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Leading-edge vortex stability in insect wings
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An analytical study is presented to determine if the persistency of the leading-edge vortex in an insect wing
can be explained as the balance between vorticity generation at the leading edge and advection plus effects of
vorticity stretching and tilting by the flow along the wing span. It is found that a spanwise flow of the required
magnitude is produced by the simple rotation of the wing about its root at a constant angle of(attack
supination or pronation and that the regions where this equilibrium exists in stable form are well localized,
independent of the rotation velocity, almost independent of the position along the wing, and weakly dependent
on the angle of attack, for angles belewr0°. In contrast, extended regions of vorticity are expected for angles
of attack above=75°.
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I. INTRODUCTION Il. THREE-DIMENSIONAL FLOW IN ROTATING WINGS

One particularly intriguing aspect of insect flight is the L€t us consider a flat wing of chord lengB(z) that ro-
persistence of leading-edge vorticity against its tendency ttates with constant angular velocif; about a fixed axis
be swept by the flow around the insect wing. The resultingFig. 1). The rotation axis and the normal to the plate are at
leading-edge vorteXLEV) regularizes the flow over the a constantangle, so that the wing attacks the fluid with this
wing at high angles of attack, and also increases the achie@ngle as it rotates, with the fluid at rest far away. We take
able lift [1]. Different mechanisms have been proposed tocomoving Cartesian coordinatés,y,z) with x along the
explain the persistence of the LEV. On the one side, thaving chord and withy normal to it, such thak=-D(z)/2
effective angle of attack is greatly reduced, compared to th€0rresponds to the leading edge, awD(2)/2 to the trailing
geometrical one, by the downflow generated by tip vorticesedge. Thez axis (perpendicular toQ;) has origin at the
and wake, thus reducing the tendency towards instalpflity ~ rotation axis and runs along the middle of the wing span. In
On the other side, the flow along the wing span takes energthis rotating system the flow has a background constant vor-
from the vortex core to compensate for that generated at thgcity _zﬁT plus regions of highly concentrated vorticity,
leading edge, thus producing an almost stationary L&E¥]. ~ modeled as appropriate singularities of a potential flow, so
Both mechanisms, most certainly, play a part, and in thighat we write the velocity as the sum of a uniformly rotating
highly nonlinear, genuine three-dimensional problem theiflow plus a potential pait9]
study is very difficult, including the interpretation of detailed
numerical simulations in which the LEV stability is observed -~
[5,6]. u=-Q:Xx+ V. (1)

In the present work we explore the possibility of stabili-  The incompressibility conditiorV-u=0 implies that
zation by action of the spanwise flow alone. Several approxisatisfies the Laplace equati®t.$=0. Besides, as far away
mations are requw.ed to tackle this prob!em an'alytlcall)_/. F'rStfrom the plate the flow isjz—ﬁTXx, & has to grow more
we use the experlmentél] and theoretical 7] .lnform.atlon slowly than linearly with the distance from the wing &$
that the flow over the wing has strong two-dimensional fea-_, . “on, the other hand, the boundary condition at the wing

tures, with highly concer_1trat_ed regi_o_ns of vorticity,_which is zero normal velocityu,=0) so that, from Eq(1), we can
are then modeled as point singularities of a potential flow. ite (Q —|ﬁ )
T= T

Second, taking advantage of the relatively high Reynoldé’vr
numbers involved in insect flighf8], inviscid potential
theory is used to determine the flow around the wing, and &
Kutta-Joukowski conditions are used to evaluate circulations

and emission of vorticity from the leading edge. These are y

the main approximations, followed by other approximations /
of more technical nature that will be indicated when needed.

The main conclusion is that, for a given wing, a localized p
region of stable equilibrium between generation and effect of /u
the spanwise flow exists that is independent of the rotation

velocity, and practically independent of spanwise position, it
only depends, and rather weakly, on the angle of attack for FIG. 1. Sketch showing the rotating wing, coordinate system,
not too large angletbelow =75°). and conventions used.
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) — . . a’
. = O X X)wing =Qqzsina. waud ) = wo() = 2Up| {+ — |, (6)
Hy wing g
These boundary conditions suggest to seek a potential &fo thatu, can be written as
the form
u, = = Qr R wa,(£(2))]. (7)
¢ == QrZ po(x,y) —xcosa-ysina], (2

This expression is not yet final because the potewijds
where ¢(X,y) is the two-dimensional potential correspond- not completely defined as an arbitrary constant can be added
ing to the fluid with velocity componentsly,=cosa, Uy,  to it. One can determine this additive constant using the con-
=sina, away from the wing. This is the usual approximation dition that the net flow across argrconst plane has to be

of blade element theory{10] that models the two- finite, as the finite wing cannot force the flow of an infinite
dimensional flow in each sectiasconst of the plate, as ifit mass of fluid. At large values of and/ory the expression of
moved with a translational velocityJ,=Q+zcosa, U, U, is given by
=Q+zsina. This approach neglects curvature effects in each

0 0
z=const section of the wing, which is a very good approxi- u, — Qq(x cosa +y sina) - QTF + FU(P’
mation except very close to the rotation axis. It is then im- 2m

mediate to see that the potenti@) satisfies the Laplace

equation and the correct boundary conditions. integral of the terms cosa andy sin a cancel by symmetry,

The two-dimensional flow potentiakbo(x,y) can be o that for the integral ofi, across the=const plane to be
readily obtained using complex variable techniques. Thefinite, it is readily seen that a constant of val@ (I

complex potential for the flow considered is given in terms+r8)/2 must be added to the expressionugfgiven by Eq.

whereg is the argument of, measured from the axis. The

of the transformed variablé as[7] @)
. a2 I+ 1“3 3 Finally, note that because of tlzedependence of transla-
wo(§) =Upd + Uo? o In ¢+ o In({-¢,) tional velocity of each section of the wing, zdependent
circulation results. This, in turn, makes the veloaitydis-
o | (g a2> @ continuous, with discontinuity
- - n — x|
27 Z Au,= - Q(°+T19), (8)

where Up=cosa+i sine, a=D(2)/4, I'° is the circulation  across a vorticity sheet shed at the trailing efiti. To fix
around the plate, anl, and{, the circulation and position, - the discontinuity surface at the trailing edge we must adopt
respectively, of the LEV. The relation between the complexthe convention that the branch of the functiortlim Eq. (3)
variablesZ=x+iy and{ is given by the Joukowski function corresponds to the line Ii]=0, Rd¢]>0. With all this we
a2 finally have
Z:§+?_ (4) F0+FO
u=- QT Rdwauk(év(z))] + QT 2 - ) (9)

As shown in[7] the circulationd™ andl“g are determined by
Kutta-Joukowski conditiondwy/dz=0 at both edgeg=+a. together with expression8) and (6).
The upper i_ndices 0 int_jicate_that these cir.culations are those The resulting flow structure corresponds to a highly com-
corresponding t&Jo, a dimensionless magnitude, so that bothpact vortex that models the observed region of concentrated
circulations hoave units of length. Actual circulations haVevorticity. This vorticity originates in the leading edge and is
values QzI'; and Q2. S fed to the vortex through a vortex sheet connecting the vor-
Note thatéo(x,y) picks up an implicit dependence @ tex and the edge. The vorticity content of this sheet is ex-
througha and/, if these parameters depend nrSo, as long  pected to be low in the stationary regime, when a stable LEV
as the chord length and the vortex position vary slowly withjs well developed, because the flow regularization near the
z, the strongest dependence is that explicitly considered, |eading edge, due to the LEV itself, should lead to a low rate

and Eq.(2) is a good representation of the flow. of vorticity emission from this edge. We will see later that
The potentialgy(x,y) can now be determined as only when this rate is sufficiently small can it be balanced by

_ the effect of the flowu,, which can happen only at particular

$o(xy) = Rewo(¢(2))] ®) positions of the vortex

The resultingz-component of the velocity relative to the  Since the circulation varies along the vortex, an essen-

wing is then tially three-dimensional structure must exist, with vorticity

vector components alongand also in the plane perpendicu-
U,=—(Q7 X X) -€,+ 9 _ 20(x cosa +y sin @) lar to z. We should then more precisely speak of the circula-

gz tion associated to thecomponent of vorticity. The variation
= Qr R wp(L(2)]. of vortex circulation implies also the variation of the circu-

i lation along the wing, which requires, by a direct application
Besides, as R&J,Z]=x cosa+y sin «, we can define an aux- of Stokes theorerfil2], that the velocity along the wing has
iliary potential a discontinuity, the jump given by Ed8). This velocity
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jump, indirect evidence of adependent circulation, is well Y
documented in Fig. (t) of Ref.[2], where isolines of span-
wise velocity are shown. A marked variation of velocity
across a thin region in the rear of the wing is clearly shown
in that figure.

_’/

2g

Ill. VORTICITY EVOLUTION

Consider now the evolution of vorticity=V X u in the

rotating system, at high Reynolds number, governed by the ()
equation[12]

) o —=

—+Uu-V)o=(o- V)u+2(Qr- V)u.

ot

(b)

If we write w:_Z.QTHi) to make e'pr|C|t the concentrated FIG. 2. (a) Two-dimensional streamlines, ar()) detail with
(or absolutg vorticity ', and consider the-component of  contour used to obtain E¢14).
the above equation, we obtain

o, > - -
ﬂtz+Vl-(uLwé):VL (@' Uy, (10 fVl-(wluz)dS=jg U, -ndl, (13
S C
where the symbol. refers to the planex,y) transverse te;.  to which, as before, only contributes the section®that
Since coincides with the solid boundary. Since the vorticity in the
P boundary layer due to the flow over the wing is perpendicu-
v, '(U;luz) =u,V, '0’1 + ‘;l 'V, u,=—u, ©r lar to n, the only component of concentrated vorticity that
Jz has a component alongis that due to rotation, as the fluid
-, in contact with the solid is forced to rotate with angular
to| -V, u, (11)

velocity ﬁT, with corresponding vorticity.é.T. We thus have
the right-hand side of Eq10) includes the effects of advec- s s

tion of w, by the spanwise flow,, represented by the first jg U’ -ndl= - 20- - f Udx= — 20 cos f Uadx
term in the right-hand side of Eq11), and of tiling and ~ J¢ > * L P Ll IR
stretching of transverse vorticity’ by the same flow, the
second term in the right-hand side of Ed1). Analogously,
for the second term in the left-hand side of Etp), since the
transverse flow | is itself solenoidal, from Eq2), we have

where xg is the x-coordinate of the stagnation point of the
flow over the wing(see Fig. 2

We obtain in this way,
VL-(Ulwé):UL'Vlwé &_I‘Z: d_I‘Z
ot dt

— %s

- ZQT-eyJ u,dx. (14)

that represents the advection ©f by the transverse flow. . e
If Eq. (10) is integrated on a transverse surfé@ehat The T, in this equation represents the circulation of the

includes all concentrated vorticity associated to the LEV, forz-component of concentrated vorticity, which is modeled as
instance, the region inside the instantaneous streamlinge corresponding singularity of the potent{a), expressed
shown in Fig 2, the transverse divergence term in the leftas
hand side leads by Gauss theorent@ds the curve limiting

the surfacg r,=-Q?.
To obtain an expression fall ',/ dt|g we take into account
f A\ -(ulw;)d8=5ﬁ w,u, -ndl. that the vorticity shed at the leading edge is that necessary to
S c ensure the Kutta-Joukowski condition at that boundary when
Only the inflow of z-vorticity generated at the solid the cpnfiguration of the f_Iow changes. This happens in the
boundary contributes to this last integral solution(3) as the vortex irt,, moves advected by the trans-

verse flow. We note here that the vortex is always advected
by the transverse flow as there are no stagnation points in the
regions considered. To look for regions with a stationary vor-
ticity distribution, where the continuous generation of vortic-
whereT, is the integral ofw, over S, and dI',/dt|g repre- ity at the leading edge is balanced by the effect of the span-
sents its instantaneous rate of change by generation at thdse flow, we approximate the value arﬂ“gldt as that

dr,

dt (12

f V, (U, 0)dS=-
S

’
B

boundaryB. associated to the free motion of the vortex even at those
Analogously, we have for the transverse divergence terniocations. This is better justified later as it is found that only
in the right-hand side extremely close to the locations of stationary vorticity does
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the last term in Eq(14) become comparable ®i,/ dt/g, so librium can be written in nondimensional form as
that the transverse motion of the vortex proceeds unaffected,

advected by the transverse flow, until very close to the men- _ 2 COSaf(Sa dx= 2(E>2 |&[* 3y, dw
tioned regions. In this way we have P a/ |£€-1? g€, dg ), |
dry _drydg, drydg, (17)
dt o, dt g7 dt’ where
where we have used for conveniengge and its complex @ 4o 1
conjugatef, as independent variables, instead of Beand w@=ergr g I T In(f— _>
Im(Z,), and where & 2 2 &
() g i) | 42 | - Zenfe-t).
dt “\dt) ~  Tdg/ | de/, | 2 &
with | [ 1-¢8 1-£€ r
v, = 8w sina — - " ,
0 (1+&)A+E) (1-§)1-¢&)

r
wo(¢) = wo(¢) = 5 IN[Z(9) = Z(£,)]. (15)

2

. . % 1-4,¢ 1-4¢
The last two expressions result when one relates the motion  y=---[2+ -+ |-
of £, to the motion of the true vorteghat in theZ-plang, 2 (1+&)1+¢) (1-§)1-¢)

but expres.sed. in terms of the potential obtained in the |n this way, allQ; dependence disappears, so that given
{-plane, which is sometimes referred to as the Routh theorem|y the values ofa and z/a, relation (17) determines a

[13,14. We can then write curve in theé-plane over which a stationary distribution of
dr dz\ |2 ar0da vorticity can exist. A first point to be noted is that the right-
—| =2(Q72)? —) { f—o) } _ hand side of relatioril7) turns out to be in magnitude much
dt |g d¢ . g, dg Z, larger than the left-hand side, except in a narrow region

(16) where it rapidly decreases. This behavior indicates that the
joint action of advection and vortex stretching and tilting by
In summary, we arrive at the following picture of the dy- the spanwise flow is important only in very localized re-
namics of the vortex. There is a growth due to the vorticitygions, giving a posteriori justification for the whole ap-
generated at the leading edge that is transported to the vort@xoach and, in particular, to the derivation of Ef6). An-
by the transverse flow. This transverse flow only advects thether important consequence is that the region of equilibrium
z-component of vorticity without changing its associated cir-is practically independent of (for instance, fora=45°
culationI’,, and so all corresponding circulation generated atchanges of/a between 2 and 20 lead to changes below 1%
the leading edgéby release ofw, from the boundary layer in £, with similar variations for other angles of attacKhis
is fed to the vortex, what is expressed by Efj2). The  weak z-dependence is related to tlzéndependence of all
spanwise flowu,, in turn, has a more complex effect. It ad- factors, other thariz/a)?, in the right-hand side of Eq17),
vects along the wing the-component of vorticity, the first which results in turn from the assumptions leading to the
term in the right-hand side of E¢L1), and also stretches and flow velocity (9). In this sense we obtain a self-consistent
tilts the perpendicular components of vorticitthe second  approach, but it does not exclude the possibility of more
term in the same equatipso as to increase or decrease thecomplex flow structures, with pronouncerdependence.
circulationI’, associated ta,. These structures are likely to exist, probably depending on
the Reynolds number.
The second point is that only over a localized portion of
We look now for the stationary solutions of E44). Note  the curve, near the position of the leading edge;-1, is the
first that, asI'® and FS are proportional ta, if one defines equilibrium stable. To study this, we consider small pertur-

IV. VORTICITY DISTRIBUTION AND STABILITY

dimensionless variables bations 6¢ of the location of the vortex around an equilib-
0.1 0.1 rium position §,o, and write the nondimensional version of
y=I"a>, vy, =ra-, Eq. (14) linearized about,, as
(=gt g =gat, _295% _ %) St + (9A> 5.
a Jr ¢, €0 0€, £

g
Il
e

Oa_la TJZEUZ(QTa)_l! . .. . . -
where dy, is the variation ofy, with respect to its equilib-
%= xga ! rium value, 7=Q+t, and A represents the nondimensional
rs version of the right-hand side of E¢l4) [A is equal to the
and uses Eqg3), (4), and(15) and the expressions of the right-hand side of Eq(17) minus its left-hand side We
circulationsI™ andl“g [7], the condition for stationary equi- define an equilibrium situation as stable if, fé%,>0 one

=xa!

x1
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0.2 o=30

0.5

-1.95 19 -1.85 1.8
Re(Z/a)

(@ Re(&) FIG. 4. Stable equilibrium curves in th& a-plane for different

angles of attack.

12 e
- responds to the unstable part. The magnitude of vortex cir-

~ culation increases monotonically along the curve. We can
0.8 -~ then expect in an actual wing a distribution of vorticity along
the stable section of the curve indicated, with increasing in-
P tensity towards the curve’s end. In fact, the experimental
04 vorticity distribution shown in Fig. (b) of Ref.[2], that cor-
responds to the same angle of attack, has a striking similarity
(in position, shape, and extensjoto Fig. 3c), where the
stable equilibrium region is shown relative to the wing sec-
1.8 -1.6 1.4 1.2 . . . oy )
(b) Re(Z/a) tion, toge.ther with the zone of intense vqrtlcny observed in
the experiment. The end of the stable region, where the most
intense stable vortex can exist, coincides very well with the
center of the core of intense vorticity observed (ithis cen-
ter is marked with a star in that referenc&he gray zone in
© Fig. 3(c) corresponds to that shown in deep blue color in the
EV9099 1 IMar2005 Cited reference.
To make a quantitative comparison, consider an average
position of the vortex weighted by vortex magnitude,

Im(Z/a)
\

FIG. 3. (a) Equilibrium curve in thet-plane andb) correspond-
ing curve in theZ/a-plane. Full lines denote stable equilibrium
sections and dashed lines unstable of@sRegion of stable equi-
librium relative to the wing section, for=45° andz/a=4, repre- f v,(9)¢,(s)ds

sented with a full line, together with the region of intense vorticity Eaverage= ,
shown in deep blue color in Fig.(H) of Ref.[2], represented as a 9 d
gray zone. Y,(s)ds

v

has d8y,/9r<0, and fordy, <0 one hasidy,/dr>0; that ~Wheres is the length along the equilibrium curve, and the
is, 8y,d5y,/ r<0. Since integral is extended only to the stable section. &e¥5° we

obtain &;yerage=—1.2040.52, which can be compared with
&n) St + :97,,) o5 the value —1.251#0.48 used in Refl7] to reproduce experi-
%,/ ¢, ok, . k mental results.
Y vo Finally, Fig. 4 shows the stable equilibrium curves in the
remembering that<0, we write the stable equilibrium con- Z/a plane, for different angles of attack, all fafa=4. The

oY, =

dition as differences are not large for angles around 45°, butdor
=70° the stable region increases and fee 75° (not
R %) 5¢ |Re %) sé| <0 shown) it extends indefinitely. This behavior would indicate
&, é0 &, £0 an extended region of stationary vorticity at angles of attack

. . . " above 75°, which would be interesting to verify experimen-
for any 6¢. Written in terms of R& and Im¢ this condition t

is easily checked through the negative definite character o?”y'
the resulting matrix of real coefficients.

In Fig. 3 we show the equilibrium curve in tlgeplane for
a=45° andz/a=4z/D=4 [Fig. 3@)], together with the cor-
responding curve in th&/a plane[Fig. 3(b)]. The stable An analytical study of the stationary distribution of
region is indicated by a full line, while the dashed line cor-leading-edge vorticity was presented. It is shown that the

V. CONCLUSIONS
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basic fact of wing rotation around its root generates a spamably related to this point is the observatidr6] that the LEV
wise flow intense enough to maintain a station@efative to  detaches at approximately 75% of the wing length, where the
the wing vortex, due to the balance between vorticity advec-influence of the tip vortex cannot be ignored. In this sense
tion, tilting, and stretching by this flow, and vorticity genera- Fig. (1d) of Ref.[2] is very suggestive as it shows the tip
tion at the leading edge, as put forward some time @J0  vortex occupying approximately the last 25% of the wing
The considerations of constant angular velocity and fixedength. Wing-end effects should certainly be included in a
angle of attack apply during most of each half-stroke in angre realistic model of LEV dynamics, although the analyti-
typical insect flapping sequen¢#5]. The approximation of a1 approach is difficult because of the strong three-
constant wing chord, use of blade element theory, and nejimensional features of the flow near the wing tip.

glect of wing-end effects are necessary for the analytical ap- With all the above assumptions we identify a region close

Pr:%igé'nggg Cvf\:/lr?ekr)ee Jsuustsgltz?]tilgl ulﬁt"ellls Inseencetr;\:[gjgs_llp]ethelrto the leading edge where a stable stationary vorticity distri-

wing-end eféects require a further discugsion We.ori inall bution can exist that compares very well qualitatively and
9 quire ; : ginally uantitatively with experiments and previous theoretical ap-

conjectured that the main spanwise flow was produced by th roaches. Besides, extended regions of vorticity are pre-

tip vortex that necessarily exists in any finite, lift-generating’,. )
wing [11]. However, no reasonable model of this vortex wasd'Cted for large angles of attadbove 75J, a point worth

able to induce a sufficiently strong flow to stabilize the vor-verlfylng experimentally.

tex growth in most of the wing, only very close to the tip. As

a.result we were .Ied to consi_der the induction of the span- ACKNOWLEDGMENT

wise flow by rotation of the wing. The conclusion was then

that the tip vortex does affect the flow in its vicinity, but ~ The authors acknowledge grants of the CONICET and the
cannot induce the stabilizing flow in most of the wing. Prob-University of Buenos Aires.
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