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We introduce a new centrality measure that characterizes the participation of each node in all subgraphs in
a network. Smaller subgraphs are given more weight than larger ones, which makes this measure appropriate
for characterizing network motifs. We show that the subgraph centf@ify)] can be obtained mathematically
from the spectra of the adjacency matrix of the network. This measure is better able to discriminate the nodes
of a network than alternate measures such as degree, closeness, betweenness, and eigenvector centralities. We
study eight real-world networks for whidBg(i) displays useful and desirable properties, such as clear ranking
of nodes and scale-free characteristics. Compared with the number of links per node, the ranking introduced by
C4(i) (for the nodes in the protein interaction network ®f cereviciagis more highly correlated with the
lethality of individual proteins removed from the proteome.
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I. INTRODUCTION Il. CENTRALITY MEASURES

Complex networks, consisting of sets of nodes or vertices Another kind of local characterization of networks is

joined together in pairs by links or edges, appear fre uentijnade num_erically by using one of several measures known
J g D y g Pp d Y “centrality”[23]. One of the most used centrality mea-

in various technological, social, and biological scenarios®S . B o S

[1-5]. These networks include the Intern@l], the World ~ SYr€S IIS the _de%ree clglntrah:]y, DD’]I, WhICP IS T f:cmda-
o . B L _mental quantity describing the topology of scale-free net-

z\ggen\é\tlsv%[ra [ii]c Ialllegiimogk:%erig’nsg?\rg;a%fk(ggbféa works[18]. DC can be interpreted as a measure of immediate

) influence, as opposed to long-term effect in the netWas.
Fféragr?gtwg,!(esi[r}_‘l];oﬁ?r? Ivr\]'f:abrg[;gn r?]g\?v%(?:%;;]let_\l/_vr?erks For instance, if a certain proportion of nodes in the network
' P P L ' Y are infected, those nodes having a direct connection with
have been shown to share global statistical features, such

the “small world” and the “scale-free” effects, as well as the em will also be infected. However, although a node in a
. N . NN network may be linked to only one node, the risk of infection
clustering” property. The first feature is simply the fact that

the average distance between nodes in the network is shotﬂ the first node remains high if the latter is connected to

and usually scales logarithmically with the total number of 1y others. :
: o « There are several other centrality measures that have been
nodes[18]. The second is a characteristic of several “real-

world” networks in which there are manv nodes with low introduced and studied for real world networks, in particular
many for social networks. They account for the different node char-
degree and only a small number with high degfée so-

8 y . acteristics that permit them to be ranked in order of impor-
c_alled hubs [19])._The hode degree is simply the number of tance in the network. Betweenness centrdBZ) character-
ties a node has with other nodes. In scale-free networks, the

et : iIZes how influential a node is in communicating between
node degree follows a power-law distribution. Finally, clus-

tering is a property of two linked nodes that are each Iinkec{?mes that a shortest path between nodeand j travels

to a third nodd7]. In consequence, these three nodes form ?hrough a node whose centrality is being measured. The

triangle and the clustering is frequently measured by count: . ;
ing the number of triangles in the netwdi&o]. farness of a vertex is the sum of the lengths of the geodesics

It has been observed that not onlv trianales but also Otheto every other vertex. The reciprocal of farness is closeness
subgraphs are significant in real n}(;tworlgs We say that %entrality (CO). The normalized closeness centrality of a
graphG’=(V',E') is a subgraph 06=(V,E) if V' CV and ertex is the reciprocal of farness divided by the minimum

, W . : ossible farness expressed as a percenagé|. This mea-
E'CE. The.term network motifs” designates thoge patternsgure is only applicable to connected networks, since the dis-
that occur in the network far more often than in random

works with th q Network tance between unconnected nodes is undefined. Neither BC
?fe \:cvor (Sj\'NIt he slam_e Iegrde(;,;_s?qu_e[nllfd.t € vl\(/or mo- IInor CC can be related to the network subgraphs in a way that
IIS found In technological and biological NEIWOrks are sma permits them to be considered as measures of hode subgraph
subgraphs that capture specific patterns of interconnecti

o0 :
h entrality.
characterizing the networks at the local le{/21,22. A centrality measure that is not restricted to shortest paths

is the eigenvector centralitfeC) [25], which is defined as
the principal or dominant eigenvector of the adjacency ma-
* Author to whom correspondence should be addressed. Electronitix A representing the connected subgraph or component of
address: estrada66@yahoo.com the network. It simulates a mechanism in which each node

ode paird24]. In other words, BC measures the number of

1539-3755/2005/15)/0561039)/$23.00 056103-1 ©2005 The American Physical Society



E. ESTRADA AND J. A. RODRIGUEZ-VELAZQUEZ PHYSICAL REVIEW E1, 056103(2005

affects all of its neighbors simultaneou$B6]. EC cannot be (@

1
(1,0)

considered as a measure of centrality whereby nodes are
ranked according to their participation in different network
subgraphs. For instance, in a graph with all nodes having the
same degreda regular graph all the components of the
main eigenvalue are identic7], even if they participate in
different subgraphs. EC is better interpreted as a sort of ex-
tended degree centrality which is proportional to the sum of
the centralities of the node’ neighbors. Consequently, a node
has high value of EC either if it is connected to many other
nodes or if it is connected to others that themselves have
high EC[28].

In Fig. 1, we illustrate two regular graphs, with eight and
nine nodes, and degrees equal to 3 and 6, respectively. In
graph(a), nodes{1,2,8 are the only ones forming part of a
triangle. Vertices{4,6} form part of three squares, vertices
{3,5,7 form part of only two and the rest do not form part of
any. The analysis can be obviously extended to larger sub-
graphs. However, it is evident that there are three groups of
distinguishable vertices in the grapd,2,8, {4,6}, and
{3,5,%. These are distinguishable according to their partici-
pation in the different subgraphs, although they cannot be
distinguished by EC. In graptb), vertices{1,3,5,6,8 take
part in 44 of the 100 squares present in the graph, while
vertices{2,4,7,9 take part in 45all vertices take part in the
same number of smaller subgraphs; e.g., edges, triangles,
connected triples However, these groups of vertices cannot
be distinguished by any of the centrality measui2€, CC,

BC, and EG.

In this work, we propose a method for characterizing
nodes in a network according to the number of closed walks
starting and ending at the node. Closed walks are appropri-
ately weighted such that their influence on the centrality de-
creases as the order of the walk increases. Each closed walk
is associated with a connected subgraph, which means that
this measure counts the times that a node takes part in the
different connected subgraphs of the network, with smaller
subgraphs having higher importance. Consequently, we will
call this measure the “subgraph centralits) for nodes in
a network.

IIl. SUBGRAPH CENTRALITY MEASURE FIG. 1. Examples of regular graphs with _nodes distinguished by
subgraph centrality but not by other centrality measures. All nodes

Let G be a simple graph of ordéd. The graph spectrum in graph(a) have identical DC, CC, and EC but are distinguished by
is formed by the eigenvalues of the adjacency matrix of theBC andCg(i). The numbers of triangles and squares are given as an
graph. Graph spectral density is the density of the eigenvalerdered pair in parentheses. In grafh, all nodes have identical
ues of its adjacency matrix, which can be directly related td>C, CC, BC, and EC but are differentiated By(i).
the topological features of the graph through the spectral . .
moments[29,30]. For instance, the number of closed walks comment that even closed walks, i.e., those going back and

f lenathk starti d endi texin th work i forth through an even number of edges, can be trivial. A
orlengthk starting and ending on vertexn th€ NEWOrK IS - i) closed walk is that describing a subgraph that does not
given by the local spectral momenjis(i), which are simply

; : , contain any cycle, i.e., acyclic subgraphs. In Table | we il-
defined as theath diagonal entry of thekth power of the |ysirate the closed walks of length fotwo trivial and one

adjacency matrixA, nontrivial) and the subgraphs described by them.
i) = (AK), (1) We define the subgraph _centrality of the_ verfeas the
“sum” of closed walks of different lengths in the network
These closed walks are directly related to the subgraphstarting and ending at vertex As this sum includes both
of the network. For instance, a closed walk of order thredrivial and nontrivial closed walks we are considering all
represents a triangle, closed walks of order four represensubgraphs, i.e., acyclic and cyclic, respectively. The contri-
among others, subgraphs of four nodes. It is worth noting tdoution of these closed walks decreases as the length of the
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TABLE I. lllustration of the relationship between closed walks ~ Theorem: Let G=(V,E) be a simple graph of order N
(trivial and nontrivia) of length four and the subgraphs associated| et v, v,, ..., vy be an orthonormal basis ofN\Rcomposed
to them. by eigenvectors ofA associated to the eigenvalues
Ny Aoy AN Letv} denote theth component of;. For all
i eV, the subgraph centrality may be expressed as follows

P N
Trivial % g Cqli) = E (v})ZeAj_ (4)
=1

Proof. The orthogonal projection of the unit vectgr(the
T2 /=5t = ' ith vector of the canonical base Bf) onv; is

Type Closed Walk Subgraph

Trivial
m SS <ei!v'> i
pj(e|)=m12—vj=<a,vj>vj=v}v,—- (5)
J
Hence, the number of closed walks starting at vertean
be expressed in terms of the spectral properties of the graph
as follows:
N N
ivial .
Homrvia ) = (AY; = (Ake,e) = { A pi(e), 2 pi(e)
j=1 j=1
N
¢ => )\}((v})z. (6)
j=1
Using expressioli2), we obtain
" © [N Sk i\2
. Aj(v)
Cs(')zz E_l_l_ . (7
k=0 \ j=1 k!

walks increases. That is, shorter closed walks have more in- Eiy reordering the terms of seri¢g), we obtain the abso-
fluence on the centrality of the vertex than longer closedUtely convergent series

walks. This rule is based on the observation that motifs in N Z )k N
real-world networks are small subgraphs. The extreme case > [vj(i)]zE —'L => {[vj(i)]ze”i}, (8)
is that of closed walks of length two only, giving a weight of =1 ko K! j=1

zero to longer walks. This case corresponds to the verte hich, obviously.
degree centrality. On the other hand, the use of the sum 9 Ilow,s ’

closed Wa_lks for defining subgraph centrglity Presupposes a 1 pos peen stated by previous authors that among all
mathematical problem_ as fche Ser@&m“k('):@ diverges. _graphs withN nodes, the maximal centrality should be at-
Consequently, we avoid this problem by scaling the contrii;;1aq by the hub of a std81]. A star with N nodes, de-
bution of closed walks to the centrality of the vertex by di- signed asS,, is a tree with one node having degitée 1 and
viding them by the factorial of the order of the spectral Mo-q gthers having degree 1. However, in terms of the number
ment. That is, thesubgraph centralityof vertexi in the ot {imes a vertex takes part in network subgraphs, the per-
network is given by spective is different. For instance, a vertex in the complete
w0 . graphKy takes part in a higher number of subgraphs than the
Cli) = D ,U«k_(') ) hub of the sta§, (for N=3). The complete graplKy, is the
o K graph ofN nodes in which each pair of nodes is connected
by an edgeKy can be decomposed into one subgraph iso-
. Let \ be the main eigenvalue ﬁ For any non'negative morphic tOS\] and (N_l)(N_Z)/z edQES, which means that
integerk and anyi e {1,...,n}, (i) <\ series(2), whose g subgraphs contained in the sy are a subclass of the

also converges fog(i). Thus, the result

terms are non-negative, converges subgraphs contained in the complete gr&h Take for in-
" . stance the simple example &% and S;. Any node of Ky
S i) =S >\_k —e 3) takes part in six connected triples and two triangles, which
v - = ki T are the only two 3-node connected subgraphs that exist.

However, the central node & takes part in six connected
Thus, the subgraph centrality of any vertels bounded triples but each of the other nodes take part in only two and
above byCg(i) <€". The following result shows that the sub- none of these nodes take part in any triangle, showing that
graph centrality can be obtained mathematically from thenodes in the complete graph take part in a higher number of
spectrum of the adjacency matrix of the network. subgraphs than nodes in the star. In other words, any vertex
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of Ky takes part in the same number (@kyclic subgraphs objective is to show that different groups of nodascording
in which the hub of the star participates plus in many otherto their participation in subgraphsare differentiated by
acyclic and cyclic subgraphs. In general, of all connectedC4i), which is clearly observed for the examples given be-
graphs withN nodes, the maximal subgraph centrality is at-low.
tained by the vertices of the complete graph. We have calculatedCg(i) for 210 regular graphs. The
Proposition Let G be a simple and connected graph number of vertices in the graphs ranged from 6 to 10, and the
of order N>1. Then for every vertex, iC4(i) < (L/N}{eN?  degrees of the vertices ranged from 3 to 7. In all these cases,
+[(N-1)/e]}. The equality holds if and only if G is the com- we have found that for graphs whose nodes all have identical
plete graph K. C4(i), all nodes also have identical values of DC, BC, CC,
Proof. Since G is nontrivial, letx be an edge of>. Let and EC. However, we have found several examples in which
G-x be the graph obtained by removirgrom G. Thenthe Cg(i) differentiates nodes even when the other centrality
number of closed walks of lengthin G-x is equal to the measures are identical. In other words, we have empirically
number of closed walks of lengthin G minus the number observed that of all centrality measures tes@gi) had the
of closed walks of lengtk in G containingx. Consequently, greatest discriminative power. These characteristics are inde-
foralli, Cg(i) in G-xis lower than or equal t€4(i) i G.In  pendent of the size of the graph analyzed and they are
closing, the maximunC4(i) is attained if and only iG is the  straightforwardly generalized for larger regular networks.
complete grapty. However, we have not been able to prove this result math-
We now computeCgi) in Ky. The eigenvalues of ematically for the general case and we propose it in the form
Ky are N-1 and -1 (with multiplicity N-1). Let v;  of a conjecture.
=(1/yN,...,1/\N), vs, ..., vy be an orthonormal basis of Conjecture Let G be a graph having identical subgraph
RN composed of eigenvectors &, wherev, is the eigen- centrality for all nodes. Then the degree, closeness, eigen-
vector associated witN—1. Thus, by spectral decomposition vector, and betweenness centralities are also identical for all
of unit vector &=(1/\N)v;+=L,vjv;, we obtain 13e[?>  nodes
=(1/N)+=L,(v)) Therefore, we deduce
i) _ (A'e.e) _ 1((!\!— 1~ (- 1~

+(N-1)—=
k! k! A TN

) V. APPLICATIONS TO REAL-WORLD NETWORKS
-9

We explored the characteristics of our network subgraph
centrality in several kinds of real-world networks, including

Hence,CS(i)=(1/N){eN‘1+[(N—1)/e]}. (i) and (ii) two protein-protein interaction networK®INs),

one of the yeasBaccharomyces cerevisi@@IN-1) compiled
by Bu et al.[32] on data obtained by von Merirgt al.[33]

IV. APPLICATIONS TO ARTIFICIAL NETWORKS by assessing a total of 80 000 interactions among 5400 pro-
teins assigning each interaction a confidence valueetBal.

In this section, we present several tests of our centralit3[32] focused on 11 855 interactions between 2617 proteins
measure in “artificial” regular graphs, and we compare itwijth high and medium confidence in order to reduce the
with other centrality measures. We selected regular graphs asfluence of false positives. The PIN of the bacterittli-

a challenging set of graphs because their nodes have idenfiphacter pylori(PIN-2) obtained from the Database of Inter-
cal DC and EC. Grapte) in Fig. 1 also has identical CC for acting Proteing34]; (iii) and (iv) two vocabulary networks
all nodes (normalized CC=63.636 However, nodes are in which nodes represent words taken from a dictionary. A
grouped into the following three different groups accordinggirected link from a word to another exists if the first word is
to BC: {1,2,§ BC=9.529,{3,57% BC=11.111, and{4,6}  ysed in the definition of the second one. One of these net-
BC=7.143. The same clustering is obtainedQyi) but fol-  \works is built using the Roget's Thesaurus of Englito-
lows a different order{1,2,8 Cqi)=3.902,{3,5,%, Cs(i)  ge [35], and the other is built using the Online Dictionary
=3.638, and{4,6} C4(i)=3.705. This order is expected in of Library and Information Scienc@ODLIS) [36]; (v) a sci-
accordance with the number of times each node takes part intific collaboration network in the field of computational
the small subgraphs, e.g., triangles and squares, as given gerometry compiled from the Computational Geometry Data-
Fig. 1. base, version of February 20027] where nodes represent

Graph (b) in Fig. 1 represents a more challenging ex-scientists, and two nodes are connected if the corresponding
ample, as it has identical DC, CC, EC, and BC for all nodesauthors wrote a paper togethdvi) a citation network of
of the graph, and every node participates in the same numbg@mapers published in the Proceedings of Graph Drawing in the
of triangles. HoweverCq(i) is able to differentiate nodes period 1994-200038] where nodes are papers and two
{1,3,5,6,8 (C4(i)=45.651 from nodes {2,4,7,9 Cqi) nodes are connected if one paper cites another) and
=45.696 following the trend marked by the number of (viii) the Internet at the autonomous systgsS) level as of
squares in which every node patrticipates; i.e., 44 for nodes iBeptember 1997 and of April 1998 analyzed by Falouetos
the first group and 45 for nodes in the second. Despite thigl. [6]. Although some of these relationships are inherently
difference is of only one, it clearly indicates that both groupsdirected, we have ignored direction and consider networks to
of nodes are different with respect to their participation in thebe undirected for the current analysis. On the other hand, in
subgraphs. The difference in the number of other subgraphsrder to make appropriate comparisons betw€gfi) and
(not calculatedl could be greater for both graphs, but our the other centrality measures, we studied only the main com-
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TABLE Il. Summary of results of eight real-world complex netwoPks.

Network Nodes Links (DC) (BC) (CC) (EC) C (Co

PIN-1 2224 6608 5.94 3752.7 23.3 0.0078 0.200 87269.5
PIN-2 710 1396 3.93 1117.5 24.5 0.0219 0.025 64.7
Roget 994 3640 7.32 1526.9 24.9 0.0209 0.162 239.4
ODLIS 2898 16376 11.30 3142.9 32.1 0.0107 0.351 51815
Geom 3621 9461 5.22 7811.2 19.5 0.0047 0.679 x10°

GD 249 635 5.10 390.6 24.8 0.0378 0.287 64.3
Int-97 3015 5156 3.42 4161.6 27.3 0.0082 0.348 X0
Int-98 3522 6324 3.59 4870.8 27.3 0.0076 0.340 X001

R2 0.748 0.001 0.543 0.023 0.012

4DC, degree centrality; CC, normalized closeness centrality; BC, betweenness centrality; EC, eigenvector cggtsalihgraph centrality;
C, Watts-Strogatz clustering coefficigr#], (- -y symbol is used for average values for all nodes of the netvRirks the square correlation
coefficient of the linear regression between the corresponding centrality measui@sand

ponent of these networks owing to the fact that some of thevhole network, C. We also give the squared correlation co-

centrality measures cannot be defined for nonconnecteefficients, R?, for the linear regression between the corre-

graphs. Datasets were collected from the European Projesponding centralization measure ai@k). As we can see in

COSIN (http://www.cosin.org/ and from Pajek program Table Il (SC) is not linearly related to any of the other cen-

datasetghttp://vlado.fmf.uni-Ij.si/pub/networks/data/ tralization measure€R?<0.5). The only significant relation

is obtained betweetDC) and(SC), which indicates that as

an average the nodes with larger degrees in the network are

also those which participates in a higher number of sub-
It has been previously shown that strong correlations exisgraphs.

among different centrality measurgd9]. This is not surpris-

ing because these measures are defined so as to account for

the notion of centrality of the nodes in the graph. For in-  ope of the most distinctive characteristics of centrality
stance, nodes with large degrees show in general short avefreasures is their ability to rank nodes in a network accord-
age distance to the other nodes in the network, which progg 1o the topological features that they account for. It is
duces high correlations between node degrees and varioygar that DC takes into account the immediate effect that the
measures of cer_1t_rallty. _Nodes with large degrees are alsQpsest nodes produce on the corresponding vertexOgliix
expected to participate in large amounts of subgraphs, suGeasyre takes into account not only the immediate effects of

as simply connected triplets, triangles, squares, and so forth,o cjosest nodes but also the long-range effects “transmit-
Consequently, we have observed that, in general, subgrapy through the participation of a node in all subgraphs

centrality yields 'the highest rank orders for those nodes O«t—,\xisting in the network, giving more weights to shorter sub-
largest degrees in the network, despite the fact that both megzanhs pespite these differences, there were several cases in
sures disagree very significantly for the majority of otheryhich the ranking of the most central nodes in a network
nodes(graphics not shown|n the next section, we will ana-  ghqyed great resemblance in both measures. For instance, in
lyze the ranking of nodes in more detail. . the top-10 rankings produced by DC afg(i) of the words

A global characterization of the network can be carriedi, yhe Roget Thesaurus of English, there are seven words that
out by mean of the average subgraph centraliy). Ithas  qincige. Eight words in the ODLIS network, seven authors
been recommended that the use of centralization instead @{ the Computational Geometry collaboration network and
centrality is more appropriate f_or these sort of g|0b6}| Measeven nodes in Internet-1997 also coincide for both rankings.
sures[8]. An analytical expression folCg can be obtained |y the PIN-1 the number of proteins that coincide in the
using a procedure analogous to that described for proving th@p-10 rankings is only two, and in PIN-2 there are five. In
previous theorem, showing th4€g depends only on the spite of these coincidences, the exact ranking of the most
eigenvalues and size of the adjacency matrix of the networksentral nodes differs in order. While “indication” and “dete-

N N rioration” are the most connected words in Roget, “inutility”

(Co = %2 Cqi) = %E e (10) and “neglect” are the most central accordingtgi). Guibas
i=1 i=1

VI. COMPARISON TO OTHER CENTRALITY MEASURES

VIl. RANKING OF NODES

is the most connected author in the collaboration network of
. Computational Geometry with 102 coauthors and Agarwal is
In Table Il we give the values dfCy as well as the other  {he second with 98 coauthors. However, Agarwal is ranked
centralization measures, i.e., average ded®@), average as the most central author accordingsi), while Guibas is
betweennes¢BC), average closenes€C), and average EC  second. This situation is repeated several times in most of the
(EC), as well as the average clustering coefficient for thenetworks analyzed.
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Number of essential proteins
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FIG. 3. The number of essential proteins in the PINSofcer-
F -E. Woter M.A. Mosaad eviciaeaccording to the ranking of nodes produced by @) and
C4li) (blue.

While “mart” is connected to “store,” a hub connected to 20
S — other words, “sensualist” is only connected to “libertine,”
which is connected only to “impurity,” a word linked only to
two other words, “purity” and “uncleanness.”

R.A. Jinkerson

VIIl. SUBGRAPH CENTRALITY AND PROTEIN
FIG. 2. Subgraphs of the collaboration network in Computa- LETHALITY

tional Geometry for two author with the same degree centrality but ) ] )
different subgraph centrality, Chan and Abrams and all their In order to investigate the consequences of the differences

co-workers. in the ranking of nodes in real-life scenarios, we have se-
lected the lethality of proteins iB. cereviciadPIN-1). Jeong

In order to understand the main differences in the orderé&t al.[40] have shown that the likelihood that removal of a
imposed by these two centrality measures, we have selectddiotein from the yeast proteome will prove lethal correlates
an example from the collaboration network of ComputationaWith the number of interactions that the protein has; i.e., its
Geometry authors. We selected at random two authors witRode degree. We first ranked all proteins in PIN-1 according
the same degree and different subgraph centrédigée Fig. to both DC andCg(i), and then counted the cumulative num-
2): Chan and Abrams, both having DC=10, but havingber of lethal proteins in the first proteins of the ranking,
C4(i)=8.09x 10° and Cg(i)=974.47, respectively. Despite With an increasing step of 10. For instance, we counted the
both authors’ having the same number of coauthors, Chan i8umber of lethal proteins in the first 10 proteins in each
connected to five of the hubs of this collaboration network:ranking, then in the first 20, and so forth. In Fig. 3, we give
Agarwal (98), Snoeyink(91), Sharir(87), Tamassid79), and  the general trends for the first 300 proteins in both rankings
Yap (76) (DC are given in parenthesesiowever, Abrams is based on DC an@4(i). It can be seen that the ranking intro-
connected to authors having lower numbers of co-workersguced byCg(i) contains more essential proteins than that
e.g., Patrikalakis has 31 coauthors and the rest have only fivietroduced by the number of interactions that a protein has.
to 16 collaborators. This simple difference means that Chafror the first 300 proteins, for example, the number of essen-
is separated from 623 other authors by a distance of onlial proteins according t€(i) is 148, while according to DC
two; i.e., simply connected triplets, while this number is sig-it is only 135.
nificantly lower for Abrams, i.e., only 116. The risk that In order to understand these differences, we must first
Chan is “infected” with an idea circulating among the au-investigate which topological features determine the differ-
thors in this field of research is much higher than the riskences in the ranking of proteins according to each centrality
with Abrams. This difference is accounted for the subgraphmeasure. The most central proteins according to DC are
centrality. YPR110C and YILO35C, which are transcription proteins,

A similar analysis can be realized for nodes having degre®oth with 64 interactions. According 104(i), the most cen-
one in a network. According to DC, these are the less centratal protein is the transcription protein YNLO61W, which has
nodes of the network. However, we can rank themCggi)  only 48 interactions. However, YNLO61W participates in
to see whether one is more or less central. Of all the words id62 triangles, while the most connected proté¥iPR110C
the Roget Thesaurus with degree one, “mart” is ranked bynd YILO35Q participate in 52 and 120 triangles, respec-
C4(i) as the most central and “sensualist” as the least centralively. If we consider the top 10 proteins accordingQsli),
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FIG. 4. Linear-log plot of the cumulative distribution 6%(i) (left) and DC(right) in eight complex networks.

the average number of triangles in which each protein parinteraction network[21,22. According to the coupled
ticipates is 127, while this average is only 57 for the top 10duplication-divergence model of evolution after gene dupli-
proteins in the DC ranking. Our centrality measure takes inteation, both of the expressed proteins will have the same
account not only the number of triangles but also the numbeinteractiong41]. In this model, it is proposed that both du-
of simply connected triplets, the number of squares, angblicate genes are subject to degenerative mutations, losing
other subgraphs in which a node participates. These sulsome functions but jointly retaining the full set of functions
graphs, particularly triangles and squares, can play an impopresent in the ancestral gene. More recently, van Netoat.

tant role in understanding the evolution of the protein-protein42] have reproduced the scale-free and small-world charac-
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teristics of the yeast coexpression network using a similawork and observed a power-law distribution for the region of
model, based on the simple neutralist's model, which conlower degree, with a squared correlation coefficient greater
sists of coduplication of genes with their transcription factorthan 0.98. Similar behavior was found by Amaedlal. for
binding site TFBS9, deletion and duplication of individual the movie actor network, first reported as scale fitkg and
TFBSs, and gene lo$42]. Among the effects manifested by then later found to display truncated scale-free characteris-
these models on the topology of the PIN is the tendency tdics. Recently, Newman has reported that three bibliographic
generate biconnected triplets and quadruples of nodes; i.eagetworks in the fields of biology, physics, and mathematics
triangles and squares. Triangles are formed among the duplito not follow power laws, but probably display broad-scale
cating genes and any neighbor of the parent gene, anehavior[45].
squares are formed analogously between duplicating genes The vocabulary network of the Roget Thesaurus and the
and any pair of neighbors of the parent gene. These structuraitation network of Graph Drawing Proceedings are both
features characterizing the topology of the PINs are approsingle-scale networks following a connectivity distribution
priately measured by the subgraph centrality, which countsvith an exponential or Gaussian decaying tail. However,
the number of weighted subgraphs in which a node of théhey both show clear scale-free subgraph centrality distribu-
network participates, giving higher weights to smaller sub-tions. The scale-free characteristics of Bgi) distribution
graphs. We therefore conclude that our finding concerningan be explained as follow€g(i) measures the number of
the centrality—lethality relation in the yeast PIN is a consetimes a node participates in all subgraphs in the network,
quence of the fact that indispensability of a given protein ingiving more weight to smaller subgraphs. Consequently,
the PIN is more a consequence of its imbrications in certaimodes with highCg(i) participate in a high number of small
structural motifs, such as triangles and squares, than of itsubgraphs, such as connected triplets, triangles, squares, etc.
connectivity. The frequency of these nodes in the network is significantly
lower than that of nodes participating in a small number of
subgraphs or participating only in large subgraphs from
which a fat tail distribution results. These scale-free behav-
In a general classification of small-world networks, Ama-iors of theCg(i) distribution are not expected to be univer-
ral et al.[43] have presented empirical evidence for the oc-sally followed for all kinds of network. In fact, we have
currence of three structural classes. According to the cumufound exponential decay distributions f6g(i) in some net-
lative distribution of vertex degrees, they foufifiscale-free  works, such as food webs.
networks, characterized by a connectivity distribution with a
tail that decays as a power lawi) truncated scale-free net- X. CONCLUSIONS

works, characterized by a connectivity distribution that has a We h d tralit for th q f
power-law regime followed by a sharp cutoff of the tail; and € have proposed a centrality measure for th€ nodes of a

(iii ) single-scale networks, characterized by a connectivitfetwork' ba_sed on SPeCtFa' properties, V\.'h'Ch shows Interest-
distribution with a fast decaying tail. Power-law distributions ing and desirable properties. It characterizes nodes according

have also been observed for the betweenness centrality PH t_heir participat_ion in structural subgraphs in the network,
several types of network, which have been used to classi ving hlgher weights to the gmaller s_ubgraphs that can .be
scale-free networki4]. nv_o_lv_ed in network mot|f§. This ce_nt_rallty has beer_1 te_:ste_d in

In the following, we use cumulative rather than densityart'f'c'al networks, showing that it is more discriminative _
distribution of both DC andCq(i), based on the work of than degree, betweenness, closeness or eigenvector centrality

Amaral et al. [43] and other evidence for its advantages iniﬁgtgfbn?geﬁ gér?[rgﬁ?Nzgkéslnn(rnizlr_mvc;/\?vrlsdtr(c:)?]mEl(;er);erl]aettivc\nlgrvlf/ist’h
small, noisy data sets39]. All eight networks studied dis- grap Y 9

played a cumulative subgraph centrality distribution that cor—mhi.r cen;ralltyé me?sutrhes, ar;\iiv |tkg|vets§ (gsﬂnctly dlf;erenth
responded with scale-free characteristics. In Fig. 4, we illysf@NKINg of nodes. In the networks studied here, subgrap

trate the linear-log plots of the cumulative distributions of centrallty displays a power-law dlstr|but|on even in cases In
C4(i) (left) and DC (right) for the eight networks. Interest- which degree centrality does not display a scale-free distri-

ingly, the PIN of S. cereviciaedoes not display scale-free bution.

degree dI'StrIbL'Itlon but rather corrt'aspo'nds with a broad-scale ACKNOWLEDGMENT

network, in which a power-law regime is followed by a large
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