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A simple kinetic model of a two-component deformable and reactive bilayer is presented. The two differ-
ently shaped components are interconverted by a nonequilibrium reaction, and a phenomenological coupling
between local composition and curvature is proposed. When the two components are not miscible, linear
stability analysis predicts, and numerical simulations show, the formation of stationary nonequilibrium
composition/curvature patterns whose typical size is determined by the reactive process. For miscible compo-
nents, a linearization of the dynamic equations is performed in order to evaluate the correlation function for
shape fluctuations from which the behavior of these systems in micropipet aspiration experiments can be
predicted.
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I. INTRODUCTION

Polar lipids self-assemble and orient, with the hydrophilic
portions facing water. The water may be sandwiched by two
lipid layers, as in the black spots in soap bubbles that de-
velop at locations where the two layers are closer than the
shortest wavelength of the visible spectrum and that occur
just before the bubble bursts, or the water may be outside of
the two lipid layers, as in biomembranes. While it is known
that the structure of a biological membrane is far more com-
plex than a simple lipid bilayerf1,2g because of embedded
proteins, cholesterol molecules, and ions, to name just a few
of the components that provide the full functionality to this
structure that is crucial to the life of the cell, it is neverthe-
less acknowledged that the lipid bilayer is the basic structural
unit of all cell membranes. An understanding of this simpler
system is therefore extremely important in an effort to shed
light on the properties and functioning of active transport,
signaling, and adhesion in cells. Furthermore, artificial lipid
bilayers are widely used in a number of nanotechnological
applications ranging from solar energy transduction and bio-
sensors to drug development.

A lipid bilayer is highly flexible and liquid-likesas is a
real membraned. It can therefore not be viewed as a static
inert boundary but must be recognized as a dynamical struc-
ture f3g. In the case of a biological membrane, lipid bilayers
serve as quasi-two-dimensional solvents for proteins and all
other components, and are intimately involved in many bio-
chemical processes. Moreover, its ability to change its shape
scurvatured is an essential property of the lipid bilayer since
the formation of vesicles and the permeability properties of
the cell depend on it.

From the modeling viewpoint, it became recognized dur-
ing the 1990s that some internal degrees of freedom are nec-
essary to understand the large variety of conformational
changes found in cell and synthetic membranes. In particular,
the local composition of the bilayer can crucially affect its
local curvature, and some models were developed on the

basis of this ideaf4–9g. However, these approaches consid-
ered membranes as equilibrium systems. In a biological con-
text, this hypothesis is at best hopeful.

Nonequilibrium conditions are ubiquitous in nature, and
for this reason the out-of-equilibrium behavior of mem-
branes, both in cellular systems and in laboratory-prepared
vesicles, has attracted much attention over the past few
years. The first successful approach to the study of nonequi-
librium membranes was introduced by Prostet al. f10g.
Roughly summarizing their modeling approach, they sug-
gested that some externally activated componentssin-
tramembrane proteinsd act as “pumps,” generating forces on
the membrane that locally change its curvature. Variations,
improvements, and sequels of the initial modelf11–14g as
well as related experimental studiesf12,15g to a large extent
complete the understanding of the nonequilibrium behavior
of bilayers with inserted active components.

Our interest in this work lies in a different nonequilibrium
that may arise from externally activated chemical processes
involving the transformation of the elementary membrane
lipid components. As an example, nice experiments by
Petrovet al. f16g show the effect of an ongoing photocon-
troled chemical reaction on the curvature of synthetic giant
vesicles. Other evidence of chemically induced shape trans-
formations is found in the nervous synaptic process: a reac-
tion that interconverts two differently shaped constituent
phospholipids of the membrane plays a crucial role in the
fission of vesicles in nervous cellsf17,18g. Recent experi-
ments also point to the importance of high-curvature lipids in
many cell processes such as membrane fusionf19g. So far,
no models for this kind of nonequilibrium situation can be
found in the literature. Our aim is to gain physical insight
into the role of a generic nonequilibrium reaction acting on a
membrane that is, in turn, described through a curvature/
composition coupling. We show how the reactive process
endows the membrane with a rich pattern formation phenom-
enology and specific characteristics of its shape fluctuations.
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We present a simple kinetic model of a two-component
deformable bilayer with a chemical reaction. We model non-
active membranes where the nonequilibrium nature of the
system is caused by a chemical reaction that interconverts
two differently shaped components of the bilayer rather than
by inserted active components. In the model, the membrane
is composed of two species: lipidA, which is assumed to be
coned-shaped, and lipidB, which has an inverted cone shape
ssee Fig. 1d. We consider the simplest scenario where the
outer layer of the membrane is composed ofA andB lipids,
whereas the inner layer is composed of a single component
without any curvature effect. We also prescribe that lipids do
not move between the inner and outer layers. Both of these
simplifications are made in most membrane models. Accord-
ing to these assumptions, the membrane is simply modeled
as a laterally heterogeneous elastic surface with an internal
composition order parameter locally coupled to the curva-
ture.

Within this framework, we are basically interested in two
situations. On the one hand, for immiscible components, we
show that phase separation in the membrane leads to the
spontaneous development of structures involving heteroge-
neous distributions of both composition and curvature that
finally result in stationary finite-sized nonequilibrium do-
mains. This instability is studied by performing a linear sta-
bility analysis of the kinetic equations, and the pattern-
selection role of the reactive process is established.
Corresponding numerical simulations will be shown to sup-
port these predictions. On the other hand, for miscible com-
ponents we derive the correlation function for the membrane
shape fluctuations. The fluctuation spectrum is mainly deter-
mined by the bending energy at small surface tension, and
here we find the same expression for nonreactive and reac-
tive cases, but with different bending rigidities. This change
in the behavior of the fluctuation spectrum between equilib-
rium and nonequilibrium states might be easily controlled
and observed in micropipet aspiration experiments.

This paper is organized as follows. In Sec. II the study of
membranes of immiscible components is addressed. We pro-
pose a free energy functional, derive the kinetic equations,
and perform the linear stability analysis of these equations.
Numerical simulations are carried out and some representa-
tive results are shown. In Sec. III bilayers of miscible com-
ponents are analyzed and the change of the height fluctuation
spectrum between the reactive and nonreactive situations is
established. We conclude with a brief summary in Sec. IV.

II. MEMBRANES OF IMMISCIBLE COMPONENTS

A. Model and analytical results

The membrane is defined as a two-dimensional surface
with a concentration difference order parameterf and a local
extrinsic curvatureH. The rigidity of the membrane leads to
an elastic energy contributionk /2efH−Hspsfdg2dxdy to the
total energy, wherek is the bending rigidity modulus, and the
spontaneoussequilibriumd curvature Hspsfd reflects the
shape asymmetry between the two lipid components. For
simplicity, we adopt a linear dependence onf, Hsp=fH0,
with H0.0 according to the schematic in Fig. 1. In the
Monge parametrizationf20g a deformable surface is de-
scribed byfx,y,hsx,ydg, wherehsx,yd is the displacement
sheightd field for the local separation from the flat conforma-
tion. This representation is valid for surfaces that are nearly
flat with only gradual variations ofh, and allows the approxi-
mation H<¹2h. As a function of these variables, the pro-
posed energy functional reads

F =E F−
a

2
f2 +

b

4
f4 +

g

2
u ¹ fu2 +

k

2
s¹2h − fH0d2Gdxdy,

s1d

where the first three terms correspond to the typical
Ginzburg-Landau expansion responsible for phase separation
sa ,b ,g.0d, with an equilibrium concentration difference
feq= ±Îa /b, and a typical interface lengthz=Îg /a. For
self-assembled free membranes, the surface tension contribu-
tion ss /2u¹hu2d in the free energy can be neglected, and we
have not included it in Eq.s1d.

The kinetics off follows a conserved schemef21g plus
the reaction contributions,

]f

]t
= D¹2F ]F

]f
G − Gsf − f0d, s2d

whereG=k++k− andf0=sk−−k+d / sk++k−d. k+ andk− are the
forward and backward reaction rate constants, respectively.
Considering a permeable membranesi.e., ignoring hydrody-
namic interactionsd we adopt the following relaxational
equation for the evolution of the height field:

]h

]t
= − L

dF
dh

, s3d

whereL is a mobility parameter proportional to the inverse
of the typical relaxation timeth.

The kinetic equations can readily be adimensionalized:
energy is measured in units ofkBT, time in units ofth, and
length in units ofÎDth. In terms of the new dimensionless
parameters, the kinetic equations become

]f

]t
= skH0

2 − ad¹2f + 3bf2¹2f + 6bfu ¹ fu2 − g¹4f

− kH0¹
4h − Gsf − f0d,

FIG. 1. The two membrane componentsA sleftd and B srightd
have opposite cone shapes. We arbitrarily choose a positive curva-
ture for A and a negative one forB. A reaction interconverts both
species withk+ and k− being the forward and backward reaction
rates, respectively.
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]h

]t
= − k¹4h + kH0¹

2f. s4d

At thermal equilibrium Eqs.s4d describe the spinodal decom-
position of two immiscible components. Due to the
composition/curvature couplingH0, both fields will form
complementary patterns. As phase segregation progresses,
membrane regions with positivesnegatived f deform in such
a way that the curvature become positivesnegatived, as
shown in Fig. 2. In the absence of reaction, this coarsening
process does not end until there is complete segregation into
two large domains. A nonequilibrium reaction such as the
one we propose converts one species into the other. This
amounts to a large-scale mixing mechanism that counteracts
the short-scale ordering effect of phase separation. Therefore
the segregated structures grow only until mixing and order-
ing effects compensate, resulting in a stationary pattern.
These types of nonequilibrium patterns are also found in
other systems such as polymer blendsf22,23g as well as in
monomolecular adsorption on metal surfacesf24,25g, and
have to be distinguished from typical Turing patternsf26g.
Even though they emerge from the same kind of instability
ssee belowd, Turing patterns are expected in systems with
species with different diffusivities. In the model presented
here, the domains result from the competition between a lo-
cal thermodynamic affinity of equal species and a nonequi-
librium reaction mixing effect. As we will see, linear stability
analysis and numerical simulations support this idea.

The stationary uniform state corresponds tof̄=f0 and

arbitrary h̄. The linear stability of these uniform solutions is
tested by adding small plane-wave perturbations of wave
number q and linearizing Eqs.s4d. This procedure deter-
mines the 232 linearization matrixL, with the following
coefficients:

L11 = − q2fskH0
2 − a + 3bf0

2d + gq2g − G,

L12 = − kH0q
4,

L21 = − kH0q
2,

L22 = − kq4. s5d

The eigenvaluesvq of the Jacobian associated with the
matrix L correspond to the linear growth rates of the pertur-
bations. Solving the eigenvalue problem we obtainvq

= 1
2sTrfLg±ÎDfLgd, where DfLg=TrfLg2−4DetfLg. At the

instability boundary, Resvqd vanishes for one finite wave
number that is defined as the first unstable mode. If the
imaginary part ofvq is not zero at this wave number, we
have a wave bifurcation. The condition for this bifurcation is
obtained by requiring TrfLg=0 andDfLg,0. For positivek,
G, a, b, and g, these conditions do not apply at any real
wave number, and consequently, wave instability is not
found in this model.

On the other hand, if the imaginary part of the growth rate
is zero at the bifurcation point, we have a Turing-like bifur-
cation. The condition for this bifurcation is DetfLg=0,
whose analytical expression is easily obtained, yielding the
following condition for the model parameters:

G = Gc ;
sa − 3bf0

2d2

4g
, s6d

and for the wave vector of the first unstable mode,

qc
2 =

a − 3bf0
2

2g
=ÎGc

g
. s7d

A phase diagram is shown in Fig. 3. In the unstable region,
Turing-like patterns emerging from the competition between
phase separation and reaction are predicted. In the stable
phase, although the two components are not inherently mis-
cible, the reaction completely mixes the system, and the bi-
layer becomes stable and essentially flat.

FIG. 2. Schematic representation of the composition/curvature
coupling effect in an unstable membrane.

FIG. 3. Phase diagram for the case of immiscible components in
the planesa ,Gd for g=1 andf0=0. The regiona,0 snot shownd
corresponds to a membrane of miscible constituents displaying a
flat shape.
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In the unstable phase,G,Gc, there is a range of unstable
modes. Comparing with the equilibrium casesG=0d where a
continuous range of modes starting atq=0 is unstable, reac-
tion stabilizes the long wavelength modes so that, as we
anticipate, the long time distribution of the system results in
a stationary nonequilibrium pattern with a finite sizessee
further discussion in Sec. II Bd. Notice in Fig. 4 that increas-
ing G reduces the range of unstable modes progressively un-
til G reaches the marginal value in Eq.s6d, above which there
is no longer any instability. The limits of the range of un-
stable modes are given by

q±
2 =

a − 3bf0
2

2g
±

1

2g
Îsa − 3bf0

2d2 − 4gG, s8d

which are independent of curvature parameters. Curvature
reduces the unstable mode growth ratesssee line with circles
in Fig. 4d but without changing eitherq± or the marginal
conditions6d. The effect of curvature is exclusively related to
the kinetics of the phase separation processssee belowd.

Before numerically solving the kinetic equation, we can
shed light on the expected pattern formation process by per-
forming a weakly nonlinear analysis using the amplitude
equations technique. This analysis allows us to compute a
solution for our problem near the bifurcation threshold, find
the universality class of the pattern formation mechanism,
and explain some properties such as the spatial arrangement
of the patterns found in the numerical simulations.

For simplicity, we restrict the calculation of the amplitude
equations to one spatial dimension. In spite of this restric-
tion, we will be able to predict the kind of spatial arrange-
ment found in two dimensions by using the universality
properties of the amplitude equations. Details of the deriva-
tion of the amplitude equations are presented in the Appen-
dix. The analysis reveals that a solution for Eqs.s4d near the
bifurcation to pattern formation reads

fsx,td = f0 + fA expsiqcxd + c.c.g,

hsx,td = h̄ + fB expsiqcxd + c.c.g,

where c.c. stands for the complex conjugate, and the ampli-
tudesA andB satisfy the equations

]tA = sGc − GdAF1 −
2bs3a + 7bf0

2d
sa − 3bf0

2d2 uAu2G
+ 2Sa − 3bf0

2 +
H0

2k

2
D]xxA +

3H0ksa − 3bf0
2d

g
]xxB,

]tB = H0k]xxA +
3ksa − 3bf0

2d
g

]xxB. s9d

Moreover, sinceB is purely relaxational, we can adiabati-
cally eliminate it and reduce Eq.s9d to a single evolution
equation for the amplitudeA,

]tA = sGc − GdAF1 −
2bs3a + 7bf0

2d
sa − 3bf0

2d2 uAu2G + 4gqc
2]xxA,

B = −
H0

6qc
2A. s10d

Therefore the amplitudes satisfy the real Ginzburg-Landau
equation. IfG.Gc then the amplitudes relax to zero and a

homogeneous statesf=f0 and arbitraryh= h̄d is obtained.
However, if G,Gc then the amplitudes reach a stationary
value and a pattern develops ifqcPR. Notice that the am-
plitudes present a negative-positive aspect, that is, at sites
whereA reaches a maximumsminimumd B reaches a mini-
mum smaximumd. This is simply a consequence of the par-
ticular selection of sign for the spontaneous curvatureH0.
With regard to the nonlinear term,AuAu2, note first that its
coefficient is always negative. As a result, the nonlinearity
always plays a stabilizing role, the bifurcation to pattern for-
mation is supercritical for all values of the parameters, and
no hysteresis may occur. Secondly, the nonlinear term pro-
vides information about the relevant modal interactions. At
this point, we can take advantage of the universality proper-
ties of the amplitude equations to infer the spatial arrange-
ment of the pattern in two dimensions. Since the Swift-
Hohenberg model also shares the same universality class
when performing an amplitude equation analysis, namely, it
also reduces to the real Ginzburg-Landau equationf28,29g,
the pattern formation mechanism is the same in both models.
It is well-known in that case that the modal interactions in
two dimensions are such that if the inversion symmetry is
preserved then roll-like patterns develop. On the other hand,
if that symmetry is not fulfilled, a hexagonal structure ap-
pears. Note that in Eqs.s4d the inversion symmetry,hf
→−f ,h→−hj is only satisfied iff0=0. Thus we expect a
roll-like pattern in that case, while hexagons will develop
otherwise.

B. Numerical results

Numerical integration of Eqs.s4d has been performed in
two dimensions using an explicit Euler scheme in a square

FIG. 4. Dispersion relation functionsvq at different values ofG.
The other parameters are held fixed ata=g=1, f0=0, andk=H0

=0, except for the curve with circle symbolsslabeled with “& curv”
in the legendsd that corresponds tok=10 andH0=0.2.

REIGADA, BUCETA, AND LINDENBERG PHYSICAL REVIEW E71, 051906s2005d

051906-4



lattice with a periodic boundary condition. Small random

perturbations aroundf̄=f0 andh̄=0 are implemented as ini-
tial conditions. The coordinate stepDx was chosen equal to
1, and the time step was usuallyDt=10−4 to assure good
numerical accuracyslength and time in dimensionless simu-
lation unitsd. The numerical results presented in this section
correspond to highly immiscible componentssdeep quench,
a=1 andb=1, leading to an equilibrium value offeq= ±1d,
and an interface thickness of the order of the space discreti-
zation sz=1, which leads tog=1d. The bending rigidity
modulus is taken equal to 10sin units of kBTd f27g, and we
consider two constituent lipids of very different shapes by
setting H0=0.2. All of our numerical results are consistent
with the predictions of the linear stability analysis and the

amplitude equations. Representative numerical results are
presented below.

In Fig. 5 we show the simulation results for three different
situations. The first row corresponds to smallG=0.05 and a
critical quenchsf0=0d, showing the development of a lab-
erynthine pattern that is still evolving att=2000sthe longest
time for the snapshots shown in the figured. The coarsening
process, however, is progressively slowed down later on. The
f-field profiles of these domainsshorizontal cross-sectional
cuts through the patternd reveal regions wherefeq is +1 or
−1 connected by abrupt boundaries that indicate the short
spatial range over which the equilibrium order parameter
changes from one value to the other. This is a signature of
the fact that the phase separation process is dominant for this

FIG. 5. Three sets of selected patterns resulting from the numerical simulation based on Eqs.s4d. First row:G=0.05,f0=0. Second row:
G=0.2,f0=0. Third row:G=0.2,f0=0.1soff critical quenchd, showing an array of dropletlike domains rich in the minority species. The first
three panels in each row correspond to thef-field distributions of a 1283128 system att=100, 400, and 2000sfrom left to rightd. Darker
slighterd regions are richer in theAsBd lipid. In the last panel of each row the height field has been plotted in three dimensions for a 64
364 portion of the corresponding system att=2000. Some exaggeration along the vertical direction has been applied.
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value ofG. The second and third sets of panels correspond to
largeG=0.2 sthe marginal condition for the selected param-
eters isGc=0.25d showing laberynthinescritical quench in
the second rowd and quasihexatic dropletlikesoff critical
quench,f0=0.1, in the third setd patterns. A spatial Fourier
transform of this stationary pattern shows a clear hexagonal
structure. These domains are already stationary at times
longer thant=2000, and can indeed be considered as non-
equilibrium stable phases of the system, involving both com-
position and curvature modulations. Theirf- andh-field pro-
files have a smooth harmonic shape due to the strength of the
reactive process. In both cases, since we are close to the
bifurcation boundary, small local deviations from the station-
ary values are obtained. We especially monitor the variations
of the height field and find thatku¹hul,0.05 is satisfied, so
that the model has a real physical correspondence.

In order to assess the kinetic ordering process more quan-
titatively, we monitor the domain sizeLstd computed from
the composition correlation functionskfsr 8 ,tdfsr 8+r ,tdl
sthe same results are obtained using the height correlation
functionsd. Here, the bracketsk¯l indicate not only an aver-
age over orientations ofr and over surface positionsr 8, but
also over different realizations of random initial conditions.
As has been reported in other studies, curvature considerably
slows down the coarsening segregation process. This is spe-
cially evident when a reaction is absent, and for this situation
different kinetic approaches have been invoked. A mean-field
kinetic scheme by Taniguchif7g leads to extremely slow la-
berynthine stripe growth obeyingLstd, tr with r =0.1, in-
stead of the usual spinodal decomposition growth exponent
of 1/3 f30g. Later, Monte Carlo simulationsf8,9g showed
how, in the long-time evolution, those stripes break up into
disconnected buds that subsequently diffuse and coalesce. In
our model, when the reactive term is removed, similar results
as those presented in Ref.f7g are obtained, and no stripe
breakup is observed. The reason for the disagreement be-
tween the analytic and Monte Carlo schemes is probably due
to the fact that continuum models subjected to a specific
parametrization of the surface such as given in Eqs.s4d do
not allow for overhangs that are surely crucial in the late
stages of membrane phase segregation.

However, the cases in which there is no reaction or in
which the reaction is weak are not of interest to us, since in
these cases the system evolves in such a way that large gra-
dients of the height displacement field occur. As noted above,
when this happens the Monge surface parametrization is not
valid and the model, although mathematically robust, does
not describe the physical behavior of any real system. In the
reactive cases, however, the slow kinetics is still observed for
the times prior to stationary pattern formation. This is ob-
served in Fig. 6, where a set of curves showing the domain
sizeLstd is presented for several values ofG. The situations
with and without curvature are compared for each case. No-
tice how the deformable systems evolve more slowly than
the nondeformable ones, although the same final stationary
size is achieved. There is no theory to explain such a slowing
down effect, but some hand-waving arguments may explain
the physical reasons for this behavior. Monitoring of the dif-
ferent energy contributions in Eq.s1d indicates that at early

timesswhen the kinetics with and without curvature are still
quite similard interfacial energy due to the rapid formation of
composition domains is much larger than any other energy
contribution. In other words, phase separation proceeds and
membrane curvature follows the composition change. At this
stage the reduction of the interfacial energy governs the
coarsening process, leading to the 1/3 Lifshitz-Slyozov ex-
ponent. Later, at intermediate times, when composition do-
mains become larger, the height order parameter is no longer
able to keep up with the phase separation process and some
curvature energy is stored, causing the whole coarsening pro-
cess to slow down.

The final size of the nonequilibrium stationary domains,
Lf =Lst→`d, is determined by the reaction parameter. The
dependence of the final pattern size on the reaction param-
eter, Lf ,G−s, has been largely discussed in the literature
f22,31,32g. The results of our model also reproduce the two
limiting behaviors:s=1/4 for largeG sclose to its marginal
valued, and s=1/3 for small G. In Fig. 7, Lf is plotted for
different values of the reaction parameter. Linear fits for the
four first and the last four data points give the slopes
0.323±0.006 and 0.26±0.006, respectively. The derivation
of the exponent values for the rigid situationsnondeformable
surfacesd is performed by minimizing an effective free en-
ergy expressionswhere the reactive term is included via
Green’s functionsd in a squaressmall Gd and a harmonic
slargeGd approximation for the stationary concentration field
f31,32g. In the present model, the curvature kinetics relax-
ationally follows the concentration dynamics. At longer
timesswhen the stationary patterns are already achievedd no
significant curvature energy is present in the system, so that
we can neglect the curvature contributions in Eq.s1d and the
results in Refs.f31,32g are recovered.

In Eq. s3d we ignored the hydrodynamic effects due to the
background fluid velocity by considering a permeable mem-
brane through which the fluid drains freely as the system
evolves. Solvent hydrodynamic effectsf33g can be ap-
proached through a renormalized height mobilityL

FIG. 6. Log-log plots ofLstd vs t for different values ofG. The
values ofLstd have been computed as an average over 10 runs of
the correlation functions in 1283128 systems. In all casesf0=0.
The curvature parameters are set tok=10, H0=0.2 for the thin
lines, andk=H0=0 for the thicker lines.
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=s4mqd−1 in the second of Eqs.s4d in Fourier space, wherem
is the solvent kinematic viscosity. The inclusion of this
q-dependent mobility does not change the main results of the
stability analysis and numerical simulations shown so far.

Before ending this section, we check the applicability of
our results to real membrane systems. We adimensionalized
the kinetic equations to units in whichD=L=kBT=1. Redi-
mensionalizing them, taking the typical valuesD
=10−7–10−8 cm2/s sfor lipids in a liquid-phase membraned,
m=1 cp sH2O at 20 °Cd, and the typical unstable modesq
<qc=0.5, we find that the size of the patterns obtained above
lies within the range 2–20mm, which is accessible in giant
vesicles10–100mm in diameterd experiments.

III. MEMBRANES OF MISCIBLE COMPONENTS:
LINEARIZATION AND SHAPE FLUCTUATIONS

In this section we consider a parameter region where the
membrane is thermodynamically stable. The instability in the
previous section was caused by the immiscibility of the two
lipid components, while we now consider the case of mis-
cible membrane constituents. Notice that the two situations
could correspond to the same physical system but at different
temperatures, belowsunstabled or abovesstabled the critical
temperature. For the stable case we adopt the following free
energy functional:

F =E F−
a

2
f2 +

k

2
s¹2h − fH0d2 +

s

2
su ¹ hud2Gdxdy,

s11d

where a is now negative, and the nonlinearsbd and line
tension sgd terms have been removed since they are irrel-
evant in the absence of phase segregation. An additional sur-
face tension term has been included in order to study mem-
branes under tension.

In the equilibrium situationsno reactiond, the concentra-
tion field can be integrated outs]F /]f=0d from Eq. s11d,
leading to feq=fkH0/ skH0

2−adg¹2h. Inserting feq in Eq.
s11d we obtain an effective free energy forh alone,

Fef f =E Fkef f

2
s¹2hd2 +

s

2
su ¹ hud2Gdxdy, s12d

with an effective rigidity modulusf34g

kef f = kF1 −S kH0
2

kH0
2 − a

DG . s13d

Notice that, as a consequence of the composition/curvature
coupling, the different preferred curvature of the lipid com-
ponents acts to reduce the rigidity modulus fromk to kef f.
Note also thatkef f.0 for negative values ofa, so that the
stability of the membrane is assured above the critical tem-
perature.

The dynamics for the immiscibility situation has so far
been considered to be strictly deterministic. Here, however,
in order to obtain dynamical steady state functions, we add
stochastic forces to the kinetic equations and perform an av-
erage over an appropriate ensemble. The dimensionless ki-
netic equation forf, once the reactive terms are included,
reads

]f

]t
= ¹2F ]F

]f
G − Gsf − f0d + ¹ · ff, s14d

where the last term corresponds to a conserving Gaussian
noise with correlationskffsr ,tdffsr 8 ,t8dl=2kBTdsr −r 8ddst
− t8d. For the curvature order parameter we again adopt the
relaxational equation for a permeable surface,

]h

]t
= − L

dF
dh

+ fh, s15d

with L=1 in dimensionless units, andfh is a thermal equi-
librium noise with correlationskfhsr ,tdfhsr 8 ,t8dl=2kBTdsr
−r 8ddst− t8d.

The kinetic equations become

]f

]t
= skH0

2 − ad¹2f − kH0¹
4h − Gsf − f0d + ¹ · ff,

]h

]t
= − k¹4h − s¹2h + kH0¹

2f + fh. s16d

The important quantity to characterize membrane shape
fluctuations is the height variancekuhqu2l at wave numberq,
which is calculated by linearizing the kinetic equationss16d
and solving them in Fourier space. Iff̂sq ,vd andĥsq ,vd are
the Fourier transforms offsr ,td and hsr ,td, respectively,
Eqs.s16d can be written as

ivSf̂sq,vd

ĥsq,vd
D = Sa11 a12

a21 a22
D 3 Sf̂sq,vd

ĥsq,vd
D + Siq · ff

fh
D ,

s17d

where

FIG. 7. Log-log plot ofLf vs G. The slopes 1/4 and 1/3 are
plotted for comparison with the large and smallG regimes, respec-
tively. All the points have been calculated forf0=0, k=10, and
H0=0.2, at sufficiently long times to consider the growth process
practically halted. We have performed an average over 10 realiza-
tions. The system sizes are 1283128 for largeG, and 2563256 for
small G.
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a11 = − skH0
2 − adq2 − G,

a12 = − kH0q
4,

a21 = − kH0q
2,

a22 = − kq4 + sq2. s18d

Solving these coupled equations, and using the statistical
properties of the thermal noises, yields

kĥsq,vdĥ*sq,vdl =
2kBTsa21

2 q2 + v2 + a11
2 d

v2sa11 + a22d2 + sa12a21 − a11a22 + v2d2 .

s19d

On integrating overv, the height variance follows the gen-
eral expression

kuhqu2l =
1

n − hF A
Înh

+ A8GfÎ− h − Î− ng, s20d

wheren andh are negative variables that read

Sn

h
D = −

B

2
±

1

2
ÎB2 − 4C, s21d

and

A = 2kBTsa21
2 q2 + a11

2 d,

A8 = 2kBT,

B = a11
2 + a22

2 + 2a21a12,

C = sa11a22 − a21a12d2. s22d

In the absence of the reaction, the evaluation of Eq.s20d
in the long-wavelength limit for a tensionless membrane
leads tokuhqu2l=kBT/kef fq

4. This behavior is truncated and
replaced bykBT/sq2 for a membrane under tension if only
the dominant terms at smallq are retained. Keeping the
dominant and the first subdominant terms, one recovers the
well-known expression for the height variance in an equilib-
rium membrane,

kuhqu2l =
kBT

sq2 + kef fq
4 . s23d

Notice that this result is obtained in a much simpler way
from an equilibrium average using the effective free energy
in Eq. s12d.

One of the usual experiments to study equilibrium mem-
brane shape fluctuations is based on the micropipet aspira-
tion techniquef35g. In these experiments, a pressure differ-
ence is applied inside a micropipet in contact with a vesicle
membrane. This creates a tension in the membrane that pulls
the excess areaDS due to the thermal shape fluctuations
inside the micropipet. By means of this technique, the areal
strain ā;DS/S is obtained experimentally for different val-
ues of the applied tensions. According to Eq.s23d, the rela-
tive areal strainDā; ā−ā0 sā0 being the areal strain for a

reference values0d can be calculated analyticallyf36,37g:

Dā =
kBT

8pkef f
lnS s

s0
D . s24d

Therefore the slope of the logarithm ofs versusDā obtained
by the micropipet technique yields a measure of the effective
bending modulus. Note that in these experiments a certain
tensions is needed, but it has to be small since otherwise the
kef fq

4 term in Eq.s23d would be insignificant compared to
sq2.

Now the question is, how is the shape fluctuation spec-
trum affected by the presence of the reaction? In other
words, how would the nonequilibrium membranes described
here behave in micropipet experiments? To answer this, we
evaluate Eq.s20d for GÞ0 and keep only the dominant terms
in the limit q→0. For tensionless membranes we get
kuhqu2l=kBT/kq4 and for membranes under tension were re-
coverkuhqu2l=kBT/sq2. Keeping the dominant terms for both
limits, in the weak tension regime the fluctuation spectrum
reads

kuhqu2l =
kBT

sq2 + kq4 . s25d

Comparing this result with the fluctuation spectrum obtained
for membranes with active proteinsf12,13,15g, no novel
nonequilibrium contribution to the height fluctuations is
found here. The effect of the nonequilibrium reaction in
stable membranes results in a change between a regime gov-
erned bykef f to another one with the actual rigidityk. Thus
the reaction makes the membrane more rigid by simply re-
moving the composition/curvature coupling effect that di-
minished the rigidity in the equilibrium situation. This
change is more evident when the two components of the
bilayer are rather different in shape and miscible but close to
the critical temperature. In this situationslarge H0 and ā
&0d the difference betweenk andkef f might be experimen-
tally observable.

Some caution, however, must be observed when deriving
Eq. s25d. In order to evaluate Eq.s20d for small q, we con-
sidered the termsG2 to be dominant with respect to the terms
2G skH0

2−ad q2 ssubdominantd and also with respect to the
subsubdominant quartic contributionsfs+skH0

2−adg q4

fwhich are those that led to Eq.s23dg. However, the analysis
becomes more difficult if one notices that we are not in the
region of asymptotically small wave numbers since the
smallestq accessible to an experiment is of order 1/L, where
L is the linear system size. Thus one must look in detail at
the values of the parameters in order to determine exactly
which terms initially considered subdominant might indeed
be dominant when the reaction is present.G2 is dominant if
G.2 skH0

2−ad qmin
2 , with qmin,1/L and thus dependent on

the system size. We know that for a sufficiently strong reac-
tive process,G2 dominates and Eq.s25d holds, but for inter-
mediate values ofG the spectrum could change significantly.
When 2G skH0

2−ad q2 becomes dominant, kuhqu2l
=kBT/ fGk /Î8GskH0

2−adgq3 for a tensionless membrane.
These regimes are captured in Fig. 8, where a set ofkuhqu2l
curves is plotted fors=0. Very large and zero values forG
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show theq−4 behavior, although with different rigidity fac-
tors sk and kef f, respectivelyd. At intermediateG, the q−3

behavior appears as predicted above.
The inclusion of hydrodynamic interactions can again be

accomplished by consideringL=s4mqd−1 in the Fourier
transform of Eq.s15d. This modifies the coefficientsa21 and
a22 in Eq. s18d, which are now divided bys4mqd. Accord-
ingly, the fh thermal noise correlations also change to
kfhsr ,tdfhsr 8 ,t8dl=f2kBT/ s4mqdgdsr −r 8ddst− t8d, and there-
fore the parameterA8 in Eq. s22d has to be divided bys4mqd
as well. However, with these modifications the evaluation of
kuhqu2l again leads to the results in Eqs.s23d and s25d.

IV. CONCLUSIONS

Starting with a simple model of a deformable reactive
membrane composed of two differently shaped molecules,
we show that stationary finite-sized patterns may appear un-
der some parameter conditions for the immiscibility situation
as a result of the competition between phase segregation and
reaction. These structures involve heterogeneous distribu-
tions of composition and curvature whose sizes are deter-
mined by the nonequilibrium reactive process. For typical
values of the viscosity of water and lipid lateral diffusion
constants in bilayers, and at normal room temperatures, such
patterns are predicted to have a size of a few micronsssee the
discussion at the end of Sec. II Bd. Therefore this behavior
would correspond to a reliable pattern formation mechanism
in lipid membranes which we believe to be experimentally
accessible in giant synthetic vesicles. The amplitude of these
patterns is modulated by the bilayer rigidity and the sponta-
neous curvature of its components. In our numerical calcu-
lations we have used realistic typical values for the rigidity,
while the spontaneous curvature depends on the specific ge-
ometry of the membrane constituents. We specifically pro-
pose that azobenzene compounds, which are known to show
amphiphilic behavior in Langmuir monolayers and whose
shapes are strongly modified by means of well-known pho-

toisomerization reactionsf38,39g, might be suitable to test
our predictions. The selection of the applied light wavelength
and its intensity may determine both the fraction of the two
isomerssf0d and the strength of the reactive processsGd,
respectively. Thus experimental work on synthetic vesicle
membranes made of these compounds can be specifically
designed to confirm the results of this model.

In the same context, for miscible components membranes
we have found a difference between the equilibrium and
nonequilibrium situations. The effects of the composition/
curvature coupling and the reactive process on the membrane
rigidity are established. Micropipet experiments with the
proposed membrane systems might confirm these results.
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APPENDIX: DERIVATION OF THE AMPLITUDE
EQUATIONS

The starting point of the analysis is the one-dimensional
version of the model for reactive membranes presented
herein,

wt = skH0
2 − adwxx + 3bsw + f0d2wxx + 6bsw + f0dswxd2

− gwxxxx− kH0hxxxx−
sa − 3bf0

2d2

4g
s1 − «dw,

ht = − khxxxx+ kH0wxx. sA1d

For convenience, we have introduced in Eqs.sA1d some
notation changes and definitions with respect to the ones that
appear in Eqs.s4d. Thus in Eqs.sA1d subscripts indicate
partial derivatives, the fieldw=f−f0 has been defined, and
we have introduced the control parameter«=sGc−Gd /Gc that
accounts for the “distance” to the bifurcation between a ho-
mogeneous states«,0d and pattern formations«.0d. The
homogeneous state according to this definition corresponds

to w=0 and arbitraryh= h̄.
As shown in Sec. II A, by linearizing Eqs.sA1d one can

easily check that if«.0 then the homogeneous state be-
comes unstable and

wsxd = A expsiqcxd + A* exps− iqcxd,

hsxd = B expsiqcxd + B* exps− iqcxd sA2d

is a solution in the steady state ifqc
2=sa−3bf0

2d / s2gd. It is

worth noting that in Eqs.sA2d we have arbitrarily takenh̄
=0 without any loss of generality. Moreover, by substituting

FIG. 8. Log-log plot for kuhqu2l evaluated from Eq.s20d in a
tensionless membrane for different values ofG. The other param-
eters area=−0.01,k=10, andH0=0.2 skef f=2 in these casesd. The
slopes −1/4 and −1/3 are plotted to identify the different regimes.
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Eq. sA2d into Eq. sA1d and expanding up to the first har-
monic,Ofexpsiqcxdg, one finds that the amplitudes scale as a
function of « as A, B,Î«. Thus we expect that near the
bifurcation the following expansion holds,

w = o
n=1

`

«n/2wsnd,

h = o
n=1

`

«n/2hsnd. sA3d

By computing the linear growth rate,vq, that is, the larg-
est eigenvalue of the linear problemfsee Eqs.s5dg, we also
note that

uvquq→qc

«→0

. C1« + C2sq − qcd2,

whereCi are constants. Thus as a function of« the width of
the band of unstable modes scales as,«1/2. Then, sinceall
modes expsiqxd can be written as expfisq−qcdxgexps−iqcxd, a
separation of spatial scalescan be performed between the
most unstable modesfastd and the rest of the modes of the
unstable bandsslowd. Let us call the slow modulation spatial

scaleX, such thatX=«1/2x, wherex will now stand for the
fast spatial scale. We also note that

uexpsvqtduq→qc

«→0

. exps«td.

Therefore we can define a slow time scale as a function of
the control parameter,T=«t. The separation of scales can be
implemented in Eqs.sA1d by replacing the spatial and tem-
poral derivatives according to the chain rule such that]x
→]x+«1/2]X and]t→«]T.

By implementing the separation of scales and substituting
Eqs. sA3d into Eqs. sA1d we obtain a rather cumbersome
expansion in terms of«. The lowest order contribution is of
Os«1/2d and reads

s3bf0
2 + H0

2k − adwxx
s1d − gwxxxx

s1d −
sa − 3bf0

2d2

4g
ws1d − H0khxxxx

s1d

= 0,

H0kwxx
s1d − khxxxx

s1d = 0. sA4d

Note that Eqs.sA4d correspond to the linearized version of
Eqs. sA1d in the stationary state. We define the linear
operator

L ; 1−
sa − 3bf0

2d2

4g
+ s3bf0

2 + H0
2k − ad]xx − g]xxxx − H0k]xxxx

H0k]xx − k]xxxx
2 .

Then, Eqs.sA4d can be trivially written asLx1=0, where
sxndT=swsnd ,hsndd. The contributions of the next order,Os«d,
areLx2=c2shws1d ;hs1djd wherec2

T=sc2
sad ,c2

sbdd,

c2
sad = − 6bf0sswx

s1dd2 + ws1dwxx
s1dd + 2sa − 3bf0

2 − H0
2kdwxX

s1d

+ gs4f0wxxxX
s1d + wxxxx

s1d d + H0ks4hxxxX
s1d + hxxxx

s1d d,

c2
sbd = 2ks− H0wxX

s1d + 2hxxxX
s1d d.

Finally, at order«3/2 we get Lx3=c3shws1d ,ws2d ;hs1d ,hs2djd,
wherec3

T=sc3
sad ,c3

sbdd reads

c3
sad = wT

s1d −
sa − 3bf0

2d2

4g
ws1d − 6bws1dwx

s1d − 2f0wx
s1dswX

s1d

+ wx
s2dd + sa − H0

2kdswXX
s1d + 2wxX

s2dd − 3bfwxx
s1dssws1dd2

+ 2f0ws2dd + 2f0ws1ds2wxX
s1d + wxx

s2dd + f0
2swxx

s1d + 2wxX
s2ddg

+ 2gs3wxxXX
s1d + 2wxxxX

s2d d + 2H0ks3hxxXX
s1d + 2hxxxX

s2d d,

c3
sbd = hT

s1d − kfH0swXX
s1d − wxX

s2dd + 2s3hxxXX
s1d + 2hxxxX

s2d dg.

We could continue up to any order with the expansion. In
all cases we will obtain a nonlinear equation, such that at
order«n/2,

Lxn = cnshws1d, . . . ,wsn−1d;hs1d, . . . ,hsn−1djd. sA5d

However, at order«3/2 we are already able to extract a closed
evolution equation for the amplitudes of the pattern and so
we will stop at that order.

Our task is to solve the hierarchy of equations given by
Eq. sA5d. At order«1/2 the problem is homogeneous and with
appropriate boundary conditions,

ws1d = AsX,Tdexpsiqcxd + A*sX,Tdexps− iqcxd,

hs1d = BsX,Tdexpsiqcxd + B*sX,Tdexps− iqcxd, sA6d

is a solution. However, the amplitudesA andB are undeter-
mined at this point. The subsequent orders are no longer
homogeneous and therefore their solvability cannot be en-
sured unless one implements the so-calledFredholm alterna-
tive theoremf28g. In our case the application of the theorem
simply states, as a recipe, that for Eqs.sA5d to have a solu-
tion the functionscn cannot contain the fundamental mode
exps±iqcxd. Thus by substituting the solutionsA6d into the

REIGADA, BUCETA, AND LINDENBERG PHYSICAL REVIEW E71, 051906s2005d

051906-10



next order or the hierarchy and imposing the solvability con-
dition we obtain

ws2d = −
8bf0

3sa − 3bf0
2d

hfAsX,Tdg2 expsi2qcxd + fAsX,Td*g2

3exps− i2qcxdj,

hs2d =
4bf0gH0

3sa − 3bf0
2d2hfAsX,Tdg2 expsi2qcxd + fAsX,Td*g2

3exps− i2qcxdj.

Once again, the value ofA and B cannot be determined at
this order. However, at order«3/2 the application of the Fred-

holm theorem provides the conditions that determine the val-
ues of the amplitudesA, B. These conditions constitute the
amplitude equations for our pattern forming system,

]TA =
sa − 3bf0

2d2

4g
A − b

s3a + 7bf0
2d

2g
AuAu2

+ 2Sa − 3bf0
2 +

H0
2k

2
D]XXA +

3H0ksa − 3bf0
2d

g
]XXB,

]TB = H0k]XXA +
3ksa − 3bf0

2d
g

]XXB. sA7d

EquationssA7d can be rewritten in terms ofx and t to
readily obtain Eqs.s9d.
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