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We numerically investigate the critical behavior of the synchronization transition of two unidirectionally
coupled delayed chaotic systems. We map the problem to a spatially extended system to show that the
synchronization transition in delayed systems exhibits universal critical properties. We find that the synchro-
nization transition is absorbing and generically belongs to the universality class of the bounded Kardar-Parisi-
Zhang equation, as occurs in the case of extended systems. We also argue that directed percolation critical
behavior may emerge for systems with strong nonlinearities.
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Synchronization of chaotic systems has attracted muchelationship with those exhibited by other chaotic systems
interest in recent years and examples include chemical reagvith many degrees of freedom is still unknown.
tions, neuronal networks, Josephson junctions, electronic cir- Remarkably, synchronization also takes place in coupled
cuits, and semiconductor lasers, among otfisee Ref[1]  spatially extended systems with many degrees of freedom
and references therginMore recently, and from a practical and space-time chaos. In this case, the synchronization tran-
point of view,_this burst (_)f actjvity in the field is partially due sition has been shown to be asorbingnonequilibrium
to the potential applications in control and secure communiphase transition and, accordingly, its critical properties have
cations. It is expected that an increased complexity of thesracted much interest in the past few ydd®-21. Despite
attractor would make it much more difficult to extract the being scalafi.e., described by only one dynamical variable
dynamical information. In particular, delayed dynamical sys-qejayed dynamical systems are formally infinite dimensional
tems ha\(e peen suggested as the ideal candidates for SeCYlfamical systems and show many aspects of space-time
communication for several reasons. On the one hand, theyhaos, including the formation and propagation of structures,
are _h_yperchaotlc systems with an arbitrarily Iarge number F’Hefects, and spatiotemporal intermittef@2—25. An inter-
positive Lyapunov exponents, whose number increases linssiing question that naturally arises is whether the synchro-
early with the delay tim¢2,3]. On the other hand, they may pi;ation transition in(scalaj hyperchaotic systems with de-
be experimentally realized in the form of fast communicationjayed feedback could also be understood as a nonequilibrium
optical systems by using different types of delayed feedbackpase transition, as occurs (vectoria) extended dynamical
setupg4-10. _ systems with space-time chaos.
~ Synchronization of two separate delayed chaotic systems’ |, this paper, we characterize the synchronization transi-
is achieved by allowing some communication between themyon in unidirectionally coupled delayed dynamical systems
The possible schemes are diverse, including variable substis 4 nonequilibrium critical phase transition and relate it to
tution, symmetric feedback, etc. Generally, there exists @yisting universality classes. We exploit the interpretation of
critical coupling constante. that separates two different gejayed dynamical systems as spatially extended systems
phases. For low coupling valuess «, there is a disordered [22_55 1o show that the synchronization transition in de-
phase in which each system evolves independently and thgyeq systems exhibitsniversalproperties, which are inde-
time-average difference between both systems remains finitgendent of microscopic details of the individual systems be-
In contrast, a synchronized phase appears €of«., in  ing coupled. We find that the synchronization transition
which the average error tends to zero and memory of th@enerically belongs to the universality class of the bounded
initial difference is asymptotically lost. _ _ _ Kardar-Parisi-ZhangBKPZ) equation, as occurs in the case

Very recent studies have been devoted to investigate imss extended systeml6-21. We also argue that directed
portant aspects of synchronization in delayed dynamical sySsercolation(DP) critical behavior may emerge for systems
tems as, for instance, analytical approximations to estimatgith strong nonlinearities. Our results show that the critical
the synchronization threshold1], the robustness of the tran- roperties of the synchronization transition in delayed cha-
sition to parameter mismatcfi2], chaos control in lasers qic systems are identical to those in spatially extended sys-
with feedback{13], information flow between drive and re- tems "despite being the former a scalar system with no real
sponse systend4], and the effect of a time-dependent de- spatial structure.
lay [15]. However, the mechanism behind the synchroniza- * e consider two identical time-delay systems described
tion transition in delayed dynamical systems and 'tSby two coupled differential-delay equations, the dritrans-

mitter) system

. ) . u=-au+F(u,), 1
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v=—av+F(, +x(u-v), (2 (a)007 ®
_ 006 I B
whereu,=u(t—7) andv,=v(t—7) are the delayed variables, 005 Z .2 )
is the time delay, and is the coupling strength. * g-gg 2 o | S
Delayed systems like Ec(1) are used in a variety of 002 ] g = 07075 RN
applications ranging from biology to optics. We have studied  o0.01 . x=0.7025
in detail three prototypical models: the Mackey-Glass model 000 =~ =+ ros 0 1 32 3 4
K

[26], F(p)=bp/(1+p9 (initially introduced to describe the
regulation of blood cell production in patients with leuke-
mia); the lkeda differential-delay equatioi4], F(p) FIG. 1. (Color onling (a) The average synchronization error in
=bsin(p—py) (which appears in the context of optical feed- the stationary stateys, is plotted near the synchronization threshold
back on a laser beafd] and experimental setups of optical for 7=200. Each point corresponds to an average over 600 realiza-
generators of chaos in wavelend®9)); and a model with tions. (b) The spatial gverage of the synchronization gr\mﬂ), for

the piecewise linear delay expression givenFiyp)=2p if 7=2000 and three_dlff_erent_ values gf each curve b(_emg an aver-
p<1/2, andF(p)=2-2p if p>1/2. We have studied the age over 3QO reallzatl_ons is showk,=0.705 is obtained and the
synchronization critical properties by means of computercorreSIOondIng slope yields=1.14.

simulations of these three systems and found similar results.

In order to make apparent the existence of a nonequilibwe are presenting here, and simulations with time delays
rium phase transition we transform the pair of coupled devarying from ten to a few thousand time units have been
layed systems Eqg1) and (2) into two coupled spatially carried out using an integration step&tf=0.01. The region
extended systems. This can be readily done by introducingf interest here corresponds to delays 1.7 for which the
the coordinate transformation=x+67, wherexe[0,7] is ~ Mackey-Glass model is hyperchaof&].
the space variablewhile 9 N is a discrete time variable N Fig. 1(a) we present our results for the order parameter,
[22]. Note that the time delay becomes theystem sizén  1-€- the_ average synchronization error, in thg stationary state
such a way that the time dependence with the delayed varWs(¥)=lim,_.(w(x, )|, for a system of sizedelay 7
able is transformed into an interaction within the horizontal=200 as the coupling strength is varied. Inspection of Fig.
space coordinate in the space-time representation. This is al(@) indicates that the transition is continuous and occurs
powerful representation in which delayed systems can b&ughly around«=0.7, which is in agreement with earlier
treated as extended systems to identify many features @fstimations for the same model paramefers]. Dynamic
space-time chad®2-24. critical behavior is studied by calculating the indic®and 8

Complete synchronization of the two coupled delayedthat describe the critical behavior of the order parameter near
systems, Eqs(1) and(2), is achieved if the synchronization the threshold for synchronizatiom(6) ~ ¢-° for k=« and
erroru(t)—uv(t) vanishes for all timesast— . In the spatial ~ Ws(x) ~|«k—|? as the transition is approached ferK ..
picture we replace the dynamical variablg$) andv(t) by ~ Studying critical behavior demands us to obtain a good esti-
T(x, ) ando(x, ), so that the synchronization error is given mation for the critical threshold which implies the use of
by w(x,8)=T(x,6-7(x,0), and synchronization occurs large delaygsystem sizes In Fig. 1(b) we plot the subcriti-
whenw(x, 6) vanishes at alk for #— . This is equivalent to  ¢al and supercritical behavior of the average synchronization
a vanishing spatial averagiw(x, 6)|),. Note that the spatial €"TO" for a large system size=2000, as the transition is
average in the space-time representation corresponds to tﬁgproaghed fro_m.beIO\(\k:O.7(_)25 and ab_OVG(K:(_)jO?S’
average within the delay time- In contrast, one has respectively. Within our r_1umer|cal F%SQ|UIIOH we find that the
(Jw(x, 6)))x>0 in the unsynchronized state. This makes the?est power-law behaviow()~ ¢ is obtained at
average erron(6) =(|w(x, 6)|), a natural order parameter for ;c?n7e?1?§—01032+\(,)w3§h gives an estimation for the critical ex-
the transition. Critical properties of the synchronization tran- T .
sition can now be studied by analyzing the dependence of thﬁni?er-]giez;hfcglz:[]ga;tt?fzzsrﬁtlic(i:;apsoslicejod;(;grgr;r(;egt, \r:vue use
order parameter on the coupling strengthin addition, the merical data to the scaling form ’
analysis of the critical behavior for finite time delays can be

l0g,,(6)

naturally carried out by standard finite-size scaling tech- w(6) = (0l 7), (3)
nigues. The remaining part of this paper is devoted to the
study of these issues. where the scaling functiorfi(y) ~const fory<1 and f(y)

Our findings are based upon extensive numerical simula-y? for y> 1. This gives us an independent determination of
tions of the three time-delay systems introduced above. In alf and the dynamic exponentIn Fig. 2a) we show numeri-
our numerical simulations we have used the Adams<cal results for different system sizes at the critical paigt
Bashforth-Moulton predictor-corrector scheff®7] to inte- and these data are best collapsed in Fi¢h) 2with z
grate the coupled differential-delay equatidhsand(2). For ~ =1.45+0.05 ands=1.15+0.05(the latter in good agreement
the sake of brevity we focus the discussion of our numericalvith our previous estimate in Fig.).1
results on the Mackey-Glass model, but we found similar Next we report on off-critical numerical calculations of
results for the Ikeda equation and the piecewise linear syshe synchronization error. This allows us to estimate the cor-
tem. The parametes=1 andb=2 are used in all the results relation length exponent. In Fig(& we plot the order pa-
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FIG. 2. (Color onling Finite-size data ina) unscaled andb) K
scaled coordinates fare {10,20,50, 100,200, 150,500, 2QGind
k:.=0.705. The collapse is obtained f6=1.15 andz=1.45. Every FIG. 4. (Color onling The transverse Lyapunov exponent,,
curve corresponds to an average over 60 realizations. is plotted forr=2000 and various values & around the synchro-

nization threshold. Note that, changes sign nea..

rameter as the coupling strength is varied close to the syn- _ ) )
chronization threshold for a large system size2000. Near ~Nent must be negative. For dynamical systems witrooth
and below the transition the characteristic size of synchrolocal nonlinearities(such as lattices of logistic or tent-
nized regions within the disordered phase is given by thé&oupled map)s this proves to b.e a SUfflClel?t_ cond|t|on as
horizontal correlation |engt5 and is expected to diverge as well. In th|S Ca.Se, the SynChrO!ﬁlzatlon transition is fOUI’ld. to
£~ e+ when the distance to the critical point tends to zero,p€ generically in the universality class of the KPZ equation
e=|k-KJ—0. Correspondingly, the characteristic time  With a(bounding growth-limiting term, the so-called BKPZ
measuring the duration of a fluctuation of sizeliverges as universality[17-21]. Numerical estimates of the critical ex-
9~ &~ €, where y;=v,z. Off-critical data are then ex- Ponents gavedgkpz=1.17+0.05, Bgkpz=1.50+0.05, and
pected to satisfy the scaling forw( 8, €)= 6°g(6/9), so that  Zexpz=1.53+0.05 for different models studied in the recent

numerical data in Fig. (&) must collapse according to literature[18—21. On the contrary, in the presencesifong
and localized nonlinearitiegsuch as, for instance, for
W(6,€) = 07°g(0e™) (4)  Bernoulli-coupled maps the synchronized phase turns out
to be unstable even for negative valuesiof [18]. In this
for the appropriate election of the critical exponefimndy,.  case, the transition occurs only when the propagation veloc-

In Fig. 3(b) we show a data collapse for the exponests ity of finite-amplitude perturbations vanishes. The critical
=1.05+0.05, andy,=1.4+0.1, where the two branches cor- properties of the transition are then associated with the DP
respond to numerical data for coupling strengths above andniversality clasg§18,21]. The fraction of nonsynchronized
below critical. Also the index3 can be obtained from the sites corresponds to the fraction of active sites in DP. Corre-
scaling behavior Eq(4); for >3 we havew(6— x,¢) spondingly, the critical exponents are given 8y=0.159,
~ €°, wheref=1,6=1.47. Bpop=0.277,2,=1.581[18,21. The DP correlation length
The critical exponents of the synchronization transition inand time exponents are known to be=1.10 andy=1.73,
delayed systems are to be compared with those observed ifispectively{28].
extended systems. This will allow us to identify the mecha- Our numerical resultsy=1.15, =1.47,z=1.45, andy,
nisms behind the transition in both types of high-dimensionaF 1.14, strongly suggest that the synchronization transition in
dynamical systems. In the context of extended systems, théelayed chaotic systems generically belongs to the BKPZ
exponential growth rate of the errpw(x,t)| is known as the universa_llity class, as occurs in extended chaotic systems. As
transverse Lyapunov exponent and measures the stability an additional check, we have measured the transverse
of the synchronized solutiow(x,t)=0. Accordingly, stable Lyapunov exponent, for the coupled delayed systems,

synchronization implies that the transverse Lyapunov expoEds- (1) and (2), with different coupling strengths and, as
shown in Fig. 4, we found that the transition takes place

when\, becomes negative, as expected for the BKPZ uni-
versality class. Nevertheless, the nature of the transition can
be changed to DP behavior in the presence of strong local
nonlinearities akin to what occurs in extended systems. In
fact, by choosing the nonlinear functiéii{p) =2p mod 1 the
exponents drops t06=0.16+0.03 in good agreement with
DP. The different nature of the transitions in the two cases
can be seen in Fig. 5, where we show the spatiotemporal
log, (0) log, [0(x-x)"] evolution of the synchronization errdw(x, 6)| for the (a)
smooth Mackey-Glass an)) strongly nonlinear models, re-
FIG. 3. (Color online Off-critical data in(a) unscaled andb)  Spectively, just slightly above the transition.
scaled coordinates forr=2000 and various values of« In conclusion, we have studied the critical properties of
€(0.685,0.725 The collapse is obtained fot,=0.705,6=1.05,  the synchronization transition in unidirectionally coupled de-
and y=1.4. Every curve corresponds to an average over 60dayed chaotic systems. We used a standard coordinate trans-
realizations. formation to map théscalaj time-delay system to a spatially

log, [w(0)]
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FIG. 5. The synchronization error for a coupling slightly above
the synchronization threshold,= ., is plotted for =500 in the
cases of(a) smooth nonlinearities angb) strong local nonlineari-
ties. The horizontal width has been chosen slightly larger them

eliminate the systematic drift. Compare with Fig. 2 of Hé].
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conclude that the synchronization transition in delayed sys-
tems generically belongs to the BKPZ universality class in-
dependently of the specific form of the delay expression, as
long as itis a continuous function, just as occurs for synchro-
nization of space-time chaos. Finally, our numerical results
also indicate that the existence of discontinuities in the delay
nonlinear function may change this critical behavior from
BKPZ to DP, which suggests that the same mechanisms that
produce DP behavior in coupled extended systems can be
invoked in the case of delayed chaotic systems.
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