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Nonequilibrium patterns and shape fluctuations in reactive membranes
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A simple kinetic model of a two-component deformable and reactive bilayer is presented. The two differ-
ently shaped components are interconverted by a nonequilibrium reaction, and a phenomenological coupling
between local composition and curvature is proposed. When the two components are not miscible, linear
stability analysis predicts, and numerical simulations show, the formation of stationary nonequilibrium
composition/curvature patterns whose typical size is determined by the reactive process. For miscible compo-
nents, a linearization of the dynamic equations is performed in order to evaluate the correlation function for
shape fluctuations from which the behavior of these systems in micropipet aspiration experiments can be
predicted.
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I. INTRODUCTION basis of this ided4-9]. However, these approaches consid-

Polar lipids self-assemble and orient, with the hydrophilic®reéd membranes as equilibrium systems. In a biological con-
portions facing water. The water may be sandwiched by twdext, this hypothesis is at best hopeful.
lipid layers, as in the black spots in soap bubbles that de- Nonequilibrium conditions are ubiquitous in nature, and
velop at locations where the two layers are closer than théor this reason the out-of-equilibrium behavior of mem-
shortest wavelength of the visible spectrum and that occubranes, both in cellular systems and in laboratory-prepared
just before the bubble bursts, or the water may be outside ofesicles, has attracted much attention over the past few
the two lipid layers, as in biomembranes. While it is knownyears. The first successful approach to the study of nonequi-
that the structure of a biological membrane is far more comfibrium membranes was introduced by Praat al. [10].
plex than a simple lipid bilayell,2] because of embedded Roughly summarizing their modeling approach, they sug-
proteins, cholesterol molecules, and ions, to name just a fegested that some externally activated componeiits
of the components that provide the full functionality to this tramembrane proteifhgct as “pumps,” generating forces on
structure that is crucial to the life of the cell, it is neverthe-the membrane that locally change its curvature. Variations,
less acknowledged that the lipid bilayer is the basic structuraimprovements, and sequels of the initial mo@i&l-14 as
unit of all cell membranes. An understanding of this simplerwell as related experimental studigs?,15 to a large extent
system is therefore extremely important in an effort to sheccomplete the understanding of the nonequilibrium behavior
light on the properties and functioning of active transport,of bilayers with inserted active components.
signaling, and adhesion in cells. Furthermore, artificial lipid Our interest in this work lies in a different nonequilibrium
bilayers are widely used in a number of nanotechnologicathat may arise from externally activated chemical processes
applications ranging from solar energy transduction and bioinvolving the transformation of the elementary membrane
sensors to drug development. lipid components. As an example, nice experiments by

A lipid bilayer is highly flexible and liquid-like(as is a  Petrovet al. [16] show the effect of an ongoing photocon-
real membrane It can therefore not be viewed as a statictroled chemical reaction on the curvature of synthetic giant
inert boundary but must be recognized as a dynamical struasesicles. Other evidence of chemically induced shape trans-
ture[3]. In the case of a biological membrane, lipid bilayersformations is found in the nervous synaptic process: a reac-
serve as quasi-two-dimensional solvents for proteins and atlon that interconverts two differently shaped constituent
other components, and are intimately involved in many biophospholipids of the membrane plays a crucial role in the
chemical processes. Moreover, its ability to change its shapfission of vesicles in nervous cell47,18. Recent experi-
(curvaturg is an essential property of the lipid bilayer since ments also point to the importance of high-curvature lipids in
the formation of vesicles and the permeability properties oimany cell processes such as membrane fugl@h So far,
the cell depend on it. no models for this kind of nonequilibrium situation can be

From the modeling viewpoint, it became recognized durfound in the literature. Our aim is to gain physical insight
ing the 1990s that some internal degrees of freedom are neto the role of a generic nonequilibrium reaction acting on a
essary to understand the large variety of conformationainembrane that is, in turn, described through a curvature/
changes found in cell and synthetic membranes. In particulagomposition coupling. We show how the reactive process
the local composition of the bilayer can crucially affect its endows the membrane with a rich pattern formation phenom-
local curvature, and some models were developed on thenology and specific characteristics of its shape fluctuations.
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@ II. MEMBRANES OF IMMISCIBLE COMPONENTS
A. Model and analytical results

The membrane is defined as a two-dimensional surface
with a concentration difference order parameteand a local
extrinsic curvatured. The rigidity of the membrane leads to
an elastic energy contributiom/Zf[H—Hsp(¢)]2dxdyto the
total energy, where is the bending rigidity modulus, and the

FIG. 1. The two membrane componers(left) andB (right)  spontaneous(equilibrium) curvature Hgf¢) reflects the
havefopxositg cone shapes. V\?(aﬁarpt\)itrarily choose a positivte) C;”"%hape asymmetry between the two lipid components. For
ture for A and a negative one . reaction interconverts bot H s i H —
species withk, and?(_ being the forward and backward reaction j\;irphpl:_(;:)ti (;N ancg?(;)it‘lg ![Igetzg dsecpheennﬁlztri]geinm::;w_l(ﬁvno'the
rates, respectively. Monge parametrizatio20] a deformable surface is de-

We present a simple kinetic model of a two-componentscribed by[x,y,h(x,y)], whereh(x,y) is the displacement
deformable bilayer with a chemical reaction. We model non{(heigh field for the local separation from the flat conforma-
active membranes where the nonequilibrium nature of thdion. This representation is valid for surfaces that are nearly
system is caused by a chemical reaction that interconverf#at with only gradual variations df, and allows the approxi-
two differently shaped components of the bilayer rather tharmation H=V?h. As a function of these variables, the pro-
by inserted active components. In the model, the membraneosed energy functional reads
is composed of two species: lip/l which is assumed to be
coned-shaped, and lip#l, which has an inverted cone shape a B v K
(see Fig. 1 We consider the simplest scenario where the f:f {‘§¢2+Z¢4+ 5| V B+ E(Vzh‘ PHo)? |dxdy,
outer layer of the membrane is composedAcadéind B lipids,
whereas the inner layer is composed of a single component (1)
without any curvature effect. We also prescribe that lipids do . .
not move between the inner and outer layers. Both of thes@here the first three terms correspond to the typical
simplifications are made in most membrane models. Accord®inzburg-Landau expansion responsible for phase separation
ing to these assumptions, the membrane is simply modelet:8:¥=0), with an equilibrium concentration difference

as a laterally heterogeneous elastic surface with an interndteq= ¥/ 8, and a typical interface lengti=yy/a. For
Composition order parameter |oca||y Coup|ed to the Curva.self'assembled free membranes, the surface tension contribu-

ture. tion (o/2|Vh[?) in the free energy can be neglected, and we

Within this framework, we are basically interested in two have not included it in Eq(1).
situations. On the one hand, for immiscible components, we The kinetics of¢ follows a conserved scheni&1] plus
show that phase separation in the membrane leads to tfige reaction contributions,
spontaneous development of structures involving heteroge-
neous distributions of both composition and curvature that L R
finally result in stationary finite-sized nonequilibrium do- E‘DV % ~T(¢= o), (2)
mains. This instability is studied by performing a linear sta-

bility gnalysis of the kinetic _equations, anq the paFter”‘wherel“:kﬁK and ¢o=(k_—k,)/ (k. +k ). k, andk_ are the
selection rQIe of thg reactive process s est""b“Sthforward and backward reaction rate constants, respectively.
Corresponding _numencal simulations will be shqwr_m to SuD'Considering a permeable membraie., ignoring hydrody-
port these predl_ctlons. On the_other ha_nd, for miscible comp e interactions we adopt the following relaxational
ponents we de_rlve the correlatpn function for_the rr_1embran%qua,[ion for the evolution of the height field:

shape fluctuations. The fluctuation spectrum is mainly deter-
mined by the bending energy at small surface tension, and
here we find the same expression for nonreactive and reac- iy (3)

tive cases, but with different bending rigidities. This change ot oh

in the behavior of the fluctuation spectrum between equilib-

rium and nonequilibrium states might be easily controlledwhereA is a mobility parameter proportional to the inverse
and observed in micropipet aspiration experiments. of the typical relaxation timey,.

This paper is organized as follows. In Sec. Il the study of The kinetic equations can readily be adimensionalized:
membranes of immiscible components is addressed. We prenergy is measured in units &ET, time in units ofz,, and
pose a free energy functional, derive the kinetic equationdength in units ofyD7,. In terms of the new dimensionless
and perform the linear stability analysis of these equationsparameters, the kinetic equations become
Numerical simulations are carried out and some representa-
tive results are shown. In Sec. Ill bilayers of miscible com- 54 5 ) - 5 .
ponents are analyzed and the change of the height fluctuation —~ = (kHG— @)VZh + 384V + 68¢| V ¢|° — YW
spectrum between the reactive and nonreactive situations is
established. We conclude with a brief summary in Sec. IV. - kHoV*h=T(¢p— ¢y),
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FIG. 3. Phase diagram for the case of immiscible components in
the plane(«,I") for y=1 and¢y=0. The regiona<0 (not shown
corresponds to a membrane of miscible constituents displaying a

. . . flat shape.
FIG. 2. Schematic representation of the composition/curvature P

coupling effect in an unstable membrane.

L1= - kHoa*,
oh 4 )
Pl KV + kHV2 6. (4) Ly1= - kHo?,
At thermal equilibrium Eqs(4) describe the spinodal decom- L= - k. (5)
position of two immiscible components. Due to the ) , ) )
composition/curvature couplinglo, both fields will form The eigenvalues,, of the Jacobian associated with the

complementary patterns. As phase segregation progressé@??rix{; corre_spond to the linear growth rates of the p_ertur-
membrane regions with positiveegative ¢ deform in such ~ ations. Solving the eigenvalue pr<2)blem we  obtaig

a way that the curvature become positieegative, as  —2(TILL]* VALL]), where A[L]=Tr L] -4DefL]. At the
shown in Fig. 2. In the absence of reaction, this coarsenin§stability boundary, Res,) vanishes for one finite wave
process does not end until there is complete segregation infdmber that is defined as the first unstable mode. If the
two large domains. A nonequilibrium reaction such as thdmaginary part ofwg is not zero at this wave number, we
one we propose converts one species into the other. Thiave a wave bifurcation. The condition for this bifurcation is
amounts to a large-scale mixing mechanism that counteracgtained by requiring T£]=0 andA[£]<0. For positivex,

the short-scale ordering effect of phase separation. Therefolé a, 8, and vy, these conditions do not apply at any real
the segregated structures grow only until mixing and orderwave number, and consequently, wave instability is not
ing effects compensate, resulting in a stationary patterrfound in this model.

These types of nonequilibrium patterns are also found in On the other hand, if the imaginary part of the growth rate
other systems such as polymer blefi#,23 as well as in  is zero at the bifurcation point, we have a Turing-like bifur-
monomolecular adsorption on metal surfa¢éd,25, and cation. The condition for this bifurcation is [&X]=0,
have to be distinguished from typical Turing pattef@6]. = whose analytical expression is easily obtained, yielding the
Even though they emerge from the same kind of instabilityfollowing condition for the model parameters:

(see beloy, Turing patterns are expected in systems with 20

species with different diffusivities. In the model presented [=T.= (a = 3B¢p) (6)
here, the domains result from the competition between a lo- ¢ 4y '

cal thermodynamic affinity of equal species and a nonequi- i

librium reaction mixing effect. As we will see, linear stability @nd for the wave vector of the first unstable mode,

analysis and numerical simulations support this idea.

) . -38¢42 [T
The stationary uniform state correspondsde ¢, and quaz—'&% =4/, (7)
arbitrary h. The linear stability of these uniform solutions is Y Y

tested by adding small plane-wave perturbations of wave\ phase diagram is shown in Fig. 3. In the unstable region,

numberq and linearizing Egs(4). This procedure deter- Turing-like patterns emerging from the competition between
mines the 2 linearization matrixC, with the following  phase separation and reaction are predicted. In the stable

coefficients: phase, although the two components are not inherently mis-
cible, the reaction completely mixes the system, and the bi-
L11= - ¢ (kH5— a+ 3847 + yo?] - T, layer becomes stable and essentially flat.
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0.4

h(x,t) =h+ [Bexpigex) +c.cl,

where c.c. stands for the complex conjugate, and the ampli-
tudesA andB satisfy the equations

2
aA= (T, F)A{l _2PBar 1p) |A|2}

(a=3B¢5)°
2 _ 2
+ 2<a— 3Bd5+ H7°“>axxA+ o2 23509 ; 6,
y
_ 2
4B = Hoxa A+ @3B0, o 9)

1.5

Moreover, sinceB is purely relaxational, we can adiabati-

FIG. 4. Dispersion relation functions, at different values of.  Cally eliminate it and reduce Ed9) to a single evolution
The other parameters are held fixedagty=1, ¢,=0, andx=H,  €quation for the amplituda,

=0, except for the curve with circle symbdlabeled with “& curv” 28(3a+ 7,3¢2)
in the legendsthat corresponds te=10 andHy=0.2. adA=T.-T)Al1- a—220|A|2 + 4m§r9xxA
(o= 3By ’
In the unstable phasé&,<T, there is a range of unstable
modes. Comparing with the equilibrium cade=0) where a B= mA (10)

continuous range of modes startinggatO is unstable, reac- 6q§
tion stabilizes the long wavelength modes so that, as we . ) )
anticipate, the long time distribution of the system results in! herefore the amplitudes satisfy the real Ginzburg-Landau
a stationary nonequilibrium pattern with a finite sigee eduation. Ifl'>T'c then the amplitudes relax to zero and a

further discussion in Sec. I)BNotice in Fig. 4 that increas- homogeneous stats=¢, and arbitraryh=h) is obtained.

ing " reduces the range of unstable modes progressively uddowever, if I'<I'; then the amplitudes reach a stationary

til I' reaches the marginal value in @), above which there value and a pattern developsdf e R. Notice that the am-

is no longer any instability. The limits of the range of un- plitudes present a negative-positive aspect, that is, at sites

stable modes are given by whereA reaches a maximurtminimum) B reaches a mini-
mum (maximum). This is simply a consequence of the par-

a-3B4% 1 ticular selection of sign for the spontaneous curvatdge

= ———2+ —\(a— 3B - 49T, (8)  With regard to the nonlinear termi|A|?, note first that its
2y 2y coefficient is always negative. As a result, the nonlinearity

always plays a stabilizing role, the bifurcation to pattern for-

which are independent of curvature parameters. Curvatur@ation is supercritical for all values of the parameters, and
reduces the unstable mode growth rdee line with circles  no hysteresis may occur. Secondly, the nonlinear term pro-
in Fig. 4) but without changing eitheq. or the marginal vides information about the relevant modal interactions. At
Condition(G). The effect of curvature is eXClUSively related to this point, we can take advantage of the universa”ty proper-
the kinetics of the phase separation prodseg below ties of the amplitude equations to infer the spatial arrange-

Before numerically solving the kinetic equation, we canment of the pattern in two dimensions. Since the Swift-
shed light on the expected pattern formation process by peHohenberg model also shares the same universality class
forming a weakly nonlinear analysis using the amplitudewhen performing an amplitude equation analysis, namely, it
equations technique. This analysis allows us to compute giso reduces to the real Ginzburg-Landau equait$)29,
solution for our problem near the bifurcation threshold, findihe pattern formation mechanism is the same in both models.
the universality class of the pattern formation mechanismyt js well-known in that case that the modal interactions in
and explain some properties such as the spatial arrangemeffo dimensions are such that if the inversion symmetry is
of the patterns found in the numerical simulations. preserved then roll-like patterns develop. On the other hand,

For simplicity, we restrict the calculation of the amplitude if that symmetry is not fulfilled, a hexagonal structure ap-
equations to one spatial dimension. In spite of this restricpears_ Note that in Eqg4) the inversion symmetry{¢
tion, we will be able to predict the kind of spatial arrange- _, — h—, -n} is only satisfied if¢,=0. Thus we expect a

ment found in two dimensions by using the universality rq||_jike pattern in that case, while hexagons will develop
properties of the amplitude equations. Details of the derivaginerwise.

tion of the amplitude equations are presented in the Appen-
dix. The analysis reveals that a solution for E@§.near the

bifurcation to pattern formation reads B. Numerical results
Numerical integration of Eq94) has been performed in
P(x,t) = ¢o+[Aexpligex) + c.cl, two dimensions using an explicit Euler scheme in a square
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FIG. 5. Three sets of selected patterns resulting from the numerical simulation based 6.E¢jsst row:I"'=0.05, ¢y=0. Second row:
I'=0.2,¢pp=0. Third row:I"=0.2, $9=0.1 (off critical quench, showing an array of dropletlike domains rich in the minority species. The first
three panels in each row correspond to #éeld distributions of a 12& 128 system at=100, 400, and 200(from left to right). Darker
(lighter) regions are richer in thA(B) lipid. In the last panel of each row the height field has been plotted in three dimensions for a 64
X 64 portion of the corresponding systemta?2000. Some exaggeration along the vertical direction has been applied.

lattice with a periodic boundary condition. Small randomamplitude equations. Representative numerical results are

perturbations aroung= ¢, andh=0 are implemented as ini- Presented below.

tial conditions. The coordinate steyx was chosen equal to In Fig. 5 we show the simulation results for three different
1, and the time step was usualpt=10"* to assure good Situations. The first row corresponds to snia#0.05 and a
numerical accuracflength and time in dimensionless simu- critical quench(¢,=0), showing the development of a lab-
lation unit9. The numerical results presented in this sectionerynthine pattern that is still evolving &t 2000(the longest
correspond to highly immiscible componeritieep quench, time for the snapshots shown in the figuréhe coarsening
a=1 andB=1, leading to an equilibrium value @f.,=%1),  process, however, is progressively slowed down later on. The
and an interface thickness of the order of the space discretip-field profiles of these domainéorizontal cross-sectional
zation ({=1, which leads toy=1). The bending rigidity cuts through the patteymeveal regions where is +1 or
modulus is taken equal to 1 units ofkgT) [27], and we -1 connected by abrupt boundaries that indicate the short
consider two constituent lipids of very different shapes byspatial range over which the equilibrium order parameter
setting Hp=0.2. All of our numerical results are consistent changes from one value to the other. This is a signature of
with the predictions of the linear stability analysis and thethe fact that the phase separation process is dominant for this
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value ofI". The second and third sets of panels correspond to 15
largeI'=0.2 (the marginal condition for the selected param-
eters isI'.=0.295 showing laberynthindcritical quench in

the second royvand quasihexatic dropletlikéoff critical 4T
quench,¢,=0.1, in the third setpatterns. A spatial Fourier

transform of this stationary pattern shows a clear hexagonal _ 1.3}
structure. These domains are already stationary at times i
longer thant=2000, and can indeed be considered as non- 82’12

equilibrium stable phases of the system, involving both com-
position and curvature modulations. The# andh-field pro-
files have a smooth harmonic shape due to the strength of the 111
reactive process. In both cases, since we are close to the
bifurcation boundary, small local deviations from the station-
ary values are obtained. We especially monitor the variations 1 ] 2 3 "
of the height field and find thatVh|)<0.05 is satisfied, so log,q(t)

that the model has a real physical correspondence.

In order to assess the kinetic ordering process more quan- FIG. 6. Log-log plots ofL(t) vst for different values of. The
titatively, we monitor the domain size(t) computed from values ofL(t) have been computed as an average over 10 runs of
the composition correlation function&p(r’,t)¢(r’ +r,t)) the correlation functions in 128128 systems. In all casef=0.

(the same results are obtained using the height correlatioph® curvature parameters are setds10, Ho=0.2 for the thin
functions. Here, the bracket§--) indicate not only an aver- lines, andx=Ho=0 for the thicker lines.

age over orientations of and over surface positions, but a5 when the kinetics with and without curvature are still
also over different rea_l|zat|ons of r_andom initial cond[tlons.quite similaj interfacial energy due to the rapid formation of
As has been reported in other studies, curvature considerablymposition domains is much larger than any other energy
slows down the coarsening segregation process. This is spgontribution. In other words, phase separation proceeds and
cially evident when a reaction is absent, and for this situationrmembrane curvature follows the composition change. At this
different kinetic approaches have been invoked. A mean-fieldtage the reduction of the interfacial energy governs the
kinetic scheme by Taniguchv] leads to extremely slow la- coarsening process, leading to the 1/3 Lifshitz-Slyozov ex-
berynthine stripe growth obeying(t)~t" with r=0.1, in-  ponent. Later, at intermediate times, when composition do-
stead of the usual spinodal decomposition growth exponemhains become larger, the height order parameter is no longer
of 1/3 [30]. Later, Monte Carlo simulationg8,9] showed able to keep up with the phase separation process and some
how, in the long-time evolution, those stripes break up intocurvature energy is stored, causing the whole coarsening pro-
disconnected buds that subsequently diffuse and coalesce. ¢tess to slow down.
our model, when the reactive term is removed, similar results The final size of the nonequilibrium stationary domains,
as those presented in Réf/] are obtained, and no stripe L;=L(t—~), is determined by the reaction parameter. The
breakup is observed. The reason for the disagreement beependence of the final pattern size on the reaction param-
tween the analytic and Monte Carlo schemes is probably dueter, L;~I""5, has been largely discussed in the literature
to the fact that continuum models subjected to a specifi§22,31,32. The results of our model also reproduce the two
parametrization of the surface such as given in Edsdo  limiting behaviors:s=1/4 for largel’ (close to its marginal
not allow for overhangs that are surely crucial in the latevalue), ands=1/3 for smallT'. In Fig. 7, L; is plotted for
stages of membrane phase segregation. different values of the reaction parameter. Linear fits for the
However, the cases in which there is no reaction or infour first and the last four data points give the slopes
which the reaction is weak are not of interest to us, since i0.323+0.006 and 0.26+0.006, respectively. The derivation
these cases the system evolves in such a way that large grefthe exponent values for the rigid situatiGlondeformable
dients of the height displacement field occur. As noted abovesurfaces is performed by minimizing an effective free en-
when this happens the Monge surface parametrization is nergy expressionwhere the reactive term is included via
valid and the model, although mathematically robust, doesreen’s functionsin a square(small I') and a harmonic
not describe the physical behavior of any real system. In thélargeI') approximation for the stationary concentration field
reactive cases, however, the slow kinetics is still observed fdi31,32. In the present model, the curvature kinetics relax-
the times prior to stationary pattern formation. This is ob-ationally follows the concentration dynamics. At longer
served in Fig. 6, where a set of curves showing the domaitimes (when the stationary patterns are already achipned
sizeL(t) is presented for several valueslof The situations  significant curvature energy is present in the system, so that
with and without curvature are compared for each case. Nowe can neglect the curvature contributions in Elg.and the
tice how the deformable systems evolve more slowly tharresults in Refs[31,32 are recovered.
the nondeformable ones, although the same final stationary In Eq.(3) we ignored the hydrodynamic effects due to the
size is achieved. There is no theory to explain such a slowingackground fluid velocity by considering a permeable mem-
down effect, but some hand-waving arguments may explaitrane through which the fluid drains freely as the system
the physical reasons for this behavior. Monitoring of the dif-evolves. Solvent hydrodynamic effecf83] can be ap-
ferent energy contributions in EqL) indicates that at early proached through a renormalized height mobility
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22 ' , ' In the equilibrium situatior(no reaction, the concentra-
tion field can be integrated out.F/d¢=0) from Eq. (11),
2} 1 leading to ¢eq=[kHo/ (kH3—a)]V?n. Inserting ¢eq in EQ.
(11) we obtain an effective free energy fhralone,
18 | ]
_ 13 Ferr= | | 2H(v2)2+ Z(| v h Z}dxd 12
=S| _ efff|:2( ) 2(| ) Y, (12)
g with an effective rigidity modulu$34]
14}
H2
Keff:K{1—< At )} (13)
1.2 kHy — @
-N Notice that, as a consequence of the composition/curvature
1 3 P ) coupling, the different preferred curvature of the lipid com-
log,(T) ponents acts to reduce the rigidity modulus framo e+

Note also thatk.;>>0 for negative values o, so that the
FIG. 7. Log-log plot ofL; vs I'. The slopes 1/4 and 1/3 are stability of the membrane is assured above the critical tem-
plotted for comparison with the large and smidltegimes, respec- perature.
tively. All the points have been calculated f@p=0, =10, and The dynamics for the immiscibility situation has so far
Hy=0.2, at sufficiently long times to consider the growth processheen considered to be strictly deterministic. Here, however,
practically halted. We have performed an average over 10 realizan order to obtain dynamical steady state functions, we add
tions. The system sizes are 12828 for largel’, and 256< 256 for  stochastic forces to the kinetic equations and perform an av-
smallI". erage over an appropriate ensemble. The dimensionless ki-
netic equation forg, once the reactive terms are included,
=(4uq)tin the second of Eq$4) in Fourier space, where  reads

is the solvent kinematic viscosity. The inclusion of this o OF
g-dependent mobility does not change the main results of the = VZ{—} -T(¢p—¢o)+ V -y, (14)
stability analysis and numerical simulations shown so far. ot 2

Before ending this section, we check the applicability of\yhere the last term corresponds to a conserving Gaussian
our results to real membrane systems. We adimensionalizgghise with correlations(f ,(r ,t)f (1 ,t')y=2ksTa(r 1) &t

tmhgnlg%?;i;ﬂgaﬂ?ﬁesréo u?allﬁr:g W?ri]ce[h:@;ilég:—:%/éﬁgg_ ~t'). For the curvature order parameter we again adopt the
—107—10°® cn?/s (for lipids in a liquid-phase membraje relaxational equation for a permeable surface,

pn=1cp (H,O at 20 °Q, and the typical unstable modes dh oF
=~ (.=0.5, we find that the size of the patterns obtained above a7 =" AE + i, (15
lies within the range 2—2@m, which is accessible in giant
vesicle(10-100um in diametey experiments. with A=1 in dimensionless units, arfg is a thermal equi-
librium noise with correlationgf,,(r,t)f(r’,t"))=2kgTS(r
I1l. MEMBRANES OF MISCIBLE COMPONENTS: —r")s(t-t").

LINEARIZATION AND SHAPE FLUCTUATIONS The kinetic equations become

In this section we consider a parameter region where the
membrane is thermodynamically stable. The instability in the ~ — = (kH5 = @)V2p— kHoV*h—T(dp— o) + V -1,
previous section was caused by the immiscibility of the two
lipid components, while we now consider the case of mis-
cible membrane constituents. Notice that the two situations il = - kV*h - aV2h + kHV2¢ + fi.. (16)
could correspond to the same physical system but at different ot
temperatures, belounstablg or above(stablg the critical
temperature. For the stable case we adopt the following freﬁu

energy functional:

The important quantity to characterize membrane shape
ctuations is the height varianégh,|?) at wave numbeq,
which is calculated by linearizing the kinetic equatidi$)

and solving them in Fourier space.&(q,w) andﬁ(q,w) are

the Fourier transforms o#(r,t) and h(r,t), respectively,
Egs.(16) can be written as

]-'=f {—g¢2+g(Vzh—¢H0)2+g(|Vh|)2 dxdy,

(11
where « is now negative, and the nonlinegB) and line iw #(d, w) =(811 alg> % #(d, ) +<iq 'f¢>
tension(y) terms have been removed since they are irrel- ﬁ(q,w) a1 Ay ﬁ(q,w) f, /)’

evant in the absence of phase segregation. An additional sur-
face tension term has been included in order to study mem-
branes under tension. where

(17)
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a;;=— (KHS -a)?-T, reference valuery) can be calculated analyticall6,37):
J— kBT g
= KH0q4a Aa= Py— |n(;0) . (24)
ay1= - kHoq?, Therefore the slope of the logarithm efversusA« obtained

by the micropipet technique yields a measure of the effective
bending modulus. Note that in these experiments a certain
tensiono is needed, but it has to be small since otherwise the
Solving these coupled equations, and using the statisticad,;q* term in Eq.(23) would be insignificant compared to
properties of the thermal noises, yields oo
Now the question is, how is the shape fluctuation spec-
) trum affected by the presence of the reaction? In other
w*(ay1 + 89)” + (1,81 — A48y + ©7)° words, how would the nonequilibrium membranes described
(19) here behave in micropipet experiments? To answer this, we
evaluate Eq(20) for I' # 0 and keep only the dominant terms
On integrating ovew, the height variance follows the gen- iy the limit q—0. For tensionless membranes we get

ay,=— k(* + o0, (18)

2k T(83,9% + ? + a3,

(h(g,w)h"(q,w)) =

eral expression (Ihg|?»=kgT/kg* and for membranes under tension were re-
, 1 A — cover(|hy/?=kgT/o0?. Keeping the dominant terms for both
(Ihg/*)=——| =+A" |[N=n— -], (200 limits, in the weak tension regime the fluctuation spectrum
AL reads
wherev and 7 are negative variables that read
) kgT
<|hq| >: 2 4 (25)
v B 17— og” + k(
=-—+-\B?-4C, (21)
7 2 2 Comparing this result with the fluctuation spectrum obtained
and for membranes with active proteifd2,13,153, no novel
) ) nonequilibrium contribution to the height fluctuations is
A=2ksT(a5,0° +a35y), found here. The effect of the nonequilibrium reaction in
stable membranes results in a change between a regime gov-
A’ = 2kgT, erned byks; to another one with the actual rigidity. Thus
the reaction makes the membrane more rigid by simply re-
B:a§l+ a§2+ 28,81, moving the composition/curvature coupling effect that di-

minished the rigidity in the equilibrium situation. This
22) change is more evident when the two components of the
bilayer are rather different in shape and miscible but close to
In the absence of the reaction, the evaluation of 2)  the critical temperature. In this situatiqtarge H, and
in the long-wavelength limit for a tensionless membrane<0) the difference betweer and «.¢; might be experimen-
leads to(|hy|%)=ksT/kesq*. This behavior is truncated and tally observable.
replaced bykgT/og? for a membrane under tension if only ~ Some caution, however, must be observed when deriving
the dominant terms at smat| are retained. Keeping the Eg. (25). In order to evaluate Eq20) for small g, we con-
dominant and the first subdominant terms, one recovers thgidered the termE? to be dominant with respect to the terms
well-known expression for the height variance in an equilib-2I" (kH3- ) ¢? (subdominantand also with respect to the
rium membrane, subsubdominant quartic contribution[Sﬁ(KHg—a)] q*
T [which are those that led to E(R3)]. However, the analysis
5 B Z (23) becomes more difficult if one notices that we are not in the
0Q” + Keif region of asymptotically small wave numbers since the
Notice that this result is obtained in a much simpler waySmallest accessible to an experiment is of ordet 1where

from an equilibrium average using the effective free energ)}- is the linear system size. Th_us one must look i_n detail at
in Eq. (12). the values of the parameters in order to determine exactly

which terms initially considered subdominant might indeed

brane shape fluctuations is based on the micropipet aspirg€ dominant when the reaction is presdritis dominant if
tion technique35]. In these experiments, a pressure differ-1 ~ 2 (Hg= @) Gnin, With gpnip~1/L and thus dependent on
ence is applied inside a micropipet in contact with a vesicldhe system Size. We know that for a sufficiently strong reac-
membrane. This creates a tension in the membrane that puli® processI'> dominates and Eq25) holds, but for inter-
the excess area$S due to the thermal shape fluctuations Mediate values 021“ the spgctrum could change S|gn|f|cr;mtly.
inside the micropipet. By means of this technique, the areafVhen 2" (<Hg—a) g becomes dominant, (|hg|%)
straina=AS/S s obtained experimentally for different val- =ksT/[I',/\8I'(kHj-a)]g® for a tensionless membrane.
ues of the applied tensian According to Eq(23), the rela-  These regimes are captured in Fig. 8, where a séthgf)

tive areal straimMa=a—aq (ag being the areal strain for a curves is plotted fow=0. Very large and zero values for

_ 2
C=(aj1a~ anayy)*.

<|hq|2> =

One of the usual experiments to study equilibrium mem
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10 toisomerization reactiong38,39, might be suitable to test
our predictions. The selection of the applied light wavelength
and its intensity may determine both the fraction of the two
isomers(¢y) and the strength of the reactive procd¥s,
respectively. Thus experimental work on synthetic vesicle
membranes made of these compounds can be specifically
designed to confirm the results of this model.

In the same context, for miscible components membranes
we have found a difference between the equilibrium and
nonequilibrium situations. The effects of the composition/
curvature coupling and the reactive process on the membrane
rigidity are established. Micropipet experiments with the
proposed membrane systems might confirm these results.
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The inclusion of hydrodynamic interactions can again beamplitude equations derivation.
accomplished by consideringh=(4uq)™* in the Fourier

transform of Eq(15). This modifies the coefficients,; and APPENDIX: DERIVATION OF THE AMPLITUDE

ay, in Eq. (18), which are now divided by4uq). Accord- EQUATIONS

ingly, the f,, thermal noise correlations also change to ) ) . . .
(o0, OF(r 1)) =[2kaT/ (4uq)]8(r —r')8(t—t'), and there- The starting point of the analysis is the one-dimensional

fore the parameteh’ in Eq. (22) has to be divided by4uq) version of the model for reactive membranes presented
as well. However, with these modifications the evaluation Oihereln,
(Ihg/» again leads to the results in Eq23) and (25). 0= (kHG = @) @y + 3B(@ + o)’ @xx+ 68(9 + o) ()2

_ 2\2
IV. CONCLUSIONS (a=3BH)° . _
4y (1-¢)e,

= YPxxxx— KHoyoox=
Starting with a simple model of a deformable reactive

membrane composed of two differently shaped molecules, __

we show that stationary finite-sized patterns may appear un- M= = oot oo (A1)

der some parameter conditions for the immiscibility situation For convenience, we have introduced in Egsl) some

as a result of the competition between phase segregation amadtation changes and definitions with respect to the ones that

reaction. These structures involve heterogeneous distribappear in Eqs(4). Thus in Egs.(Al) subscripts indicate

tions of composition and curvature whose sizes are detepartial derivatives, the fielp= - ¢ has been defined, and

mined by the nonequilibrium reactive process. For typicalwe have introduced the control parameter(I'.—I") /T’ that

values of the viscosity of water and lipid lateral diffusion accounts for the “distance” to the bifurcation between a ho-

constants in bilayers, and at normal room temperatures, sughogeneous statés <0) and pattern formatiofe >0). The

patterns are predicted to have a size of a few mictees the  homogeneous state according to this definition corresponds

discussion at the end of Sec. [).BTherefore t_h|s behawor to =0 and arbitrarjh=h.

yvoglq correspond to a rellable pat_tern formation mechamsm As shown in Sec. Il A, by linearizing Eq¢A1) one can

in lipid membranes which we believe to be experimentallygagily check that ifs>0 then the homogeneous state be-

accessible in giant synthetic vesicles. The amplitude of thesgy a5 unstable and

patterns is modulated by the bilayer rigidity and the sponta-

neous curvature of its components. In our numerical calcu- o(x) = Aexpligex) + A" exp(—igeX),
lations we have used realistic typical values for the rigidity,
while the spontaneous curvature depends on the specific ge- h(x) = B expliqx) + B” exp(— igex) (A2)

ometry of the membrane constituents. We specifically pro- o _ ) )
pose that azobenzene compounds, which are known to shok# @ solution in the steady statedf=(a-38¢3)/(2). It is
amphiphilic behavior in Langmuir monolayers and whoseworth noting that in Eqs(A2) we have arbitrarily taketn
shapes are strongly modified by means of well-known pho=0 without any loss of generality. Moreover, by substituting
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Eq. (A2) into Eqg. (A1) and expanding up to the first har-

PHYSICAL REVIEW E71, 051906(2005

scaleX, such thatX=g2x, wherex will now stand for the

monic, O[expligx)], one finds that the amplitudes scale as afast spatial scale. We also note that

function of ¢ as A, B~1e. Thus we expect that near the
bifurcation the following expansion holds,

o= 2 8n/Z()D(n)
n=1

Z 8n/2h(n) )

n=1

h (A3)

By computing the linear growth ratey,, that is, the larg-
est eigenvalue of the linear probldsee Eqs(5)], we also
note that

@glq—q, = C1 + Co(d - Go)?,

e—0

whereC; are constants. Thus as a functionsothe width of
the band of unstable modes scales~as’2 Then, sinceall
modes exfgx) can be written as eXj(q—q.)x]exp(—igcx), a
separation of spatial scalesan be performed between the
most unstable mod&ast and the rest of the modes of the
unstable bandslow). Let us call the slow modulation spatial

_(a=3B¢))°
4y

HoKaXX

Then, Egs.(A4) can be trivially written asl.y;=0, where
(xn)T=(¢™,h™). The contributions of the next orded(s),

areLy,= ({¢V;h D)) where g = (42, y),

2 = - 68h((¢P)2+ P ell) + 2(a - 3845 - H3x) o,

+ 7(4¢0(Pxxxx+ (Pg()xx) + HOK(4hx])-()xX+ hg(xxx)

=2«(- HOQD(l) + 2h§<xx)<)

Finally, at ordere®2 we getLys=y5({¢V, ¢'?;h® h@}),
whereyi=(y2, y) reads

_(a B¢o)2

vg' = 1= 6866l - 2000 (¢

+¢@) + (a H30) (o + 2613) — 3Bl ()2
+ 2600 + 200V (26 + fpxx) ) + d5(e + 2631
+ 27(3@%@("’ 2‘Pxxxx) + 2"'0"(3h><xxx"' 2h2)

XXX

‘//<3b) = h(l K[HO((PXX QDxX) + 2(3hxxXX+ 2hx§()xx)]'

+ (3B¢g + HC2)K — @) dyx ~ Yoxxxx

explog)qq, = explst).

e—0

Therefore we can define a slow time scale as a function of
the control parametef,=&t. The separation of scales can be
implemented in Eqs(Al) by replacing the spatial and tem-
poral derivatives according to the chain rule such that

— dy+&29y and o, — edr.

By implementing the separation of scales and substituting
Egs. (A3) into Egs. (A1) we obtain a rather cumbersome
expansion in terms of. The lowest order contribution is of
O(&'?) and reads

(1)

YPxxxx )~ HOKh(l)

XXXX

_ 2\2
(365 + Hi— ey - %w

01

Hox oy D _ehM =0,

XXXX

(A4)

Note that Eqs(A4) correspond to the linearized version of
Egs. (Al) in the stationary state. We define the linear
operator

= Hordyuxx

~ Kdyyxx

We could continue up to any order with the expansion. In
all cases we will obtain a nonlinear equation, such that at
ordere™?,

Lxn = ¢n{e™, S hY}. (A5)

However, at ordee®? we are already able to extract a closed
evolution equation for the amplitudes of the pattern and so
we will stop at that order.

Our task is to solve the hierarchy of equations given by
Eq. (A5). At orders'? the problem is homogeneous and with
appropriate boundary conditions,

@ = A(X, T)expligex) + A" (X, T)exp(— igcX),

,(P(n—l); h<l), .

hD = B(X, T)expligx) + B' (X, T)exp(—iqx),  (A6)

is a solution. However, the amplitudésandB are undeter-
mined at this point. The subsequent orders are no longer
homogeneous and therefore their solvability cannot be en-
sured unless one implements the so-calfeztiholm alterna-

tive theoren{28]. In our case the application of the theorem
simply states, as a recipe, that for EG&5) to have a solu-
tion the functionsy;, cannot contain the fundamental mode
exp(zigex). Thus by substituting the solutiofA6) into the
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next order or the hierarchy and imposing the solvability con-holm theorem provides the conditions that determine the val-

dition we obtain ues of the amplituded, B. These conditions constitute the
g amplitude equations for our pattern forming system,
(2 = _ —ﬂd’o 2 i *72 2 2
¢ = {[AXX, T)]* expli2qex) + [ACX,T)'] - 38¢5)? 3a+7
3(&’—3,8¢3) F( Jc (9-|—A: (a Bd)o) A—ﬁ( o B¢O)A|A|2
. 4y 2y
Xexp(—i20cX)}, 5 )
5 Hgk SHok(a — 3B¢p)
+2{ a— 3B+ Y e A — Y =
4 H . Y
h@ = BP0 A x TR explizag) + AT T
338 3(a = 364))
X exp(— i20.X)}. 1B =HordxxA+ faxxB- (A7)

Once again, the value & and B cannot be determined at Equations(A7) can be rewritten in terms of andt to
this order. However, at ordef’? the application of the Fred- readily obtain Eqs(9).
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