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Nonlinear Rayleigh-Taylor growth in converging geometry
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The early nonlinear phase of Rayleigh-Taylor growth is typically described in terms of the classic Layzer
model in which bubbles of light fluid rise into the heavy fluid at a constant rate determined by the bubble radius
and the gravitational acceleration. However, this model is strictly valid only for planar interfaces and hence
ignores any effects that might be introduced by the spherically converging interfaces of interest in inertial
confinement fusion and various astrophysical phenomena. Here, a generalization of the Layzer nonlinear
bubble rise rate is given for a self-similar spherically converging flow of the type studied by Kidder. A simple
formula for the bubble amplitude is found showing that, while the bubble initially rises with a constant velocity
similar to the Layzer result, during the late phase of the implosion, an acceleration of the bubble rise rate
occurs. The bubble rise rate is verified by comparison with numerical hydrodynamics simulations.
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Applications in inertial confinement fusioiCF) and a by S=0 below move with the flow. The remaining boundary
variety of astrophysical phenomena have motivated intensiveonditions are that the fluid be at rest at infinity and that
investigations of the Rayleigh-Tayl0RT) instability, the un-  there be no flow through the cylindrical walls. A consider-
stable acceleration of a heavy fluid by a light fl§jd] and  able simplification is possible for the planar problem: Since
references thereinThe early nonlinear stage of the RT in- the bubble rises posteriori with a constant velocity, it is
stability has traditionally been described in terms of theconvenient to transform the problem to a frame moving with
Layzer mode([2] in which bubbles of light fluid rise into the the bubble so that the flow near the bubble apex is static. By
heavy fluid with a constant velocity while spikes of heavy keeping only the lowest order mode in the expansion of the
fluid fall into the light fluid with constant acceleration. While velocity potential in this frame and expanding the Bernoulli
Layzer’s model simply and quite accurately describes théntegral on the bubble surface to second order in the radial
nonlinear phase of RT growth prior to turbulent mixing, it is distance from the cylindrical axis, a solubility condition of
strictly valid only for planar fluid interfaces. Given that this equation gives the bubble velocityas: Vg ro/ko. Here,
many applications involve either spherically converging ord is the inertial acceleration of the interface or an effective
diverging flows, it is relevant to consider how the nonlineargravitational acceleratior, is the bubble radius or pertur-
growth phase might be modified at a spherical interface. Exbation wavelength, ankj, is the first root of the Bessel func-
tensive numerical modeling of instability growth on spheri- 10N J1. Since this solution includes only the lowest mode of
cal interfaces has been performed, e[g], but without a the velocity potential and is carried only to second order in

theoretical foundation similar to that provided in the planartheescdr'i‘:’)t:é“;i;r?]m ;[Eee t?;(;]ivﬁ)r:h(/)fﬂt]ﬁeflsogi\lk(ar]sezireetl??hzx\lsa:ﬁs
case by the .Layzer model. Here an analytical (_:alculatlon 0ﬁlevertheless the theoretical value focompares quite fa- .
the tb;lzxrb!e ;lssl'rtatecls presented 'for rt_}he spthenc?:lly Conve%rably with numerical simulations and experimental mea-
gen INstabiiity. ©-onvergence 15 shown 1o enhance NoNg, .ements. The effects of compressibility, bubble merging,

linear RT growth compared to the planar case. Beyond redensity gradientsA < 1, Kelvin-Helmholtz roll up, etc., are
vealing this important physical effect and the scaling ’ ' '

. 7 . . “not included in the model.
properties introduced by sphericity, uncovering the spherical To adapt Layzer's model to spherical interfaces, the first

analogue of thg Layzer model also provides a rigorous anﬂwodification is to replace the cylindrical coordinates and
relevant potential test problem for hydrodynamics SlmuIa‘boundary conditions by spherical coordinates and conical

tions of spherical flows. boundary conditions to capture the lowest order effect of

. TPg ;a;t/)zb?r model tre?fts :_he Cor;_firéir)g ?ftf)eCt %f neighbg_r'spherical convergence. The problem is immediately compli-
Ing ubbles as an effective cylindrical boundary conai-.;q by this modification in that the bubble no longer rises
tion enclosing a rotationally symmetric central bubble. The

) . . .~ ~with a constant velocity and transforming to a frame where
corresponding spikes of heavy fluid run down the cylmdncalthe flow near the bubble apex is static is no longer trivial.
walls. Considering an incompressible and irrotational flow.

the fluid velocit be d ibed as th dient of 'The calculation must then be carried through for a time-
€ Tiuid velocity may be described as the gra,|en ora IOOEjependent flow and a time-evolving interface. Indeed, calcu-
tential function¢ given by a solution of Laplace’s equation

For a light fluid of infinitesimal densityAtwood number of ' lating the rate of rise of a bubble enclosed by a narrow cone
A=1), the boundary conditions on the bubble surface ar opening downward in a uniform gravitational field shows

: ; §hat the bubble nonlinearly decelerates as it rises. This result
that the pressure be uniform and that the interfatenoted comports with the Layzer model in that, as the bubble rises,

the effective radius enclosing the bubble shrinks and the
bubble must then rise at an ever slower velocity according to
*Electronic address: clark90@lInl.gov the Layzer formula.
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More importantly, however, a uniform gravitation field is fixed (unprimed frame, the velocity potential is separated
no longer precisely equivalent to a uniform acceleration on anto a compressible component determined by the back-
spherical interface. A uniform gravitational field in the ground spherically converging flow and an incompressible
spherical case is the equivalent of setting the entire sphemgonlinear perturbation. In the primed frame, however, the
into accelerated motion which is not relevant to the instabili-flow is by construction incompressible. Such a separation
ties of the imploding interface. In place of a uniform gravity, was initially discussed by Book and Bernstdi@] in an
one consistent representation of an accelerated spherical ianalysis of the linear growth of perturbations on a self-
terface is to consider the growth of perturbations in a spherisimilar implosion.
cal coordinate system accelerating smoothly toward the ori- Characterizing the bubble in the moving frartteence-
gin, i.e., transform to &primed frame moving with respect forth dropping the primesby S=R(6,t)-r, with R(0,t)
to the fixed (unprimed frame according tdr’=r/h(t), '  =a(t)+b(t)#*+O(#*) and substituting the chosefiinto the
=6, t'=t}. Hereh(t) is the scale factor describing the radial last of Egs.(1) yields
contraction of the primed coordinates with respect to the
unprimed coordinates. The character of this transformationis g=g - V¢ -VS=a+vAa 1+ 92{b+ (v -1)Aa" %
readily identified with that of a self-similar spherically con-

verging flow, and the notation is motivated in connection A+ 1)
with the flow studied by Kiddef4]. Under this transforma- +u(v+ DA - ———Aa" L + O(F).
tion, the velocity potential, Bernoulli's equation, and the 4
equation of motion for the bubble surfaBbecome Requiring a solution at the first two orders éhdetermines
N2 the perturbation amplitud&(t) and the bubble curvatuit)
¢ =h2¢p+ %H +d(t), in terms of the bubble amplitudat)
1. v+l
N _ ) A=-—-a"a and b=- a.
cne g VP v P b @?h v el
)= ¢v 2 y=1p' * hqS 2 hlg Consistent with the self-similarity of the background flow,
the bubble shape at second order is found to have a separable
, = - dependence in angle and time,
0=5 -V'¢ -V'S. (1)
vvtl
Here subscripts denote partial differentiation, dots denote to- R(6,1) = a(t){l T 192} +0(6). 3

tal derivatives with respect to time, ade(t’) and F(t’) are

arbitrary functions of time. The inertial terms appearing in  Since the RT perturbation of the velocity potential is in-

the Bernoulli integral play the role of gravitational potentials compressible, the fluid density evolves only due to the radi-

in the interface frame but correctly incorporate the sphericaélly compressing component of the flow

nature of the flow. Consistent with the spherical convergence

of the flow, compressibility of the fluid is allowed in this p:epr dtV2¢ = po(fo)h3(t),

model with y the usual ratio of specific heats. This is a dis-

tinction from the incompressible Layzer model. Forbiddingwherepo(ﬂ)) is the Lagrangian value of the fluid density, i.e.,

compressibility in converging flowas in the linear model density of the fluid particle at its initial location, and

of P'?SS‘?‘[E’D necessitates unphysical singularities of thethe integral is computed along the Lagrangian trr;ljectory

velocity field atr=0. , . of the fluid particle. For an isentropic implosion, also
To Qevglop an analog of Lay_zers analysis, we solve thes§:po(Fo)[P/Po(Fo)]y- Substituting the above results for

e_quatlons na seconq-order nelghborhood of 'the bubple ap A((t),b(t) ,p, andp into the Bernoulli integral on the interface

(i.e., toO(#?) in spherical polar coordinates aligned with the S=0 (again in the moving framjeand expanding t@(¢?)

bubblg and include only the lowest order mode in the €% leads at the lowest orders ihto two coupled equations for
pansion of the velocity potential in the interface frame. Thethe implosion scale factd(t) and bubblepam Ii?uda(t)
velocity potential ansatz in the primed frame in spherical P P

coordinates is »(Ro\? , h
[ 1-3y = 5= _ 152 o
& :A(t,)(r’)VPV(COSGI) 2( t, ) h aa+ (1 2)8 + 2haa
- h
I.2 h ~ 2_ 2
= ¢== 5+ AP, (coso). 2 topd for o),
Here A(t) is the time-dependent nonlinear perturbation am- 1-21 h v h
plitude to be determined andis the spherical mode number O=aa+— a’+ 2 aa~—— 1562 for  O(6). (4)

determined by the boundary condition that there be no flow
through the cone walls. The functioh(t’) can be incorpo- The constant&, andt, set the length and time scales of the
rated intoF(t") without loss of generality. Note that in the implosion.
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FIG. 2. Comparison of normalized bubble heights in the frame
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WKB solution[Eq. (5)], the result of numerically integrating Egs.
(4), and the Layzer prediction. Results witt¥ 20 are also shown.

FIG. 1. (Color) Snapshots of bubble growth from tyDRA . . . . .
simulation forr=80. Red denotes the dense fluid and blue the |0W_S|on studied by Kidder, the scale factor of the implositt)

density pusher. To illustrate the bubble evolution, each snapshot §&NNOt be arbitrarily specified to generate any desired accel-
centered vertically about the location of the bubble apex at thération history but(due to the self-similar symmetry as-
corresponding time. Near the axis of the cone, the computed bubb@umed for the flowmust be self-consistently determined by
curvature agrees well with the theoretical predictifiiq. (3)]  the boundary conditions and the perturbation histdty via
shown as the thick dark line. Egs.(4). Though this allows only a specific acceleration his-
tory h(t) for the spherical interfac@pproaching that of Kid-

In principle, theO(#?) equation should be solved fart) der in t_he limit Ofv>.1), this.copstraint appears hardly more
as a functional ofh(t), and the result substituted into the restrictive fqr potentlal_ap.ph.cauons _than the assumption of a
O(6°) equation to find a single self-consistent solution forconstant, uniform gravity is in applying the Layzer model for

h(t). Such an exact solution to Eggl) could not be found. planar interfaces.

However, theO(#?) equation from Eqs(4) may in general As should be expected, in the limit— (i.e., for narrow
! %) €q g5 ying . cones and for early times$/t,<1 (before significant conver-
be put in Schrddinger form and, for a given slowly evolving

. ) ence has occurrgdthe bubble height in the moving frame
C\(/t&,BtereEtigzrommate bubble amplitude calculated by thegnd the bubble curvature reduce to those given by the Layzer

model

t
am~hmﬂww%ZMdeN—W%, a0 1t 1Ry v
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}N'th Al i|(§ Vb(3_2g)/_2(1_dv)__1/(§@_ ?g)' This _expreszlon These results can be connected to the Layzer formulae by
or a(t) could be substituted into th@(6”) equation, and an using the asymptotic fornP,(cos6) ~ Jo((2u+1)sin(6/2)),

iterative approximation foh(t) developed. A more tractable y—sc0 from which follows v~ ky/ 8 for B=r,/R, the half-

approach is to note that, in the limit of large the O(&) angle of the cone ant its effective radius. In these units,
equation reduces to Kidder’s equation for the scale factor o{he initial acceleration of the interface HESO)—ROItz
= 2,

If-similar implosi¢4]. ializi h . .
an unperturbed self-similar implosi¢d. Specializing to the Interestingly, the formula found for the bubble amplitude

case of y>1, it is then acceptable to approximate . ) . ) :
~hygger. FOr y=5/3, the Kidder scale factor ish(t) is functlonqlly similar to the result earller fognd by Kidder
=/1-(t/t-)? with t, the time of total collapse to the origin of 7] for the linear growth of perturbations during a homoge-
the unperturbed flow. Hence neous implosion. However, these resifitse former fpr the _
distance of the bubble apex from the center of the implosion
) 1+t/t, -1/2\v and the latter for the linear regime amplitude of a single
1-tL y Ve (5 mode perturbation on the outside of the imploding sphere
¢ differ crucially in the exponent’s dependence on the mode
Here the location of the bubble apex has been initialized tmumber: during the linear regime, the exponent scales as the
the outer radius of the spheR for the unperturbed prob- square root of the perturbation mode number while as the
lem. Note that, as in the unperturbed one-dimensional imploreciprocal of the square root of the mode number during the

a(t) . Rohll( =3/
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nonlinear regime. Both cases are analogous to the moddies for the description of spikes in the Layzer model.
number scalings for a planar interface. The method of calcu- Figure 2 illustrates the normalized bubble height as mea-
lating the bubble amplitude via the WKB technique is alsosured from Fig. 1 in comparison with the WKB solutiffaq.
superficially similar to that followed by Hattoeit al.[8], but  (5)], the result of numerically integrating Eqggt), and the
again this latter calculation applies only to the linear regimeLayzer prediction. The result of a simulation with= 20 is
and the scaling with mode number is reciprocated. also shown. Following initially linear growth with time, the
Equation (5) was verified by comparing with two- HYDRA, numerical, and WKB results all demonstrate sub-
dimensional arbitrary Lagrangian-Euleri#ALE) hydrody-  stantially faster bubble growth than predicted by the Layzer
namics simulations run with thevbrA code[3]. For a given model. Good agreement between the simulation results and
mode numbep, a simulation was initialized with slip bound- the theoretical expectations is seen through most of the im-
ary conditions on the cone walls and a Kidder-type pressurglosion. With increasingy, closer agreement between the
source applied through a low density pusher matgagk  WKB and numerical solutions is seen for a&ll.. Also as
proximating.4=1) to the fluid interface. The radial density predicted by Eq(5), greater acceleration of the bubble ve-
profile within the dense fluid was initialized as prescribed bylocity over the Layzer prediction was observed for lower
Kidder [4], and the interface was nonlinearly perturbed invalues ofv.
accordance with the initial second order bubble shape, Eg. In summary, a nonlinear RT bubble model has been pre-
(3). Considerable ALE relaxation of the mesh was requiredsented for a spherically converging flow. Consistently de-
throughout the simulation. Care also had to be taken in iniscribing an accelerating, spherically converging interface re-
tializing the proper fluid velocities according to the velocity quired assuming a Kidder-type self-similar background flow
potential Eg.(2) (in the fluid as well as the low density within a conical boundary in place of the uniform gravity
pusher material and cylindrical boundaries assumed in the Layzer model. An
An example sequence of snapshots of bubble growth from@pproximate solution was found for the growth of the bubble
a simulation withy=80 is shown in Fig. 1. The dense fluid is height indicating an initial phase with linear growth in time
shown in red and the low-density pusher appears in blugdt the rate predicted by Layzer followed by a strong accel-
Mixing of the fluids due to the ALE relaxation of the mesh eration of the bubble growth rate late in the implosion. Good

results in the yellow-colored boundary zones. The second@dreement for the bubble growth rate and curvature at the
order bubble shapéas imposed at=0) is denoted by the apex was found by comparison with two-dimensional hydro-

dark line. Throughout the simulation, the interface curvaturedyn"’“”mcS simulations.

at the bubble apex appears to be in good agreement with the The authors acknowledge valuable discussions with M.
theoretical prediction. Similar results were found for them. Marinak. This work was performed under the auspices of
range of mode numbens=20-160. Since the theory is valid the U.S. Department of Energy by the University of Califor-
only to O(¢?) the growth of the spike along the wall of the nia, Lawrence Livermore National Laboratory under Con-
cone is not captured. A perfectly analogous discrepancy agract No. W-7405-Eng-48.
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