moe these points in the analysis of recurrence times between

fully specified by the autocorrelation function, Ed), which earthquakes, already ’.“e”“"”"t—‘d n Se_c. IB. De%““‘d?e'

! : cause of the complexity of this field it has an important
explains why there cannot be a unique RTS for Iong-termSim licity: the Gutenbera-Richter law
correlated data. Connections between the long-term correla- plictty- 9 ’
tion exponenty. and the RTS have to be established inde- p(M) oc @ P INAOM (7)
pendently in every class of long-term correlated dynamical i .
systems, as was done for Hamiltonian systems with mixed/N€reA,b are constants arid is the magnitude of the earth-
phase spacgl3] and fractal renewal point processk2o]. quake, which is proportional to the logarithm of the released
We argue in Sec. Il B that the results of REf] described ~ €Nergy. The constaittis almqst the same for. different parts
above are valid for long-term correlatdidear time series ©f the world and the empirical law?7) is valid for 2<M
[2]. In this paper we propose a closed expression for the RTS 7.5. From our perspective this means that the PDF of the

of time series of this class, which is valid for recurrencetime series of seismic activity is give24]. _
intervals of both type¢l) and (2). The mean recurrence time between earthquakes of a given

magnitudeM is obtained inserting the PDF given 1) in

Il. MEAN RECURRENCE TIME relation (6), and using the interval of the typ@) with X,
:M,
The mean recurrence time,
e (TY(M) = Tge 1M, ®
(M= lim —>T, where Tyxb In(10)/(1-e 109 This relation is equiva-
Ne— e 1 lent to the one obtained previously through a “mean-field

is a direct result of the choice of the recurrence interval. Ir@PProach’[14]. In Ref. [179/' it is noted the “remarkable”
area preserving dynamical systems Kac's lenjt@ states ~ Scaling oMy (M= Mc)_“ldj ¢, which is nothing else than a
that the inverse ofT) is equal to the ergodic measure of the consequence of relatid6) when intervals of the typéd) are
recurrence intervak(l). In the case of stationary time series, Us€d Withg=Mc.
as illustrated in Fig. 1, an equivalent result is obtained from So far, the relation bgtlwed'ﬁ? and the PDF was used 'to .
the normalized PDp(x), show that the mean waiting time _between earthquakes is di-
rectly related to the Gutenberg-Richter law, but has nothing
At to do with temporal correlations between earthquakes. On
I =ull) = JX IP(X)dX’ () the other hand, the RTS obtained from earthquakes records
° [6] is an independent result that can be used as a test for the
whereAt is the sampling rate used to record the time serieslynamical models of earthquakes. Recently, it was suggested
[21]. This is the most important constraint to the statistics ofthat in SOC models the sequence of avalanches is uncorre-
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lated[7,15] (see[25] for a counterexampjeand should thus Y
be discarded. The solution of this debate is beyond the scope a,= b’F(l/y) '
of this paper. Nevertheless, we note that, as a consequence of (b i 4
the unrelatedness gf(x) and P(T), shuffling data of what- P,{(7)=a,e™"", with (21/7)2F<2 + 7) (10
ever distribution randomlyas was done for the time series b. = 2y
of seismic activity in Ref[15]) trivially implies P(T) of \ v 2\,'; '

being exponential, also for finite recurrence intenjals|.
and depends exclusively on the expongnt
Equation(10) is illustrated in Fig. 2 for different values of
lll. STATISTICS OF RECURRENCE TIMES v in two different waysi(a) (log-log) shows that decreasing
A. Closed expression of the stretched exponential distribution ~ the value ofy the distribution starts from the exponential
] o ] (Poisson case(y=1) and approaches a power-lavy— 0)

We generalize the distribution proposed in Réf.forthe  \ith an exponenww=1.5; (b) shows the distribution in the
RTS of long-term correlated time series. Motivated by resuliorm that the stretched exponentials are seen as straight lines
(i), r_nenpor!ed in Sec. | C, suppose that the stretched eXPq1,3 4. Generally, to obtain grapfb) from (a) one needs to
nential distribution, divide the distribution P(T) by the correct prefactom

=P(0), which is typically unknown. Distributio10) shows

P (T)=ae®"’, (9)  the dependence of the prefac@mon the exponenty when

the stretched exponentipl(7) is valid in the whole interval
is valid for all recurrence time$ e ]0,%[. This is actually a  of times. For experimental or numerical data, where neiher
stronger assumption than E@). As any RTS, Eq(9) must  nor y are knowna priori, the relation between both is useful

satisfy the following two conditions: normalization, to correctly visualize and fit the RTS. We note that in prac-
tice the numerical fitting of the exponeftis very sensitive
* and typically depends on the choice of the prefaetor
P(MdT=1,
0
B. Numerical results for long-term correlated linear time series
and the analogous of Kac's lemni@), We compare now the stretched exponential distribution
(10) to the numerical results of the RTS obtained in long-
(" 1 term correlated time series. As in R¢fl], the data were
(M= o TP(T)dT= u(l)’ generated using the Fourier transform technif@@: impos-

ing a power-law decay on the Fourier spectrum,

Imposing these two conditions to the distributi®), it is f(K) < kP, (1)
possible to express the constaatand b as functions ofy

and u(l). A further simplification is obtained performing the with 0<8<0.5 and choosing phase angles at random, we
following transformation of variables;=T/{T)=u(l)T, i.e.,  obtain through an inverse Fourier transform the long-term
counting the time in units of the mean recurrence time. Theorrelated time series ir with y,=1-28 in Eq. (4). The
complete stretched exponential distribution for recurrencélata are Gaussian distributed with=0, o=1, and Eq.(6)
times is then written as was used to calculate the timesT/(T).
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FIG. 3. (Color online RTS of
long-term correlated linear time
series  with N=2%5=3x10’
points for different values ofy,
(symbols. Lines are the stretched
exponential distributior{10) with
y=1v. The recurrence interval is
extreme withu(l g, =107

P
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Having specified the power spectrum or, correspondinglypbtained using extreme intervdlgqg. (1)], of long-term cor-
the autocorrelation function for sequences of Gaussian rarrelated linear time series. The agreement is especially good
dom numbers means to have fixed all parameters of a linedor small values ofy, (long correlationsandq— o [which is
stochastic process. Hence, in principle, the coefficients of arquivalent tou(l) — 0]. This result is a generalization of the
autoregressivgAR(r)] or moving averagéMA (r)] process  result(ii) [1] since, using Eq(10) and considering/=1,, the
can be uniquely determined, where, due to the power-lavgomparison between the theoretical and numerical distribu-
nature of the spectrum and autocorrelation function, the ortions has no free parameter and no fitting is made.
dersr of either of these models have to be infin[&7]. Furthermore, we verify in Fig. 4 that, for smal(l), the
Hence, the following results are valid for the clasdioéar  distribution (10) is valid also for recurrence intervals in the
long-term correlated processg2]. In other words, higher inner part of the data randeentered aX, and defined by
order correlations for this class of processes follow trivially Eq. (2)]. WhenX.— ¢, approaching the extreme interval, the
from the two-point correlations. value ofy in Eq. (10) approaches the value of the correlation
We show in Fig. 3 that the stretched exponential distribu-exponenty,. Decreasing the value of; towards the mean
tion (10) with y=1, describes considerably well the RTS, value of the PDR{x)=0) results in an increase of. This

(@) ' ' ' (b) ' "7

1 L | FIG. 4. (Color onling RTS of
long-term correlated linear time
series withy.=0.1 and different
recurrence intervalgcentered in
X, with measureu(1)=1073]. The
lines are stretched exponential dis-
tributions and the symbols con-
nected by lines are the numerical
simulations. From(a) to (b) we
use the values given by, of the
best fitting of Eq.(10) in (a). In
(c) we analyze the cas¥.=0 for
different values ofu(l), from bot-
tom to top: w()=10"1 (shifted
down by 16), u(1)=1072 (shifted
by 10 and u(1)=10"3. The gray
lines are the Poissonian distribu-
tion [y=1 in Eq. (10]. a,-;=1
was used for all three cases.

p,(®
—In(p/a,)

10° 10° 10" 10° 10" 10
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FIG. 5. PDF of the serie&@) of x (Gaussiah
and(b) of y [Eq. (14) with X;=1, =0.0207. The
points inside the interval;(X.=1,5=0.0207 in
x become extreme events yn The opposite hap-
pens for the extreme intervé=1.,(q=2.3263.

p(x)

case was analyzed carefully in Figich where the depen- For instance, the correlations in the weather can be stud-
dence of the RTS on the size of the recurrence intem(dl  ied through records of the daily maximum temperature or of
is shown. While for big intervals the stretched exponentialthe daily precipitatior3]. For the first observable, long-term
seems not to hold, whep(l) —0 (the limit Poincaré was correlations for times larger than 10 days were found with an
interested in the distribution forX,=0 tends to the upper exponenty=0.7 for continental stations, independent of the
limit y=1, the Poisson distribution. location and of the climatic zone of the weather station. On
In summary, the RTS of the long-term correlated linearthe other hand, the series of precipitation, obtained in the
time series with exponen, in the limit of small interval same locations and for the same time windows, are not long-
u(l)—0, is described by the stretched exponential distributerm correlated. A similar situation is observed in financial
tion [Eq. (10)] for all recurrence time§ and for recurrence market data. While the fluctuation of prices are typically un-
intervals of both type$¢l) and(2). The exponenty is a con-  correlated the volatility is long-term correlat¢@8]. This
tinuous and monotonically decreasing function of the centegives already a clue that correlations measured on a given

X, of the recurrence interval, with the limits time series do in fact characterize the fluctuations of the
given observable but do not characterize the underlying sys-

_ 1%, whenX;— «(extreme, (12  tem in amore abstract way.
"1, when X.=0. Here we want to study the dependence of correlations and

. _ . L RTS on the chosen observable in more detail by comparing
This result has a simple interpretation in terms of the 10ngyne properties of different observables. Generally, both ob-
term correlations contained in the time series. Calculating thespyaplesx andy are functions of thel-dimensional phase
RTS to a specific interval measures the correlation betweeg, - vectorg, and no simple function connectingandy

events inside this interval. In this sense, our result suggesisisis. Since we are starting from time series data without

that the long-term correlations of the time series are concenynerlying multidimensional phase space, we will restrict the
trated in the extreme even(iarge fluctuationsand vanish  5naysis to a subclass of changes of observables, where in

for events near thg mean val(@@mall fluctuatipn}s Relation  ¢oq¢ y is given by a nonlineapotentially noninvertible
(12) can then be interpreted as: approaching pure extremgnciion of x. Hence, we construct time series of different
events|u(l) — 0 andX.— ] the RTS shows the whole cor- opserabless as functions of the original long-term corre-
relation and thusy=1y.. Approaching pure middle events |ateq time series of the variable Having in mind a recur-

[1(1)—0 and X;=0] no correlation is detected and conse- rence interval defined througtX., ) by relation (2), con-
quently the Poisson distributiofy=1) is recovered. sider the following reversible transformation:

1
C. Change of observables Yn= Xy = (Xe = 5’ (13
The link between recurrence times on time series an
Poincaré recurrencesSec. |4 motlvate_s_the ISsue Of. t.h.e the x series is Gaussian distributed, as considered previously,
change of observables. All of the empirical data exhibiting . o
; ; the PDF of the new seridy,} is given by
long-term correlations mentioned before represent systems

Shich is essentially the inverse of the original sefieg. If

which involve a huge number of degrees of freedom. Hence, ) 11 o

there is a similarly huge arbitrariness in choosing a given p (y):_s“?? WALy * X = A (14)
observation functiox(y), and the natural question is what to vem

expect when we change this observation function. which is illustrated in Fig. 5 for the cas€,=1,6=0.0207. In
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1.25 seseees = . . poral correlations. In Fig. 6 we show the multifractal analysis
"., (MF-DFAL1 [19]) for the long-term correlated, Gaussian dis-
1<xmn;o:‘x‘;O:v«wa:n:cV«:xxco:geﬂ. 1 tributed, linear time seriegx,} and for the transformed
Q [through Eq.(13)] time seriesly,}. As expected, in the first
075 | o}\ ) case roughly a singl_e generz.ili'zed Hurst expoiigstt is ob-
3 Y tained for all scales in the origingih(s)=1-1v,/2=0.95 and
g 85 o e i e e S I L G RO | SV shuffled [h(s)=0.5] time series. Due to the broad tails
R present in Eq(14), both they series and its shuffled version
025 | :i(ycs:r?lj:f?ed ®oon, | have multifractal spectrum, sho_wn by the nontrivial depen-
' . 0000054 dence ofh(gpga) ON gpra. The difference between the two,
0y - shuffled which measures the effect of the temporal correlations, ap-
8 8 4 .5 &6 > 4 o g  Ppearsfor small scales, where the generalized Hurst exponent

of the shuffled series is smaller. This result is consistent with
the interpretation made at the end of Sec. Ill B that the cor-
FIG. 6. Generalized Hurst exponent of the time seriesaridy ~ relations of thex series is concentrated on the extreme
(N=229~10F points as a function of the scalgyg,. The horizontal — events. Through transformati@h3), the extreme events i
gray lines are the noncorrelated val(fe=0.5 and the expected are mapped into very small fluctuationsyind the temporal
value for ,=0.1 (h=1-v./2=0.95. The difference between the correlations ofly,} are coherently noticeable for small values
original and the shuffled time series measures the effect of the copf g,.
relation at each scalgora. Through transformatiori13) we provide an example of
equivalence between the RTS of different observables ob-
this figure it is also shown that the interva) defined by the  tained using extreme intervals, and the RTS calculated in the
same(X, d) in x, is transformed into an extreme interval in same series but using different recurrence intervals. Always
y. On the other hand, the extreme interVglin x is trans-  when the transformation of observables is invertible, there
formed into a recurrence interval in the middle of the PDF ofexists a one-to-one correspondence between the original ex-
y. Since the sequence of recurrence tirfiesbtained using treme values and a new interval. This provides another jus-
the original intervals in the series is also obtained using the tification to the generalization of the recurrence of extreme
transformed intervals in thg series, the RTS remains invari- events to general recurrence intervals, proposed in Sec. | A
ant under the simultaneous transformation of variables anphspired by the analogy to the Poincaré recurrences.
recurrence intervals. Therefore, the previous observation that
the change of the recurrence interval in theeries does not
affect the functional form of the stretched exponential distri-
bution (10), but does affect the exponent carries over to It is also interesting to apply the distinction between the
transformations of the forml3). For instance, the RTS of a time properties of the series and its PDF, discussed in Sec. II,
series obtained from transformatigh3) applied to a time to the series of recurrence timgh, Ty, ... Ty} itself[29]. In
seriesx with y,=0.1, is well described by the stretched ex- this case this means that the PDF, which is the RTS of the
ponential distribution(10) with (see Fig. % y=0.55 for an  original time series, is independent of its correlation and
extreme intervall, in Fig. 5b)] and y=0.1 for a central shows that the result§i) and (iii) stated in Sec. | C are
interval (I, in Fig. 5. This result holds for all reversible independent. This is an important remark when prediction
transformations. algorithms are considered, since in many cases the correla-
An important fundamental question in this context is thetion between the waiting times is more important than their
behavior of the long-term correlations under transformationglistribution[30].
of variables. Whereas the normalized autocorrelation func- The result(iii) of Ref.[1] is verified in Fig. 7 through the
tion remains unchanged under shifts and rescalings tifis ~ multifractal analysis of the series of recurrence tiriesn-
is not the case under transformations lilk8), where the stead of the same correlation exponent we find a multifractal
transformed time series gfis not long-term correlated at all, spectrum. It is necessarily originated by the long-term corre-
despite the long-term correlations of the originaleriedsee  lations since the PDF of these series are stretched exponen-
Fig. 6 whereh(2)=0.5]. We characterize thg series using tial distributions, as verified in Fig. 4, which do not have fat
the multifractal detrended fluctuation analygl®], which is  talils.
a much more powerful tool than the simple autocorrelation
fqnction, since for different values of fche parametgyn IV. DISCUSSION AND CONCLUSION
different scales of fluctuations are amplified. In order to dis-
tinguish between the multifractality due to long-term corre- Well established regimes of decay of the RTS are expo-
lations and due to a broad PDF, the typical procedure is tmentials and power laws, and, only recently observed,
shuffle the time series randomly, i.e., we choose randomly atretched exponentials. We have obtained a closed expression
new order of theN points of the original time series. Since for the stretched exponential distribution of recurrence times
the shuffled series loses all its temporal correlations but redniquely defined by the exponent As limits y=1 andy
tains the same PDF, the difference between the results of the0, respectively, we recover the exponential and the power-
two series(original and shuffleglis exclusively due to tem- law decay from theséwith the restriction that the power is

D. The series of recurrence times
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1.2 tion characterizes also the RTS of extreme events in time
N series that are not long-term correlated. The presence and
N o—eX-0 absence of long-term correlations in the series of the original
1 *ea —a X -1 observablex and of the transformed observabfe respec-
'S o X=2 tively, is similar to the one reported above for climatic
= o0s | k“t}}*\ A~ extreme records(temperature and precipitatipand stock-market in-
2:cf ' }\rt‘ dexes(volatility and fluctuation of pricg It is remarkable
g e ‘L“j:}hkk that this intere;ting behavior ig obtained _already through the
o6 | e H’*"‘“hit e simplest possible approach, i.e., two different observables
t‘\ttttm that depend directly and exclusively on each other. These
considerations emphasize that the temporal characterization
0.4 ‘ ‘ of the system through the autocorrelation or RTS depend
0 2 4 6

crucially on the chosen observable. By analyzing both the

ora dependence of the exponentof the stretched exponential
distribution with the center of the recurrence interjsala-
tion (12)] and the multifractal spectrum of theseries(Fig.
6) we conclude that, in long-term correlated linear time se-
ries, the correlations are concentrated in the extreme events.
Many interesting questions arise if one supposes that the
fixed to 3/2, suggesting that stretched exponentials describeneasurements in a given experiment lead to the time series
recurrences in systems that have neither exponential naf the observabley, introduced in Sec. Il C, and that no
power-law RTS but that lie in between these two cases. Waatural access to the observaklexists. They series has a
have verified numerically that the stretched exponential discomplex multifractal spectrurfFig. 6), a strange PDFEQ.
tribution is in good agreement with the numerical results(14)] and a nontrivial dependence of the RTS with the recur-
obtained for a long-term correlated linear time series, simifence interval. Nevertheless, through a simple transformation
larly to what was done in Ref1]. From the point of view of [the inverse of relatioril3)] one arrives at the series, that
these previous results, listed in Sec. | C, we have identifiethas a monofractal spectrum, is Gaussian distributed and has
(i) with Kac's lemma; generalizedi) to the stretched expo- a simple[Eq.(12)] dependence of the RTS on the recurrence
nential distribution(10), which is a function of a single pa- interval. This suggests the existence, in some situations, of
rameter and is valid for all recurrence intervals through Eq:distinguished observables” where the time series analysis is
(12); and generalizediii ), showing that the sequence of re- extremely simplified. It is an interesting open problem to
currence times has a multi-fractal spectrum, with an expoédevelop a procedure able to determine the transformation
nenty; different from+y.. In order to verify if the fluctuations (when it exist$ that lead to the “distinguished observables.”
around the stretched exponential distribution, shown in the
figures of Sec. Ill B, are a consequence of numerical limita-
tions or real deviations, an analytical deduction of the
stretched exponential distributiof10) is necessary, which The authors thank J. Davidsen for helpful discussions and
remains an open task. for the careful reading of the paper. E.G.A. thanks E. C.
Performing simple reversible transformatiofiike Eq. da Silva and I. L. Caldas for illuminating discussions on
(13)] on the original long-term correlated linear time seriesrelated topics. This work was supported by CAP@B%azil)
{X,}, we have shown that the stretched exponential distribuand DAAD (Germany.

FIG. 7. Multifractal spectrum for the series of recurrence times
({T1,T4, ..., Tne) Obtained for intervals withu(1)=0.01, and dif-
ferent values ofX. in long-term correlated linear time series with
¥:=0.1 (Ng=218=2x 10°).
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