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A minimal coupling model exhibiting isotropic, uniaxial, and biaxial nematic phases is analyzed in detail
and its relation to existing models known in the literature is clarified. Its intrinsic symmetry properties are
exploited to restrict the relevant ranges of coupling constants. Further on, properties of the model are thor-
oughly investigated by means of bifurcation theory as proposed by Kayser and RaRégisé Rev. A17,
2067(1978] and Mulder{Phys. Rev. A39, 360(1989]. As a first step toward this goal, the bifurcation theory
is applied to a general formulation of density functional theory in terms of direct correlation functions. On a
general formal level, the theory is then analyzed to show that the bifurcation points from the reference,
high-symmetry equilibrium phase to a low-symmetry structure depend only on the properties of the one-
particle distribution function and the direct pair correlation function of the reference phase. The character of the
bifurcation (whether spinodal, critical, tricritical, isolated Landau point, )etlepends, in addition, on a few
higher-order direct correlation functions. Explicit analytical results are derived for the case when only the
leadingL =2 terms of the potentigmean-field analysjsor of the direct pair correlation function expansion in
the symmetry-adapted basis are retained. Formulas are compared with the numerical calculations for the
mean-field, momenturh=2 potential model, in which case they are exact. In particular, bifurcations from the
isotropic and uniaxial nematic to the biaxial nematic phases are discussed. The possibility of the recently
reported nematic uniaxial-nematic biaxial tricritical pdiat M. Sonnet, E. G. Virga, and G. E. Durand, Phys.

Rev. E 67, 061701(2003] is analyzed as well.
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[. INTRODUCTION metry) on nematic order have been studied theoretically as
well. Molecular field(MF) [2-12] as well as Landau treat-
Mesogenic materials exhibit a rich variety of liquid- ments[13-15, and later simulation studies of lattice models
crystalline phasefl]. The simplest of them is the uniaxial [16-21], have shown that single-component models consist-
nematic, which results in the definition of a single macro-ing of molecules possessirg,, symmetry, and interacting
scopic Goldstone variable known as the director. by appropriately chosen continuous potentials, can produce a
Actually, nematogenic molecules do not possess cylindribiaxial phase. A similar scenario has emerged from the ana-
cal symmetry, and sometimes have appreciable dipole mdytical study of single-component systems consisting of bi-
ments, yet the resulting thermotropic mesophases of lowaxial molecules interacting via hard-core potent[@8-30,
molecular-weight compounds are usually uniaxial and@lso supported by simulation resuf1-33. In both cases,
apolar. In a number of cases, theoretical treatments haJge transition between biaxial and uniaxial nematlc.phases is
been(and still aré fruitfully simplified by assuming from the Mostly found to be second ordébut see a partly different
start that nematogenic molecules &g, symmetric. On the ~S¢€naroin Ref[lZ]), arjd a direct transition between isotro-
the other hand, over the last 30 years, the possible effects §i¢ and biaxial nematic phases is predicted as well. Gay-

molecular biaxiality(i.e., of deviations from cylindrical sym- De'neé potential modelésee Ref[34] for a review, origi-
nally developed for wuniaxial molecules, have been

extensively investigated; more recently, biaxial extensions of

them have been proposed and studied by simulatsee,
*Present address: Liquid Crystal Institute, Kent State Universitye.g., Refs[35—-4(). Most of the above cases involve single-
POB 5190, Kent OH 44242-0001, USA. Electronic address:site models possessiip, symmetry; on the other hand, in a
lech@alek.if.uj.edu.pl few other case$30,33, the potential model involves two

1539-3755/2005/7%5)/05171413)/$23.00 051714-1 ©2005 The American Physical Society



LONGA et al. PHYSICAL REVIEW E 71, 051714(2009

identical interacting moieties in each particle: each of them is

uniaxial, and they are connected in a V-shaped fashion. ]bs

Rigid-molecule models have been considered in the above

references, and in some other cag&d a more general MF

treatment was developed, allowing for interr@rsiona)

degrees of freedom. b,
On the experimental side, a biaxial phase was discovered \

in a lyotropic system in 198(042]. Since 1986 there have

been numerous reports of thermotropic biaxiality in low-

molecular-weight compoundgsee, e.g., Refs[43-44),

many of which have since been called into quesfii-50.

Only recent experiments on systems involving “banana

shaped” mesogenb1-54 seem finally to provide strong

evidence of thermotropic biaxial nematic behavior. ) )
On the theoretical side interest in studying biaxial nematidnodel and show that the two-tensor moffe2] is a special

phase also has increased over the last two yfd&$5-57.  case. Our analysis will be exact for a more general case when

In particular, Sonneet al. [12] have proposed a MF model the symmetry-adapted expansion of the direct pair correla-

involving only two scalar order parametefimstead of the tion function is dropped at the lowest relevant order with

usual four; see the above referengesd exhibiting isotro- =2 and when the triplet and higher direct correlations are

pic and uniaxial and biaxial nematic phases. An interestinglisregarded.

feature of the calculated phase diagram is the presence of a

tricritical point separating uniaxial and biaxial nematic

phases. The MF phase diagram resembles that of McMillan ~ !I: DENSITY FUNCTIONAL AND BIFURCATION

[1,58] for the nematic—to—smecti&-transition. ANALYSIS

In this paper we generalize the analysis present¢dzh We consider a one-component anisotropic fluid, com-
In particular we study in detail a microscopic, momentumpgseq of classical, identical, biaxial molecules, interacting
L=2 quel for 'ghe biaxial nematic phak& 16] by referring through a pairwise additive potentidV(x;—x,,Q;,Q,);
to density functional formulation of the Helmholtz free en- here thex’s are the positions of the molecular centers of
ergy. We start with the derivation of the bifurcation point mass and th€'’s refer to their orientations. The two molecu-

from the uniaxial to the biaxial nematic phase and determing, . ,jentations can be defined by ordered triplets of Euler
conditions under which it could change from first to Secondangles{qﬁ- 6., 4:}: on the other hand, it also proves conve-
order. A purpose of this formal analysis is to find a criterion AL '

: . ient to express them in terms of two orthonormal tripods of
that is thermodynamically exact and shows at what leve

approximations enter. The formulas will then be illustrated ectors(e.g., eigenvectors of the two inertia tensors; see Fig.
; . o 1), hereafter denoted .} and{l,}, respectively. Intermo-
with a MF discussion of the momentub=2 model. Some ) bl {hd P Y

" : . . lecular vectors are defined b
limiting cases of this model have already been introduced in y

the literature but no complete MF analysis even for this sim- r=X;—Xp, r=Jr|, f=rir. (1)
plest case has been offered. The phase behavior of the model ) ) ) )
will be analyzed by exploring its duality properties as well as "€ Symmetry properties and expansion of the pair potential
by bifurcation analysis. will b_e taken up again in the following section. Accordlng to
One of the objectives of our analysis is to study thermo-density functional theory59], the grand potentiaE[p] of
dynamic and symmetry properties of the simplest mode||qU|q crystqls is a fun(_:tlonal of the orientational, one-
showing a biaxial nematic phase. The model could be helpfuparticle distribution functiorp(€2,x)=p(q). In the absence
to shed light on possible reasons as to why the biaxial nenof an external field the expression f&fp] reads
atic is so elusive, especially in thermotropic materials.
This paper is organized as follows. After a detailed _Qis-g[p] = kBTJ p(@{InN[Ap(q)] - 1}dqg- 'MJ p(@)dg+ Felp].
cussion of the density functional theory in Sec. Il, we utilize
the formulation proposed by Muld¢B4] to derive general 2)

formulas for the uniaxial-to-biaxial nematic bifurcation ] ) ) o
point. The formulas derived will bring information on The first term in Eq(2) represents the ideal-gas contribution

whether the bifurcation point is critical, spinodal, or tricriti- With A=h'?8%/(2m)°n?l 1,15 resulting from the integration
cal. over momenta, wherg;, I,, and I3 are the principal mo-
Then in Sec. Il we apply the formalism to discuss MF ments of inertiam is the massB=1/kgT, h is the Planck
properties of the most general nearest neighbor lattice modéPnstant,T is the absolute temperature, akglis the Boltz-
with L=2 terms, which describes the uniaxial and biaxialmann constantFe/p] is the excess Helmholtz free energy
phases, and for which the present theory is exact. First, wdue to interactions ang. is the chemical potential. Also
will discuss a connection of the model with other soft- Jdqp(q)= [dx d€ p(x,€2)=(N) with (N) being the average
potential models known from the literature, especially in thenumber of particles in the system. For a given functional
context of various parametrizations used by the authordorm of Fg[p] the equilibrium one-particle density of the
Next, we will concentrate ortri)critical properties of the bulk system is found from the variational minimum &f

FIG. 1. Orthonormal, right-handed, body-fixed tripods of vec-
tors representing molecular orientations and used to parametrize
intermolecular interactions.
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with respect tgp. The necessary condition yielding a station- 1 n
ary distributionps(q) reads Kn+1(a,[6P]) = o f Cr1(0, G, - s [Pred) I SP(a)dgy
: i=1
=11 7
L iGTin A +KeTin o) - 1~ KeTC (@) 7
P p=pg and

=0, (3) vZeer %
_ VoZref —n

for fixed value ofu. Note thatu also serves as a Lagrange = \4 f Pref(@exp n2=:1p K@ LOPD
multiplier to guarantee that normalization p&(q) is ful- o o
filled. As usual the single-particle direct correlation function = Zee@Xp: -} (8)
Ci(a.[ps)) entering formula(3) is defined by the relation Here 5P(q)=P«(q) - Pf(q), due to normalization oP,.; and
C1(a,LpsD) ==B(6F el pll 3p)| =, Equation(3) can be trans-  Pg must satisfy/5P(q)dg=0. Additionally, the probability
formed into a self-consistent nonlinear integral equation forP (q) must be normalized to unity, which implies that

ps(a), (Vo/V)  Pred@)dg=1 andf(q) = (vo/ V) J Pred @) f(q)dg, where
the latter formula is the recipe to calculate thermodynamic
ps(Q) = Zg'exp{Cy(a.[ps])}, (4)  averages.

Clearly, by construction, Eq6) is satisfied bysP(q)=0.
with  the normalization  constant Zg=A exp(—Bu) Bifurcation analysis now seeks for nontrivial solutions that
=fexp{C1(q,[ps]) }da/{N). branch off from the trivial one. Assuming that the bifurcation

Now we consider a bifurcation from an equilibrium refer- takes place gb=p, we can now systematically seek for non-
ence statg,(q) [60] of symmetryG, to the stationary state Zzero solutions to Eq(6). In analogy to the previous works
ps(q) of symmetryG,;, whereg;, is a subgroup of,. Close to [24,6]] we (_:onstruct_them in the vicinity of bifurcation as an
the bifurcation point the difference between the states is af€xpansion in an arbitrary parameter
bitrarily small for eachq, which enables one to perform a _
conve?/gent functional qTaylor expansion dfex[p]p about 8P(q) = emy(q) + €75(q) + *--
pre(0). Recalling thatF,,[p] is the generating functional of
the n-particle direct correlation function§, [59] and intro-
ducing the dimensionless densjiy(N)vo/V we find where, due to the normalization 8{q) and P,(q), we can

impose [ 7,,dg=0. By substituting Eq(9) into Eq. (6) and
~ o comparing terms of the same orderdnwe easily find that
Fedps] = Fod pref] — ke T2 ] Cn(Q1, -+ G [ Pret]) equations forr,(q) have a hierarchical structure with respect
n=i 7" to K, and 7,,(q) (m=n)

=0t epit Eipt e, ©

X1 [P«(a)) = Pre(a)1dg;, (5 71(0) = poPre D{K2(A[71]) = Ko(a[7])},  (10)
i=1

() = poPref D{K2(a,[ 72]) = Ka(q,[72])}

where _ _—
+ p1Pred {K2(a, [ 71]) — Ko(q,[ 1))}

Cn( IERER) nv[ re]):_ {g]]:e ]/5( )"'5(n)}: .
o0 Gl = = BTl ol 0p(0) = 00Xl +B§Pref<q>({r<z<q,[n])—K2<q,[n])}+<2<q,[n])

= [ 6Cn— 1/ 6p(qn)]P:Pref

1
_ = 2
and p(q)=pP(q). The as yet unspecified constant chosen +Ka(@,[m1]) = Ks(q,[m]) + 2{K2(q,[71])
for each system separately, has a dimension of volume and is
constructed out of molecular parameters. For example, it —K—Z) 11
could be taken as the molecular volume for hard-core inter- A7), (1)
actions.
A straightforward consequence of the expangfris that 73(0) = PoPref( {K2(A[73]) = Ka(a[ 7D} + -+, (12)
the self-consistent equatio@) reduces to a form that can
directly be used in bifurcation analysis,
Zies * We still need equations fagg,,, the parameters that describe
oP(q) = 2. Pre@exp) 2 p"Kp,1(a.[5P]) { — Pred0) the direction and character of bifurcation and, hence, the or-
S n=1 der of the associated phase transition. These are found by

(6) noting that given the solution,(q) the intrinsic symmetry of
Egs.(10—(12) admits an additional class of solutions of the
with form 7,,(q) =7,(q) + @, 74(q), with «, being an arbitrary pa-
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rameter. Thus requiring from the start that the functiag) Alternatively, Eqs.(14)—(16) require an explicit formula
are orthogonal tar(q) for Felp]. There are many approximations #,, among
which the most popular ar@) the low-density(or the gen-
v ; ! . ;
vof (@ m(Q)dg= 8,4, (13) eralized second-order virlaéxpansion,

1

we fix bothp,_; and ,,=0. Note that the existence &f(q) BFelpl==7 f plap{exd - BW(ds,02)] - 1}p(g2)dda,
expresses the freedom of monotonic reparametrization of the
expansion parameter in terms of the new parameter e an
=Zi-g¢. . o . and (b) the MF theory,

Equations(10)—(12) considerably simplify by noting that
(a) the group-subgroup relation betwe&p and G; and (b) 1
the gO Symmetry OfKn(q,[Pref]) |mp|y thatfpref(q) Tl(q)dq B}—eip] - 5 P(ql)[BW(QLQZ)]P(QZ)dChdqz, (18)
=0 andK,(q,[7])=0. Taking this into account we arrive at ) )
simpler equations describing the bifurcation and its characWhich is the high-temperature expansion of Ety). In both

ter: equations the simplified notatidiv(q, ,q,) has been used for
o the pair potential.
71(a) = poPre AK(q, [ 71]), (14) As a first step in dealing with Eq$14)—(16) we need an
initially stable phase. This is represented by the one-particle
72(Q) = poPred {K2(a, [ 72]) — Ko(a,[72])} distribution functionP,(q), which, for givenF,,[p], can be
found from an equation analogous ) with ps being re-
+ 1P DK, [ 71]), +_p§P,ef(q){K3(q,[Tl]) placed byp,. Since the bifurcation equatiofi4) depends
entirely onP,.{q) andC, of the reference state this general-

1 ized eigenfunction equation can be solved to find the eigen-
+ E{Kz(q,[Tl])z— Kz(q,[Tl])Z}] (15)  functions 7; and the corresponding eigenvalups. The
eigenfunctions are related to the subgroupggand can be
_ _ expressed as linear combinations of the irreducible represen-
73(Q) = poPre D{K2(a, [73]) ~Ka(a,[7s))} + -+, (16)  tations ofg,. In general, the eigenvalues are degenei2dé
and, in order to identify the corresponding “bifurcating”
phase of symmetrg,, one needs to refer to the higher-order
equatioits) (15) that depend on higher-order direct correla-
tion functions. The true bifurcation parameter corresponds to
the minimum value ofp,, which then could be identified
with po.

The character of the bifurcation depends on the sign of the
first nonvanishing parameter, (n=1), usually p;. Gener-
ally, for p; <0 the bifurcation is a spinodal point while for
e p1>0 it corresponds to a critical point. Fgr,=0 and p,

# 0 we expect to have an isolated critical point terminating a
line of first-order phase transitions. The necessary condition
satisfied by the tricritical point i®;=p,=0. In Fig. 2 the

which are generalizations of the formulé3.4),(3.5 from
[24]. Note, particular, thatr(q) which bifurcates directly
from P,«(q) is an eigenfunction of the operator that involves
only the pair direct correlation function. The equations for
7,(g), although straightforward to obtain, become quite
lengthy for n=3. We have constructed ®ATHEMATICA
package to systematically work out the expressions;fa).

Equations(13)—(16) can now directly be studied to ide
tify the symmetry-breaking bifurcation from the equilibrium
state given byP.(q). They form a set of coupled integral
e_quatlons for the functions, which represent actual devia- generic bifurcation diagram is shown for critical and tricriti-
tions fromP,{(q) and forp,_;. cal cases

Please note that the equations derived are exact in the '
vicinity of bifurcation. Consequently, the bifurcation points,
V\(mch are elt_h_er spm_odal points for th_e first-order phase tran- || BIAXIAL ORDERING WITHIN GENERALIZED
sitions or critical points for the continuous transitions, are L =2 MODEL
fully determined from the properties of the one-particle dis-
tribution function and the direct pair correlation function of  The formulas of the previous section will now be studied
the corresponding high-symmetry equilibrium referencewithin the MF approximatior(18) [67]. Whenever possible
phase. The bifurcation points that mark the crossover fronthe analysis will be carried out for a general pair potential.
spinodal to critical type of behavigt.andau points, isolated On the other hand, more restrictive conditions are necessary
critical point9 depend additionally on the properties of the to analyze the uniaxial-to-biaxial nematic phase transition
three-particle direct correlation function. Tricritical points and the appearance of the tricritical point recently found by
may depend on still higher-order direct correlation functions.Sonnetet al.[12]. In this case we restrict our analysis to the
Perhaps we should add at this point that the direct correlatiogeneralized model of =2. Special cases of this model, es-
functions can be related through Ornstein-Zernike type opecially lattice ones, have already been studied by some of
relations to the ordinaryn-particle distribution functions the authors, as explained below. We shall adopt the notation
[59], where the latter are easily accessible in computer simuef Mulder from his paper on isotropic-symmetry-breaking
lations. bifurcation analysis for the class of hard biaxial particles
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@ 5P tions[62—69 or in a series of Legendre polynomials of even
order.
Alternatively, W can be expanded in a series of symmetry-
Pres Do adapted functionﬂm(ﬂ), or symmetry-adapted irreducible
\ tensors in Cartesian form[T*)(bl,bz,bQ]aﬁ,.. and
S —Teter 427, [T84,15,15)]0p.-- in which case it reads
P1<0, 7,>0 ~ — ~
W= E wL,mnAﬁrl;,)n(Q)
L,mn
b = 2 oL T (12 le) - To)(bybaby), (20
(b) L,mn
Po+ €5, +€ 7, whereAﬂ;L are orthogonaIDzh-symmetrlzed linear combina-
Pres 0, 7,>0 tions of Wigner rotation function@%(ﬂ) [66],
1 —\%"ma*dno
At =(242) S Db @)
2 ste{-1,1}
J dQ ARL(Q)ANG(Q) = 81 kOmpbng- (22
, p.q (ZJ + 1) ) p~Nn.qg
© ~ - .
oP Here Q denotes the set of Euler angles defining the intermo-
lecular rotation that transformis; into I,. The[Tﬁ#)(x,y,z)]
Pres Do tensors are defined & symmetrized in Cartesian forfig8]
AN ~ 1
TV =ch— > DTV 23
T m =g 2, PO T 29
51 Zosﬁz>°,ﬁ4>°
where
N . L L-1 1 | L) oy
FIG. 2. Generic bifurcation diagranta) for a first-order phase Tw = > Tml ® Tmz,
transition, (b) for a first-order phase transition in vicinity of mgm, \My m; m
a tricritical point, and(c) for a continuous phase transition. The
transition following the path frontb) to (c) describes a change of Tgl) =z,
character of the phase transition as observed, e.g., at the tricritical
point. +1
T == (xxiy). (24)

[24]. Notice that we do not intend to discuss relative stability
o_f the nema_ltic phase with respect to positionally ordereq.|ere(Lr;1 1 ‘#}) are the Clebsch-Gordan coefficients a6
(i.e., crystalline or smectjcones; in other words, the func- is the nh?n]zber of elements of the grogp. The appropriate
tion p(q) discussed in the previous section will be taken t0 bepgice of thect coefficients(23) allows the Cartesian ten-
spatially homogeneous. The pair potential is a real scalagqrs of the same rank to satisfy the orthogonality condition

function W(x; Xz, 04, €2), possessing global translational ith respect to a scalar product defined as a full contraction
and rotational invariance. It is also invariant with respect togyer Cartesian indices,

interchange of the two particles. Consequenilydepends

on the coordinates and orientations of the two interacting TOTU= 3 [TV, AT 5= 636 (25
particles via the appropriate scalar invariants, i.e., in the for- a,...B
mula,

The summation in the expansi¢20) runs only over relevant
W=Wr,( -b),( -19.(b; -1, i,k=1,2,3. (19 indices given by, m,n even, with O=m,n=L. Notice that

particle interchange symmetry implies additionally that
Moreover, theD,, symmetry of particles and particle inter- w_ .= ,m Which is evident from the expansion in terms
change symmetry entail thal is even with respect to each of T1) | the present case, the expansion will be truncated at
of the unit vectors ;bi’ . Actually, in terms of the MF, the | =2 ‘i keeping with many potential models studied in the
relevant quantity i8N, which results fromW by integrating literature and referenced in the Introduction.
overr; this is an even function of all termé;l,). Under It should also be noted that the formalism &f.) func-

general conditionsﬁv can be expanded in a series®func-  tions, the formalism of the irreducible Cartesian tenﬁt%,
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TABLE I. Typical models of L=2 studied so far in the The first simulation study of the dispersion model was
literature. carried out in Ref.[16], based on the parameter values
— — — w, 0,=A=0.2 andw, ,,=-0.08, respectively, and the model

Model 2,00 2,02 w3 22 was found to produce biaxial order; on the other hand, it had

also been found16] that a truncated model defined by the

Straley[5] B (2/\3)y ° same values ob, oo and w; o, but @, »,=0, did not support
Dispersion[16—20 -1 +/2\ —2\? biaxial order. ' ’

Two-tensor{12] -1 -3y -3\ The authors of Ref[12] have examined the two-tensor
Amphiphilic [21] 0 0 -1 model (see Table )l and, for general values of and \,

worked out the mathematical conditions under which the
model produces a biaxial ground state, as well as its stability.
and the use of scalar products-l, are all completely They have also proposed the simplified model, defined by
equivalent, and each of them has some advantage dependigg 0, and studied it by the MF method. In contrast to the two
on the specific calculations to be carried out. For conveabove cases showing isolated Landau points, in the resulting
nience, the conversion formulas between the three sets ghase diagrantRef.[12], Fig. 4) the biaxial-to-uniaxial tran-
functions for theL=2 representation of th®,, symmetry sition is found to be second order forO\ <0.20, then first
are given in the Appendix. The other geometric identitiesorder for 0.20<\ <0.22, and finally a direct first-order tran-
involving the scalar products that are helpful in finding rela-sition between biaxial and isotropic phases occurs Xor
tions between various models are easily obtained from them=0.22. In Ref.[12], the parametek was restricted to the
range O<\A<:. The caser>; was subsequently investi-
gated and preliminary resulfg1] suggest the existence of a
direct biaxial-to-isotropic transition, of first or second order.
The continuous interaction potentials proposed and stud- Another investigated modg21] is defined by the extreme
ied in this contex{see, e.g., Ref$5,6,12,24) can be cast in casew, o=z 05=0, w, 2=—1, which, so to speak, pushes
the form the simplification proposed in Ref12] even further; both
MF and simulation results indicate here a direct biaxial-to-
W= oAy + wp 0 AL, + AR + wp AR, (26)  isotropic transition of second order; the named model can be
regarded as a crude approximation to experimentally known
The maximum absolute value of the three parametershape-amphiphilic mesogef®1].
.00, 2,05 aNdw, 55, denotedk, will be used to set tempera-
ture and energy scaldse., T'=kgT/¢€). This allows us to
restrict the three scaled parametéos which we still use the ~
same symbolto the intervall-1, 1]. In many cases studied, Now we will study in detail the potential resulting
w,00=—1 andw, »,<0. Simulation results suggest that the when the expansion is truncated at the lowest-order terms
condition w, g,# 0, w, »,=0 entails the absence of biaxial L=2. With a slightly simplified notation and with the help of
order[16] (see also beloy In this sense, the choice,, formulas in the Appendix, it can be written down in the
=0, w;2,<0 defines a minimum coupling model still ca- following equivalent forms:
pable of producing biaxial ordering. -
Various specific parametrizations have been proposed and W= = [vgo{Sgrve) A Q) + v AZNQ) + AZ(Q)]
studied for Eq(26). One of them is based on an approximate

A. Models studied so far

B. General L=2 model and its properties

0,
mapping from a hard-block modgs]. In this cas€dropping + UZA(z,)Z(Q)} (27
an additive constainthe w, ,, parameters are given in terms

of B, v, andé, Table |, whereB, v, and$ are defined by Eg. =—|vod{sgnvog)L o - Bo+vg[L,-Bo+ Lo By]

(9) in Ref.[5], in terms of length_, breadthB, and widthw

of the hard rectangular blocks. The cdse10,W=1 was

studied in detail. The resulting mean field phase diagram

exhibits an isolated Landau point f&=+10 [5]. —— [ -3 A2+ (0s + V3 15)2
Another and more often studied modél6] can be ob- oo (v2=¥300) (b 19"+ (12 + \Suo) (B2 +12)

tained by starting from a dispersion model at the London—de 3 sgNvog) + v

Boer—Heller approximatiofi68—7(Q and isotropically aver- ( —sgnvgg) — )(b3 l5)2 - = 2 (29

aging over the intermolecular vect(see, e.g., Ref46,9)). 2

The model[16] has been extensively studied by both MF

(see, e.g., Ref§6-11]), and Monte CarldMC) simulations ==D3(by - 19)?=0y(by - 1)* = T3(b3 - 13)* + const, (30)

[16-20. According to these treatments, the maximum biaxi- . =@

ality can be realized by the condition=1/16, where a direct Where the Cartesian counterpaitts, =T '({l1,12,15}) and

second-order transition occurs between biaxial and |sotropiBm:Tf§)({b1,b2,b3}) of A functions are given in the Appen-

phases. MF and MC estimates for this transition temperaturdix. As already indicated above and [ih2], formulas(28)

to be found in the literature arelfye=1.6 and Tyc  and(29) for the potential in terms of orthonormal triplets of

=1.09+0.03, respectivelisee, e.g., Ref.19]). vectors, Fig. 1, and their scalar products, are more appealing

+uv,l ;- By} (28)
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than the one with symmetrizet™) functions(see the Ap- It is instructive to study the action @,; on the parameter
pendix for detaily since they clearly display the symmetry space{vo,v,}. For sgrivge) =1 this is shown in Fig. 2, where
of the interaction and the meaning of the coupling constantdive distinct areas, denoted,... ,E are identified together
On the other hand, in practical calculations of the mean fieldvith their D,; imagesAys, ..., Exs. These areas are separated
type, the representation in terms of symmetry-adapted fundsy self-dual (continuous and straight lines v,=1
tions allows one to use the orthogonality properti@®), —2vo/\3, v,=1+200/\3, andvy=0 of D,3, D15 and Dy,
resulting in an enormous simplification. respectively, and by the dashed straight lines=-1/3
Symmetry of the expressio(9), which is a complete —2v4/V3, v,=-1/3+24/V3, wherevy, of D,3andD,3 van-
equivalence of the axes of the tripods associated with theshes. The three self-dual lines cross at the pédintv,}
molecules, implies that the thermodynamics cannot change #{0, 1} of maximal symmetry, where all coupling constants
we permutés; among differen{by-1,)? terms. Consequently of the model(29) are equal. Along self-dual lines two out of
the sign ofvg in Eq. (29) is irrelevant and we could either the three coupling constants become degenerate. Finally, the
replacevq by |vg| or consider only positive values of. In  dot in Fig. 2 represents the isolatel,; self-dual point at
carrying out numerical analysis we shall restrict ourselves tquo,vz}:{—llvg,—l}.
vo=0. Moreover at least one @f must be positive. If all the It is sufficient to generate phase diagrams for the param-
coupling constants are negative we do not get a stable neneters taken from the shaded aman Fig. 2. The diagrams
atic phase. Again, doing numerical calculations we assumgor the remaining values of the parameters are obtained by
thatv3>0. systematic application of the duality transformations. The pa-
A further symmetry of the potentigR7) is found if the  rameters fromA correspond to states of predominantly pro-
permutation symmetry of29) is combined with the require- late symmetry while the image statds; are of predomi-

ment thatBW is left invariant during such operation. This hantly oblate symmetry. Therefore the self-dual lin€gt is
yields a nontrivialduality transformationbetween states at €xpected to separate states of oblate symmetry from those of

various temperatures. More specifically, suppose that we sprolate symmetry.

multaneously change the “2” and “3” axes of the molecules The interaction as given includes only the expansion
and substitute {sgnveo), [volvo, vt with  terms involvingL=2. It is the simplest possible case; how-

{sgng) . |vsd v, v}, Where ever, it is sufficient for the study of biaxial and uniaxial
1 nematic phases. The=2 model could be considered as a
s ol = =[s + 230+ 3 31 general!zatlon pf the well-knovyn Maler—.Saupe. or Lebwohl-
9voovod 415910 *+ 21300 vallved, (31 Lasher interactions. The only difference is that instead of one
vector attached to a molecule we are dealing with three or-

sgr(vegvg thonormal vectors as our molecules require three axes to
s = characterize their orientation in space. Some special cases of

_ Bug+ V3ug3 sgr(v%)) ~ va] + 3[Sgrvoo) ~ v2lv, the L=2 interaction have already been studied in the litera-
[sgrvgo) + 2v3vg + 3v,](3vy + V3v,) ’ ture and summarized in the previous subsection. Some rel-

(32) evant for further analysis are collected in Table I. In particu-
lar, the gray curve in Fig. 3 corresponds to tlee\) model
_ [ studied by Biscariniet al. [18], for which vy=12\=0, v,
Buo + \F3[3 S9rvo) +v,] _ (33)  =2\% andvg=e>0. It crosses the self-dual line fto,vo}
6vo + V3[sgnvgo) + 3v,] ={1/y/3,1/3, which is exactly the self-dual point predicted

By simple inspection we find that this so called duality trans-in [18].

formation, referred to af,s, leavesBW invariant, which
implies that the thermodynamic results for particles interact- C. Bifurcation analysis
ing through parameters{vy,v,} and temperaturet
=kgT/|vg) are the same as for those interacting throughf
{vg, vy} at t'=kgT/|vly. The self-dual case, defined by brp
the equationsv)=vg, v5=v,, Obeys all points lying on ;
the line 02=Sgr'(voo)—200/ \3 and the pOint {Uo,l)z}
={‘59r(_l)oo)/\’§,‘59fﬁvoo)} (v0o=0). The line v,=sgr{vey
—2v0/\3 for vy=0 and for sgfvgg)=1 separates states of _ _
predominantly prolate symmetry from those of predomi- pla)=Z 1exp{—,8fW(q,ﬁ§p@dq} (34)
nantly oblate one.

The duality transformatiorD; 5, involving axes “1” and ©of the self-consistent equatiod) for p(q), with p(q)
“3” yields equations similar to Eqs(31)—(33), but with  =ps(Q) or p(Q) =pe, and, subsequently, Eqel4)—(16).
(vo,v4) being replaced by-vg, —vg). The third possible du- Disregarding spatially ordered phases, like smectic and
ality transformationD;, givesvj=—vg, v4=v,, andvg,=vee,  Crystalline ones, and assuming thaP(q) =P(£2), vo7y(q)
which is in line with the observation that the equilibrium =7,(2) and (1/V)fdq= [dQ [[dQ P()=1] possesses
states ofv, and v, are identical, in agreement with the the same symmetry as our pair interactiome can expand
aforementioned permutation symmetry of E29). the distribution functiorP(€2) in the A functions,

Sgrivgv; =

Now we apply formulas(14)—(16) to study bifurcation

m the isotropic and the uniaxial nematic phases to the
axial nematic phase. As an example we will work out in
detail the MF formulas forF,, Eg. (18), which amount to
solving the MF version
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sign (Vgo) = 1
QU 2 ]
s >
A 4
0
-2
-2} B 1
0 1 2 3
FIG. 3. Action of the nontrivial duality transformatioR,; on Vo
the parameter spageg, vy} for sgrvgg) =1. Self-dual points are the

line  vy=sgrlve)) ~2v¢/ V3 and the isolated point{vo,va} FIG. 4. Division of parameter spadeq,v,} for sgnvge >0

={=sgrvo)/ V3, 591w }(voo=0) indicated by dot. Five different  according to the bifurcation phase diagram from the isotropic phase.
areasA, ...,E and the correspondin®,; imagesAygs,...,Exs are  yniaxial disklike states bifurcate for the parameters located in the
distinguished. The gray line corresponds to the parameter set stugrea A, Area B corresponds to rodlike states and the thick line

ied by Biscariniet al. [18]. The points belonging to lines,= represents the biaxial nematic phase. The self-dual line is a collec-
-1/3-3vg|/ V3 are not self-dual except for the point above, but thetion of Landau points.

line itself is left invariant underD,s. Self-dual points{vy=0,v,

=1} correspond to the biaxial phase. . . . . .
) P P Three classes of solutions are identifi¢a): the isotropic

phase ofyﬂzo, being always the solution of E37); (b)

P)=S 2L + 1WA<L) Q) (35 the uniaxial prolate or oblate nematic phase; érjcthe bi-
U 872 MM axial phase.
The bifurcation from the isotropic phase to uniaxial
where phases for Eq(37) has been studied thoroughly by Mulder

[24]. In particular, the bifurcation equatiofi4) yields the
bifurcation temperaturg, which in our notation is given by
AL = f dQ P(Q)AY) (Q) (36)

1
t. = —[s +u,+ (s -v,)%+ 42, (38
are the order parameters foe= 2. Using this expansion, the 10[ grtvoo) *+ v+ V(Sgrvod —v2) vol- (38

self-consistent equatiof84) now becomes

Equation(38) is exact within the MF approximation for the

potential (27). Actually, it is exact for a much more general

class of pair interactions as discussed 24]. According to

Eq. (10), the same formula is also obtained by replacing the

2 2 2 2 . — . :

+ (0oAZY+ v ATHAZHQ) +[sgrive) AT, potential parameters; ,,, with the corresponding structural
A . AR parameter<,, ., of the direct pair correlation functio@,.

+00A72]A70(2) + (veA7 o + UZAz,z)Az,Z(Q)}>' In this latter case, however, E(B8) becomes more compli-

(37) cated as the coefficient;, ., themselves depend on the

temperature. Hence, in this case E88) becomes a self-

1
P() = z-lexp( {([59rved ATy + voATIALHE)

consistent equation fde.
The parameters of crossover between prolate and oblate
uniaxial order(Landau pointsare given by equating to zero

with t=kgT/|vog[p being the dimensionless temperature. For
lattice modelsp should be replaced by the lattice coordina-

tion number. Equation(37) could be solved iteratively by Eq. (3.19 of [24]. It yields v,=1~2v|/\3, which matches

taking regard of the definitio36); namely, by performing ) A
an expansion of the one-particle distribution function on thein® self-dual lines oDy5 and Da; for v, =<1, indicating that

) . . . i} the mean field approximation is consistent with the duality
IeIt hand _S'de of E9(3_7) in the b_as's ofLs,ymmetry adapted properties of the model. A full bifurcation scenario from the
Ar,, functions, multiplying both sides b

me @nd integrat- jsotropic phase to biaxial and uniaxial phases is illustrated in
ing over Euler angles, which yields an equivalent set of therigs. 4 and 5.

self-consistent equations for the order parame&éﬁ%. An With the help of Eqs(14)—(16) and(34)—(37) we are able
alternative, and much simpler, bifurcation analysis followsto derive exact formulas for the bifurcation temperattire
directly from Eqgs.(13)—(16). between uniaxial and biaxial nematic phases. It reads
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FIG. 5. Division of parameter spadeg,v,} for sgnvgg <0
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0.4 0.8 Vo
FIG. 6. Complete bifurcation diagram for 9ggo) >0. The up-

per surface, tailed by larger squares, represents bifurcation from the

isotropic phase. The second surface gives the bifurcation tempera-

ture from uniaxial to biaxial states. Tricritical temperatures are

marked with continuous, black line.

Om=INZnZo 0= Zo,om+ d[2IN ZinZo 1= 225 1
+d(InZyZy 1~ Ziam]s (48)

according to the bifurcation phase diagram from the isotropic phase.
Uniaxial disklike states bifurcate for the parameters located in the

areaA. In the areaB, separated fromfA and C by the parabola,

:—vg, no stable nematic phase exists. Ataorresponds to rodlike o o " =5 -
states and the thick line represents the biaxial nematic phase. THE X0=247 7 X1=A74, Xo =40, X3=

self-dual line is a collection of Landau points.

(a2 - boJvs - [sgnveo)C + 2avglt- + t7

v2= sgrvgo) (@ - be) + bt. - 39
where
70a= 2007+ 1545, (40)
70b= 14+ 2007+ AT} + 3545, (42)
70c=14 - 2Q0F) + 6AGY, (42

The additional condition that the bifurcation point is the tri-

critical one reads

392 - s+ B[ E — &2~ t:59Mv00) 162 — 2700 — Mok
+tewg)ef— (702 = 75+ tewy) f3 + 675d(27,6, + dE3)
+ d{— 436, + d[1216,% — 67585 + ABmoéals — MaE3)d
+ (38 - &)dy =0, 43

where

_ bty

= L (44)
t.sgn(vgg) — &

e=9[gs(In Z, st —vg) = Ga(In Z3 ot — vy)], (45)
f=0[—gs(In Z, A« = sgr(vgg) + Go(IN Z; gt —vo)], (46)

g_l = _120[(|n ZZ,St* - Uo)2 - (In szzt* - Sgr(l)oo)
X (In Zgy3t* - Uz)], (47)

and whereZEZO,7Egi. (37), and derivatives of with respect
N g NEZ are taken in the
uniaxial nematic phase, stable tat Also the order param-

eters BOFZ and the averages involvingm:sgr(voo)yn?o
+vo§n?§, vm:voyﬁ%yn?z must be determined in the
uniaxial nematic phase. Similar formulas can be derived by
projecting out the theory2) onto Landau expansion about
the isotropic and the uniaxial nematic phaféa-74.

Numerical analysis of the bifurcation equations is pre-
sented in Figs. 6 and 7. More specifically, Figs. 6 and 7 show
an approximate phase diagram collecting bifurcation points,
parametrized by temperature and potential parameters.
Sketched is the reduced temperature as a function of the
interaction parameters,, v,. Crosses indicate localization
of the tricritical points. Note that below the tricritical point
temperature, where the phase transitions are second order,
the bifurcation points match with the true MF phase diagram.
In all other cases they limit the true phase diagram from

BN

0 Vo 0.5

FIG. 7. v, versusug at tricritical point. Only tricritical points in
the aredA of Fig. 3 are shown. The remaining can be obtained by a
systematic application of duality transformations. Tricritical tem-
perature varies fromt.=0.2147 for vy=0 to t.=0.2367 atuv,
=0.3194, where the tricritical line meets the self-dual ling=1
-(21Y3)v,. Tick marks correspond to intermediate, equally spaced
temperatures.
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below. The diagrams are representative for prolatelike molspace of Fig. 3 the model is likely to occupy. This analysis
ecules, localized in the aréaof Fig. 3. We draw the areas of could be useful in seeking for the optimal model producing
(a) the direct isotropic-biaxial phase transitiof) the the biaxial nematic phase and thus may help in identifying
isotropic-uniaxial-biaxial phase transition, and the areadirections to follow to get a stable thermotropic biaxial phase
where no stable nematic phase is obtained. Having nematif realistic materials. Clearly, the most promising direction to
phases and tricritical points localized in the afeaf Fig. 3  follow is to get materialsmolecular modelswith interac-
we can now recover all other phase diagrams (riytritical tions Io_calized in the vicinity of self-dual lines, especially the
points of the model by systematic application of the duality®"€s Withvo=0 andv,=1.

transformations. Our results agree with those found earlier A nontrivial question that should still be addressed is

for v,=0 [12]. Note a weak dependence of the tricritical whether the MF-predicted tricritical behavior can be ac-

temp(()arature om, and the possibility of having a tricritical counted for when fluctuations of orientational order are taken
0

Landau point where the self-dual line crosses the tricriticafmO account.
one.
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atic phase. Search for this phase has been ongoing for more
than 30 years now and one of the questions addressed was as ) @
to why the phase is so elusive. In order to provide at least APPENQ'?; SYMMETRY ADAPTED A, , FUNCTIONS
partial understanding of this issue we generalized the exist- AND T " TENSORS VS DIRECTIONAL COSINES

ing bifurcation theorieg24,72,74 to find thermodynami- Here we list all relevant functions and irreducibld
cally exact criteria that govern the stability of the phase. Wegngors used in the paper and their relation to directional
showed explicitly that the bifurcation to the biaxial nematic .qgines. Fol.=2 there are only foub,,-symmetric, inde-
phase is given by the direct pair correlation function of the

underlying high-symmetry phasesotropic or uniaxial nem- pendentA’s and twoT tensors for each orthonormal tripod

aticc and we proved the hierarchical role played by theOf \{ectors. Con;equentlg, only four sgquares of directional
higher-order direct correlation functions in determining theCOSINES ou.t ,Of n'néba'lﬁz). could be.chosg? independently.
order of the transition. The derived formulas indicate theDecomposition ofb,-15)“ in the basis ofA | reads
importance of the.=2 model in a proper understanding of 1 _
biaxial ordering. Though the model was introduced in the (by1)2=2[2+ AR+ 302, - V3(AZ+ AFY], (A1)
literature some time agd6,16] only partial information 6
about its thermodynamic properties was availalsiee Sec.
[l A and Table | for a summary We carried out the comple-
mentary analysis. In particular we concentrated on the dual-
ity properties of the model, which provide a link between
predominantly prolate and predominantly oblate states, di- 1
viding the parameter space into corresponding sectors. (by-l3)?==(1+ mg?) , (A3)
In Sec. lll we derived the mean field bifurcation tempera- 3
ture between the uniaxial and biaxial nematic phases within L
the model and formulas identifying the character of this bi- R (2 _aA@ _ [2A@ _ A2
furcation. They tell us whether the transition is first order or (by-12)7= 6[2 00738252 V3802~ Az0] (A4)
continuous. In principle, a more general analysis that is ther-
modynamically exact up to the angular momentum index 1 _
=2 could easily be carried out if instead of expanding the (by-19)%= 8[2 +AZ) - 3AFL+V3(AR - AR)] (A5)
pair potential in symmetry-adapted basis functions we ex-
panded the structural quantiti€3, and C;. The formulas ) ”_ ) ’ )
derived remain valid provided that we disregaZg, n=3, (b1 127+ (by - 1) =1~ (b 1)~ (by 1)+ (b3-13)
disregard director dependenceQy, and limit toL=2 terms (AB)
in the expansion o€,.
The classification of the potential parameters as given in 1 _
Figs. 3—7 could be used in rough guesses as to whether any (by-13)%= 5(1 - AZy+3AE, (A7)
other model aiming at reproducing the biaxial nematic phase
could really have a chance to do it. Indeed, by a simple
project!on of_any _potentjal into the=2 .subspa.ce we could (b 14)2= }(1 —Aézzﬁ \'EAEZE) (A8)
immediately identify which part of the interaction parameter 3 ' :

1 [~
(b -19°=£[2+ Afy+ 307, + \3(AGy+ A, (A2)
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(by-13)%+ (bg-1)?=1=(by - 1))%+ (b, - 1,)% = (bs - I3)? the Cartesian irreducible tensors to study chiral and biaxial

1
(by-1g)?= :‘3(1 -AGy- \EA&)

systems are found if75-77.

All possible relations between dependéht,-15)? could
now easily be derived. In particular, from Eq#1)—(A19)
(A10) one finds one possible set of relations:

1 3cos{2,8) 1 3

(A9)

O(Q) LO BO = Z 4 - 5 E(b?: 3)2
(bs-1,)%= —(1 AR -3A2) (A11) (A20)
2 2 2 2 2 E ~
(by - 19)"+ (b3 12)°=1+(by - 11)° = (by - 15)° = (b3 13)%, (2)(9) Lo-B,= c05(23/)sin(,8)2
(A12)
- 3
where the relative Euler angle€Q in the argument oﬂﬁ)n = \—[(bl 15)%= (b, -13)?], (A21)
have been left out for clarity. 2
Construction of relevarit ) tensors and of their symme- 3
trized counterparts follows easily from E@4). In particu- APQ)=L . B.= Vo 2%)sin(B)2
lar, for an arbitrary right-handed orthonormal trippdy, 2} 2d =Lz Bo 2 cof2a)sin(f)
the TO{%,y,2)=T© andT?({%,y,2}) =T@ tensors are 3
1 = ?[(ba 192 =(bg - 1,7, (A22)
T =-=1 (A13)
V3
AZYD) =L, B,
Tf,zz) =—(Xziy) ® (X£iy) (A14) = ZCOS(Z?&)[S + CO:{Z,E)]COS(Z?/)
1 - cogB)sin(2a)sin(27)
T@= % 5[(2¢i9)®2+2®(§<i|9)] (A15) L L
=(by - 1)%+ (by - 1%~ E(bs 13)? - >
TP =—=[3202-1] (A16) (A23)
AZHD) + AGYQ) = \3[(by 12~ (by +1)%], (A24)
1=XQ@X+yQy+2® 2. (A17) _ _
o0 whereL =T ,"/({l1,15,13}) andBy=T,"({b1, by, bs}).
The D,, symmetrization y|eldsT )= =T, and leaves only Considering the orthonormal tripdd,I,, 5} as being as-

two nonvanishing, independent tensmfﬁ),

?Q:TQ,

sociated with symmetry axes of the nematic phase and fixing
{b;,b,,b3} to a molecule, Eqs(A10)—(A14) allow one to
(A18) construct linear combinations ok functions that satisfy
symmetry restrictions imposed by various nematic phases.
For example the sta@A{ y+b AL, being the linear combi-

e 1
2 _ ~ A A
TY = _E( ®X-y®Y), (A19)  nation of A andA?) descrlbes the uniaxial phase invariant
v under rotation abodts
which correspond to the tensogsand b used in[12]. Note Similarly, the statea(Aﬂ +\3A(223)+b(A(2)+ A(ZZ) and

that up toL=2 there are only three irreducible tensors bUI|ta(A(2 3A(20)+b(A(2) r3A(22)2) describe the nematic

out of an orthonormal tripod that are consistent widh,

phases uniaxial abotg andl,, respectively. The above prop-

symmetry: 'SOUOPICT : unlaX|aIT %, and blaXla|T() of erties follow immediately from EqgA2), (A11), (A5), and
maximal blaX|aI|ty(Tr[(T(2))3] 0). Further appllcatlons of (A8).
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