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The recurrence times between extreme events have been the central point of statistical analyses in many
different areas of science. Simultaneously, the Poincaré recurrence time has been extensively used to charac-
terize nonlinear dynamical systems. We compare the main properties of these statistical methods pointing out
their consequences for the recurrence analysis performed in time series. In particular, we analyze the depen-
dence of the mean recurrence time and of the recurrence time statistics on the probability density function, on
the interval whereto the recurrences are observed, and on the temporal correlations of time series. In the case
of long-term correlations, we verify the validity of the stretched exponential distribution, which is uniquely
defined by the exponentg, at the same time showing that it is restricted to the class of linear long-term
correlated processes. Simple transformations are able to modify the correlations of time series leading to
stretched exponentials recurrence time statistics with differentg, which shows a lack of invariance under the
change of observables.
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I. INTRODUCTION

Recurrence time analysis is a powerful tool to character-
ize temporal properties of well defined eventsf1,2g. It has
been recently extensively performed in a rich variety of ex-
perimental time series: records of the climatef3–5g, seismic
activities f6g, solar flaresf7g, spikes in neuronsf8g, turbu-
lence in magnetic confined plasmaf9g, and stock market in-
dices f10g. Calculated essentially in the same way, these
analyses receive different names: waiting time distribution,
interocurrence time statistics, distribution of interspike inter-
vals, distribution of laminar phases, etc. Through a unified
perspective, we discuss the main properties of these statisti-
cal methods, which allows us to reinterpret and specify many
previous results. By a careful discussion of the relevance of
the probability density functionsPDFd of the time series data
we can easily understand and, in a particular case, reject
results on earthquake statisticssSec. IId. In the case of long-
term correlated linear time series we obtain a closed expres-
sion for the stretched exponential distribution of recurrence
times which is valid for different recurrence intervals. We
show also the lack of invariance of the long-term correlations
of the time series under transformations that simulate the
choice of different observables of the systemsSec. IIId. Be-
fore reporting these results we start with a proper definition
of time series recurrence times, we compare it to the
Poincaré recurrences, and we discuss briefly some important
recent applications of the recurrence time analysis.

A. Recurrence times

1. Time series recurrences

Assuming a time series point of view, in this paper we
study the statistical properties of therecurrence time T.
Given a time serieshxnj ,n=1, . . . ,N, and having defined a

recurrence intervalI as a subset of the data range, then the
ith recurrence timeTi is the time intervalDn between theith
and thei +1st visit of a time series point inI. The recurrence
time statisticssRTSd is obtained as the distributionPsTd of
the sequence of recurrence timesTi.

Evidently, the sequence of recurrence times generated this
way depends sensitively on the choice ofI, which in fact will
be one prominent issue of this paper. While for the recur-
rence of extreme events the recurrence interval is defined by
the points above a thresholdf1g,

Iextsqd = fq,`f, s1d

in a more general way it may be defined around a positionXc
with a semiwidthd f9,11g

IsXc,dd = fXc − d,Xc + dg. s2d

Both kinds of intervals are illustrated in Fig. 1.

2. Poincaré recurrences

In dynamical systems’ theory, another concept of recur-
rence, known as Poincaré recurrences, plays a central role.
Given a closed Hamiltonian system with ergodicity on the
energy shell, the famous Poincaré recurrence theorem asserts
that almost all trajectoriessexcept for a set of zero measured
started inside some subsetV of the phase spaceG will return
to it infinitely many times. In the limit of vanishing volume
of this subset, the time between consecutive recurrences is
the Poincaré recurrence time. Despite the well known de-
bates about the foundations of statistical mechanicssZer-
mello paradoxd these ideas motivated throughout the years
also mathematical studiesf12g and, more recently, applica-
tions of recurrence analysis to many different dynamical sys-
temsssee Ref.f13g and references thereind.

Surprisingly, as far as we know, no connection between
the two recurrence approaches described above were made
until now. The most evident way to establish this relationship
is to define an observablex=xsgW d, whengW stdPG is the tra-*Electronic address: edugalt@pks.mpg.de
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jectory in phase space of the Hamiltonian system. The recur-
rence volumeV is mapped to an intervalIV on the real axis
by the observation functionxsgW d. However, the sequence of
recurrence times of the seriesxnªxfgW st=n Dtdg with respect
to IV is generallynot identical to the sequence of Poincaré
recurrences ofgW std with respect ofV, since there is usually a

large setV̄ which also maps toIV due to the noninvertibility
of xsgW d. Moreover, generallyIV will be of the kind ofIsXc,dd
rather thanIextsqd.

However, as we will show in this paper, the analogy with
Poincaré recurrences motivates issues related to the recur-
rence times of extreme events which will reveal fundamental
insight into their properties. Two main results will be the lack
of invariance of the RTS under change of the observable and
the fact that long-term correlations arenot fully characterized
by the autocorrelation function.

B. Earthquakes and SOC models

The recurrence time between extreme events was recently
used in the analysis of different experimental time series
f3–8g. One of the most important examples of this analysis,
which is going to be discussed later in this paper, is the study
of the waiting time between earthquakes or avalanches in
models exhibiting self-organized criticalitysSOCd. The idea
of studying recurrences in SOC started with the first connec-
tions between SOC and earthquakesf14g. More recently, the
investigation of seismic catalogs of different regions of the
globe indicate the existence of a universal distribution of
recurrence times between big earthquakesf6g, which may be
roughly described as a power-law distribution,

PsTd ~ T−a, s3d

followed by a faster decay. Simple SOC models have a Pois-
sonsexponentiald distribution of recurrence times, which was
used as an argument against the use of SOC to model not
only earthquakesf15g but alsosand originallyd solar flares
f7g. However, non-Poissonian distributions are obtained in

more sophisticated SOC modelsf16,17g, which keeps open
the debate over the use of SOC in these fields, with the RTS
as one of its central ingredients.

C. Long-term correlations and recurrence times

If time series datahxnj are exponentiallysshort ranged
correlated, the RTS is well known to be Poissonian, i.e.,
exponential for allT, independent of the choice ofI fin the
limit of small intervalmsId→0g f11g. The same result applies
to Poincaré recurrencessincluding independence ofVd if the
underlying dynamics is hyperbolic, i.e., in well defined
mathematical way fully chaoticf18g. Also in this case, cor-
relations decay fast. Hence, for systems with an exponential
decay of correlations, details of defining recurrence times
and further details of the system are irrelevant; instead there
exists a unique RTS.

Many time series data have been found to be long-term
correlated, i.e., their mean autocorrelation time diverges
f3,4,19g. Typically, this situation is characterized in the time
serieshxnj sassumingkxnl=0d by the exponent 0,gc,1 of
the power-law decay of the autocorrelation function as a
function of the times,

Cxssd = kxixi+sl =
1

N − s
o
i=1

N−s

xixi+s , s−gc. s4d

In a recent paperf1g, Bundeet al. analyzed the effect of
long-term correlations on the return periods of extreme
events, i.e., of recurrence times obtained using recurrence
intervals of types1d. The main results of Refs.f1,2g for long-
term correlated time series can be summarized by the follow-
ing three points. While the first was obtained considering
statistical arguments, the two others were based on numerical
simulations.

sid The mean recurrence time is equal to the inverse of the
fraction of extreme points in the series

FIG. 1. Gaussian distributed
time series with recurrence inter-
vals with measure msId=0.01,
which implies kTl=100. One ex-
treme interval Iextsq=2.3263d
=f2.3263,̀ f and two recur-
rence intervals I1s−2,0.0922d
=f−1.9078,−2.0922g, I2s0,
0.0125d=f−0.0125,0.0125g illus-
trated in thesad time series andsbd
probability density function.
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kTl =
Ntotal

Nextreme
.

sii d The statistics ofT follows a stretched exponential,

ln PsTd ~ − sT/kTldg, s5d

whereg=gc is identical to the correlation exponent in Eq.
s4d.

siii d The series of recurrence times is long-term correlated
with an exponentgT close togc.

Statementsid is the time series analogous of Kac’s Lemma
sSec. IId, statementsii d will be verified carefullysSec. III B.d
once we have established the full functional form of the
stretched exponentials5d, and statementsiii d seems not to be
generally validsSec. III D.d.

Even if one might argue that based on Ref.f1g the validity
of Eq. s5d is established only for the class of the model data
chosen there, the reproduction of these findings for empirical
dataf3,4g suggests some generality of the stretched exponen-
tial distribution. Here, the link to Poincaré recurrences shows
the opposite: Hamiltonian systems with mixed phase space
are long-term correlated and show power-law tails in the
statistics of Poincaré recurrence timesf13g. In this case, the
long-term correlations are originated by the stickiness of
chaotic trajectories near the border of integrable islands.
They cause a kind of intermittent dynamics and manifest
themselves in complicated higher-order temporal correla-
tions. In fact, the temporal properties of typical data arenot
fully specified by the autocorrelation function, Eq.s4d, which
explains why there cannot be a unique RTS for long-term
correlated data. Connections between the long-term correla-
tion exponentgc and the RTS have to be established inde-
pendently in every class of long-term correlated dynamical
systems, as was done for Hamiltonian systems with mixed
phase spacef13g and fractal renewal point processesf20g.
We argue in Sec. III B that the results of Ref.f1g described
above are valid for long-term correlatedlinear time series
f2g. In this paper we propose a closed expression for the RTS
of time series of this class, which is valid for recurrence
intervals of both typess1d and s2d.

II. MEAN RECURRENCE TIME

The mean recurrence time,

kTl ; lim
Ne→`

1

Ne
o
1

Ne

Ti ,

is a direct result of the choice of the recurrence interval. In
area preserving dynamical systems Kac’s lemmaf12g states
that the inverse ofkTl is equal to the ergodic measure of the
recurrence intervalmsId. In the case of stationary time series,
as illustrated in Fig. 1, an equivalent result is obtained from
the normalized PDFrsxd,

Dt

kTl
= msId ; E

xPI

rsxddx, s6d

whereDt is the sampling rate used to record the time series
f21g. This is the most important constraint to the statistics of

recurrence times. In the time series analysis this measure is
estimated as the fraction of valid eventsspoints inside the
recurrence intervald msId=Nevents/N. Intuitively, relation s6d
states simply that the total observation timet is given by

t = N Dt = NeventskTl.

Besides the RTSPsTd the PDFrsxd of the series of points
itself is typically used to characterize the time series. Con-
trary to other time series analysessas the detrended fluctua-
tion analysis discussed belowd, the RTS is independent of the
PDF. In particular, it is irrelevant whether the second mo-
ment of the PDF is finite. A time series with a well behaved
sGaussiand PDF can have either exponential or power-law
RTS f22g. Conversely, a time series with fat tails in the PDF
can lead to a RTS that might be Poisson or power-lawf23g.
The reason for this is simple: the RTS depends on the se-
quence of the time series points and changes under their
temporal rearrangement, which does not change the PDF of
the data. While the RTS is independent of the PDF of the
series, the opposite happens to the mean recurrence timekTl.
Once the recurrence interval is defined, whether by relation
s1d, s2d or by any other possible definition, the PDFrsxd
provideskTl through relations6d.

These two apparently trivial observations, i.e., indepen-
dence of the RTS and dependence ofkTl on the PDF, shed
new light on previous results. In what follows, we exemplify
these points in the analysis of recurrence times between
earthquakes, already mentioned in Sec. I B. Despitesor be-
cause ofd the complexity of this field it has an important
simplicity: the Gutenberg-Richter law,

rsMd ~ e−b lns10dM , s7d

whereA,b are constants andM is the magnitude of the earth-
quake, which is proportional to the logarithm of the released
energy. The constantb is almost the same for different parts
of the world and the empirical laws7d is valid for 2øM
&7.5. From our perspective this means that the PDF of the
time series of seismic activity is givenf24g.

The mean recurrence time between earthquakes of a given
magnitudeM is obtained inserting the PDF given bys7d in
relation s6d, and using the interval of the types2d with Xc
=M,

kTlsMd = T0e
b lns10dM , s8d

where T0~b lns10d / s1−e−b lns10ddd. This relation is equiva-
lent to the one obtained previously through a “mean-field
approach”f14g. In Ref. f17g it is noted the “remarkable”
scaling ofkTlsM ùMcd~10bMc, which is nothing else than a
consequence of relations6d when intervals of the types1d are
used withq=Mc.

So far, the relation betweenkTl and the PDF was used to
show that the mean waiting time between earthquakes is di-
rectly related to the Gutenberg-Richter law, but has nothing
to do with temporal correlations between earthquakes. On
the other hand, the RTS obtained from earthquakes records
f6g is an independent result that can be used as a test for the
dynamical models of earthquakes. Recently, it was suggested
that in SOC models the sequence of avalanches is uncorre-

RECURRENCE TIME ANALYSIS, LONG-TERM… PHYSICAL REVIEW E 71, 056106s2005d

056106-3



latedf7,15g sseef25g for a counterexampled and should thus
be discarded. The solution of this debate is beyond the scope
of this paper. Nevertheless, we note that, as a consequence of
the unrelatedness ofrsxd and PsTd, shuffling data of what-
ever distribution randomlysas was done for the time series
of seismic activity in Ref.f15gd trivially implies PsTd of
being exponential, also for finite recurrence intervalsf11g.

III. STATISTICS OF RECURRENCE TIMES

A. Closed expression of the stretched exponential distribution

We generalize the distribution proposed in Ref.f1g for the
RTS of long-term correlated time series. Motivated by result
sii d, mentioned in Sec. I C, suppose that the stretched expo-
nential distribution,

PgsTd = ae−sbTdg
, s9d

is valid for all recurrence timesTP g0,`f. This is actually a
stronger assumption than Eq.s5d. As any RTS, Eq.s9d must
satisfy the following two conditions: normalization,

E
0

`

PsTddT= 1,

and the analogous of Kac’s lemmas6d,

kTl ; E
0

`

TPsTddT=
1

msId
.

Imposing these two conditions to the distributions9d, it is
possible to express the constantsa and b as functions ofg
andmsId. A further simplification is obtained performing the
following transformation of variables,t=T/ kTl=msIdT, i.e.,
counting the time in units of the mean recurrence time. The
complete stretched exponential distribution for recurrence
times is then written as

pgstd = age−sbgtdg
, with 5ag = bg

g

Gs1/gd
,

bg =

s21/gd2GS2 + g

2g
D

2Îp
,6 s10d

and depends exclusively on the exponentg.
Equations10d is illustrated in Fig. 2 for different values of

g in two different ways:sad slog-logd shows that decreasing
the value ofg the distribution starts from the exponential
sPoissond casesg=1d and approaches a power-lawsg→0d
with an exponenta=1.5; sbd shows the distribution in the
form that the stretched exponentials are seen as straight lines
f1,3,4g. Generally, to obtain graphsbd from sad one needs to
divide the distribution PsTd by the correct prefactora
=Ps0d, which is typically unknown. Distributions10d shows
the dependence of the prefactora on the exponentg when
the stretched exponentialpgstd is valid in the whole interval
of times. For experimental or numerical data, where neithera
nor g are knowna priori, the relation between both is useful
to correctly visualize and fit the RTS. We note that in prac-
tice the numerical fitting of the exponentg is very sensitive
and typically depends on the choice of the prefactora.

B. Numerical results for long-term correlated linear time series

We compare now the stretched exponential distribution
s10d to the numerical results of the RTS obtained in long-
term correlated time series. As in Ref.f1g, the data were
generated using the Fourier transform techniquef26g: impos-
ing a power-law decay on the Fourier spectrum,

fxskd ~ k−b, s11d

with 0,b,0.5 and choosing phase angles at random, we
obtain through an inverse Fourier transform the long-term
correlated time series inx with gc=1−2b in Eq. s4d. The
data are Gaussian distributed withkxl=0, s=1, and Eq.s6d
was used to calculate the timest=T/ kTl.

FIG. 2. The stretched exponential distribution
s10d for different values of the exponentg.
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Having specified the power spectrum or, correspondingly,
the autocorrelation function for sequences of Gaussian ran-
dom numbers means to have fixed all parameters of a linear
stochastic process. Hence, in principle, the coefficients of an
autoregressivefARsrdg or moving averagefMA srdg process
can be uniquely determined, where, due to the power-law
nature of the spectrum and autocorrelation function, the or-
ders r of either of these models have to be infinitef27g.
Hence, the following results are valid for the class oflinear
long-term correlated processesf2g. In other words, higher
order correlations for this class of processes follow trivially
from the two-point correlations.

We show in Fig. 3 that the stretched exponential distribu-
tion s10d with g=gc describes considerably well the RTS,

obtained using extreme intervalsfEq. s1dg, of long-term cor-
related linear time series. The agreement is especially good
for small values ofgc slong correlationsd andq→` fwhich is
equivalent tomsId→0g. This result is a generalization of the
resultsii d f1g since, using Eq.s10d and consideringg=gc, the
comparison between the theoretical and numerical distribu-
tions has no free parameter and no fitting is made.

Furthermore, we verify in Fig. 4 that, for smallmsId, the
distribution s10d is valid also for recurrence intervals in the
inner part of the data rangefcentered atXc and defined by
Eq. s2dg. WhenXc→`, approaching the extreme interval, the
value ofg in Eq. s10d approaches the value of the correlation
exponentgc. Decreasing the value ofXc towards the mean
value of the PDFskxl=0d results in an increase ofg. This

FIG. 3. sColor onlined RTS of
long-term correlated linear time
series with N=225<33107

points for different values ofgc

ssymbolsd. Lines are the stretched
exponential distributions10d with
g=gc. The recurrence interval is
extreme withmsIextd=10−2.

FIG. 4. sColor onlined RTS of
long-term correlated linear time
series withgc=0.1 and different
recurrence intervalsfcentered in
Xc with measuremsId=10−3g. The
lines are stretched exponential dis-
tributions and the symbols con-
nected by lines are the numerical
simulations. Fromsad to sbd we
use the values given byag of the
best fitting of Eq.s10d in sad. In
scd we analyze the caseXc=0 for
different values ofmsId, from bot-
tom to top: msId=10−1 sshifted
down by 102d, msId=10−2 sshifted
by 10d and msId=10−3. The gray
lines are the Poissonian distribu-
tion fg=1 in Eq. s10dg. ag=1=1
was used for all three cases.
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case was analyzed carefully in Fig. 4scd, where the depen-
dence of the RTS on the size of the recurrence intervalmsId
is shown. While for big intervals the stretched exponential
seems not to hold, whenmsId→0 sthe limit Poincaré was
interested ind the distribution forXc=0 tends to the upper
limit g=1, the Poisson distribution.

In summary, the RTS of the long-term correlated linear
time series with exponentgc, in the limit of small interval
msId→0, is described by the stretched exponential distribu-
tion fEq. s10dg for all recurrence timesT and for recurrence
intervals of both typess1d ands2d. The exponentg is a con-
tinuous and monotonically decreasing function of the center
Xc of the recurrence interval, with the limits

g = Hgc, whenXc → `sextremed,

1, whenXc = 0.
J s12d

This result has a simple interpretation in terms of the long-
term correlations contained in the time series. Calculating the
RTS to a specific interval measures the correlation between
events inside this interval. In this sense, our result suggests
that the long-term correlations of the time series are concen-
trated in the extreme eventsslarge fluctuationsd and vanish
for events near the mean valuessmall fluctuationsd. Relation
s12d can then be interpreted as: approaching pure extreme
eventsfmsId→0 andXc→`g the RTS shows the whole cor-
relation and thusg=gc. Approaching pure middle events
fmsId→0 and Xc=0g no correlation is detected and conse-
quently the Poisson distributionsg=1d is recovered.

C. Change of observables

The link between recurrence times on time series and
Poincaré recurrencessSec. I Ad motivates the issue of the
change of observables. All of the empirical data exhibiting
long-term correlations mentioned before represent systems
which involve a huge number of degrees of freedom. Hence,
there is a similarly huge arbitrariness in choosing a given
observation functionxsgW d, and the natural question is what to
expect when we change this observation function.

For instance, the correlations in the weather can be stud-
ied through records of the daily maximum temperature or of
the daily precipitationf3g. For the first observable, long-term
correlations for times larger than 10 days were found with an
exponentg<0.7 for continental stations, independent of the
location and of the climatic zone of the weather station. On
the other hand, the series of precipitation, obtained in the
same locations and for the same time windows, are not long-
term correlated. A similar situation is observed in financial
market data. While the fluctuation of prices are typically un-
correlated the volatility is long-term correlatedf28g. This
gives already a clue that correlations measured on a given
time series do in fact characterize the fluctuations of the
given observable but do not characterize the underlying sys-
tem in a more abstract way.

Here we want to study the dependence of correlations and
RTS on the chosen observable in more detail by comparing
the properties of different observables. Generally, both ob-
servablesx and y are functions of thed-dimensional phase
space vectorsgW , and no simple function connectingx andy
exists. Since we are starting from time series data without
underlying multidimensional phase space, we will restrict the
analysis to a subclass of changes of observables, where in
fact y is given by a nonlinearspotentially noninvertibled
function of x. Hence, we construct time series of different
observablesy as functions of the original long-term corre-
lated time series of the variablex. Having in mind a recur-
rence interval defined throughsXc,dd by relation s2d, con-
sider the following reversible transformation:

yn =
1

xn − sXc − dd
, s13d

which is essentially the inverse of the original serieshxnj. If
thex series is Gaussian distributed, as considered previously,
the PDF of the new serieshynj is given by

r8syd =
1

Î2p

1

y2e−s1/2df1/y + sXc − ddg2, s14d

which is illustrated in Fig. 5 for the caseXc=1,d=0.0207. In

FIG. 5. PDF of the seriessad of x sGaussiand
andsbd of y fEq. s14d with Xc=1, d=0.0207g. The
points inside the intervalI1sXc=1,d=0.0207d in
x become extreme events iny. The opposite hap-
pens for the extreme intervalI2= Iextsq=2.3263d.
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this figure it is also shown that the intervalI1, defined by the
samesXc,dd in x, is transformed into an extreme interval in
y. On the other hand, the extreme intervalI2 in x is trans-
formed into a recurrence interval in the middle of the PDF of
y. Since the sequence of recurrence timesT obtained using
the original intervals in thex series is also obtained using the
transformed intervals in they series, the RTS remains invari-
ant under the simultaneous transformation of variables and
recurrence intervals. Therefore, the previous observation that
the change of the recurrence interval in thex series does not
affect the functional form of the stretched exponential distri-
bution s10d, but does affect the exponentg, carries over to
transformations of the forms13d. For instance, the RTS of a
series obtained from transformations13d applied to a time
seriesx with gc=0.1, is well described by the stretched ex-
ponential distributions10d with ssee Fig. 4d: g<0.55 for an
extreme intervalfI1 in Fig. 5sbdg and g=0.1 for a central
interval sI2 in Fig. 5d. This result holds for all reversible
transformations.

An important fundamental question in this context is the
behavior of the long-term correlations under transformations
of variables. Whereas the normalized autocorrelation func-
tion remains unchanged under shifts and rescalings ofx, this
is not the case under transformations likes13d, where the
transformed time series ofy is not long-term correlated at all,
despite the long-term correlations of the originalx seriesfsee
Fig. 6 wherehs2d<0.5g. We characterize they series using
the multifractal detrended fluctuation analysisf19g, which is
a much more powerful tool than the simple autocorrelation
function, since for different values of the parameterqDFA
different scales of fluctuations are amplified. In order to dis-
tinguish between the multifractality due to long-term corre-
lations and due to a broad PDF, the typical procedure is to
shuffle the time series randomly, i.e., we choose randomly a
new order of theN points of the original time series. Since
the shuffled series loses all its temporal correlations but re-
tains the same PDF, the difference between the results of the
two seriessoriginal and shuffledd is exclusively due to tem-

poral correlations. In Fig. 6 we show the multifractal analysis
sMF-DFA1 f19gd for the long-term correlated, Gaussian dis-
tributed, linear time serieshxnj and for the transformed
fthrough Eq.s13dg time serieshynj. As expected, in the first
case roughly a single generalized Hurst exponenthssd is ob-
tained for all scales in the originalfhssd=1−gc/2=0.95g and
shuffled fhssd=0.5g time series. Due to the broad tails
present in Eq.s14d, both they series and its shuffled version
have multifractal spectrum, shown by the nontrivial depen-
dence ofhsqDFAd on qDFA. The difference between the two,
which measures the effect of the temporal correlations, ap-
pears for small scales, where the generalized Hurst exponent
of the shuffled series is smaller. This result is consistent with
the interpretation made at the end of Sec. III B that the cor-
relations of thex series is concentrated on the extreme
events. Through transformations13d, the extreme events inx
are mapped into very small fluctuations iny and the temporal
correlations ofhynj are coherently noticeable for small values
of qDFA.

Through transformations13d we provide an example of
equivalence between the RTS of different observables ob-
tained using extreme intervals, and the RTS calculated in the
same series but using different recurrence intervals. Always
when the transformation of observables is invertible, there
exists a one-to-one correspondence between the original ex-
treme values and a new interval. This provides another jus-
tification to the generalization of the recurrence of extreme
events to general recurrence intervals, proposed in Sec. I A
inspired by the analogy to the Poincaré recurrences.

D. The series of recurrence times

It is also interesting to apply the distinction between the
time properties of the series and its PDF, discussed in Sec. II,
to the series of recurrence timeshT1,T2, . . .TNej itself f29g. In
this case this means that the PDF, which is the RTS of the
original time series, is independent of its correlation and
shows that the resultssii d and siii d stated in Sec. I C are
independent. This is an important remark when prediction
algorithms are considered, since in many cases the correla-
tion between the waiting times is more important than their
distribution f30g.

The resultsiii d of Ref. f1g is verified in Fig. 7 through the
multifractal analysis of the series of recurrence timesT. In-
stead of the same correlation exponent we find a multifractal
spectrum. It is necessarily originated by the long-term corre-
lations since the PDF of these series are stretched exponen-
tial distributions, as verified in Fig. 4, which do not have fat
tails.

IV. DISCUSSION AND CONCLUSION

Well established regimes of decay of the RTS are expo-
nentials and power laws, and, only recently observed,
stretched exponentials. We have obtained a closed expression
for the stretched exponential distribution of recurrence times
uniquely defined by the exponentg. As limits g=1 andg
=0, respectively, we recover the exponential and the power-
law decay from theseswith the restriction that the power is

FIG. 6. Generalized Hurst exponent of the time series ofx andy
sN=220<106 pointsd as a function of the scaleqDFA. The horizontal
gray lines are the noncorrelated valuesh=0.5d and the expected
value for gc=0.1 sh=1−gc/2=0.95d. The difference between the
original and the shuffled time series measures the effect of the cor-
relation at each scaleqDFA.
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fixed to 3/2d, suggesting that stretched exponentials describe
recurrences in systems that have neither exponential nor
power-law RTS but that lie in between these two cases. We
have verified numerically that the stretched exponential dis-
tribution is in good agreement with the numerical results
obtained for a long-term correlated linear time series, simi-
larly to what was done in Ref.f1g. From the point of view of
these previous results, listed in Sec. I C, we have identified
sid with Kac’s lemma; generalizedsii d to the stretched expo-
nential distributions10d, which is a function of a single pa-
rameter and is valid for all recurrence intervals through Eq.
s12d; and generalizedsiii d, showing that the sequence of re-
currence times has a multi-fractal spectrum, with an expo-
nentgT different fromgc. In order to verify if the fluctuations
around the stretched exponential distribution, shown in the
figures of Sec. III B, are a consequence of numerical limita-
tions or real deviations, an analytical deduction of the
stretched exponential distributions10d is necessary, which
remains an open task.

Performing simple reversible transformationsflike Eq.
s13dg on the original long-term correlated linear time series
hxnj, we have shown that the stretched exponential distribu-

tion characterizes also the RTS of extreme events in time
series that are not long-term correlated. The presence and
absence of long-term correlations in the series of the original
observablex and of the transformed observabley, respec-
tively, is similar to the one reported above for climatic
recordsstemperature and precipitationd and stock-market in-
dexessvolatility and fluctuation of priced. It is remarkable
that this interesting behavior is obtained already through the
simplest possible approach, i.e., two different observables
that depend directly and exclusively on each other. These
considerations emphasize that the temporal characterization
of the system through the autocorrelation or RTS depend
crucially on the chosen observable. By analyzing both the
dependence of the exponentg of the stretched exponential
distribution with the center of the recurrence intervalfrela-
tion s12dg and the multifractal spectrum of they seriessFig.
6d we conclude that, in long-term correlated linear time se-
ries, the correlations are concentrated in the extreme events.

Many interesting questions arise if one supposes that the
measurements in a given experiment lead to the time series
of the observabley, introduced in Sec. III C, and that no
natural access to the observablex exists. They series has a
complex multifractal spectrumsFig. 6d, a strange PDFfEq.
s14dg and a nontrivial dependence of the RTS with the recur-
rence interval. Nevertheless, through a simple transformation
fthe inverse of relations13dg one arrives at thex series, that
has a monofractal spectrum, is Gaussian distributed and has
a simplefEq. s12dg dependence of the RTS on the recurrence
interval. This suggests the existence, in some situations, of
“distinguished observables” where the time series analysis is
extremely simplified. It is an interesting open problem to
develop a procedure able to determine the transformation
swhen it existsd that lead to the “distinguished observables.”
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